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Electronic transport through a planar defect in the bulk
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The extra resistivity p,„t,due to a planar perturbation in an otherwise homogeneous bulk
medium is considered. The current density incident on the barrier and the density distribution in
the bulk are calculated self-consistently as a solution of a classical diffusion problem. Numerical
calculations show Huctuations of the density within a few bulk mean free paths in the vicinity of the
barrier. They depend sensitively on the transmission and reQection coeKcients. Using the Einstein
equivalence, we obtain p,„t,from the long-range density drop across the barrier. The occurrence
of the density Huctuations generally prevents the derivation of a simple generalization of the one-
dimensional Landauer formula. Instead, a more involved expression for p „t,is found in a simpli6ed
model of discrete angles of carrier motion.

I. INTRODUCTION

Electronic transport in the presence of a localized per-
turbation of an otherwise homogeneous bulk system has
attracted enhanced interest especially since Landauer's
seminal 1957 paper. The spatial variations of both elec-
trical current and potential in the vicinity of the defect
have been of special interest in the context of electro-
migration theory. ' Unlike the now more popular view-
point of two-terminal resistances, ' where the voltage
difference is measured between adjacent reservoirs feed-
ing electrons into the device, the theory in its original
formulation asked for the voltage difference inside the
structure right across the obstacle, not involving the con-
cept of reservoirs at all. The central idea in Ref. 1 was the
formation of a current-induced. dipole of carriers, called
the residual resistivity dipole (RRD). This concept fell
somewhat into oblivion when the two-terminal resistance
became the focus of mesoscopic transport, particularly
in ballistic structures. It is nevertheless a useful tool
to investigate transport in systems that are intrinsically
resistive such as bulk materials, quantum films, or re-
sistive quantum wires. Here we will contribute to the
original question and consider the extra resistance due to
the RRD of a planar perturbation in a three-dimensional
bulk system. Planar perturbations often serve as models
for grain boundaries, stacking faults, or tunneling barri-
ers.

A number of papers conceptually dealing with the
RRD have appeared over the years. They can be
roughly classified into three groups: (i) scatterers
in one-dimensional or quasi-one-dimensional wires;
(ii) point clefects in two- or three-dimensional bulk
systems; ' (iii) planar perturbations in three-
dimensional bulk systems.

Strictly one-dimensional systems seem to be well un-
derstood. Both classical ' and quantum mechanical '

approaches lead to the well-known R/(1 —B) expression
for the extra resistance, where B is the refIection coefIi-
cient of the obstacle. It can be understood as the result
of multiple attempts of reQected carriers to cross the bar-

rier eventually. After an electron has been scattered by
the obstacle, it also suffers scattering by the bulk and
therefore has the chance to return to the obstacle where
it contributes anew to the incident current. Summing
up all these processes gives the above geometrical series.
The problem of obstacles in multimode wires is more
involved. Recently, it has been tackled for the case of re-
sistive quantum wires using a variational principle within
a quasiclassical framework. The derivation of a general
expression for the resistance in resistive multimode wires
turns out to be diKcult.

The main issues of the work on the second topic are
the formation of the RRD and the resulting electromigra-
tion field acting upon the impurity. ' The calculations
were restricted to effects of the first order in the scatter-
ing cross section. In Ref. 19 the Friedel oscillations in
the vicinity of the scatterer were included. Recently, ef-
fects of higher order in the scattering cross section of the
perturbation were addressed, ' and the extra resistiv-
ity was found to depend on the transport cross section
o'T in a nonlinear fashion, p,„t,,~ oT /(1 —noT ). Here,
too, the multiple scattering processes of carriers between
obstacle and surrounding bulk lead to a geometrical se-
ries which is similar to the one-dimensional result. Since
the carriers can bypass the perturbation, however, the
nonlinear effect is far &om being so pronounced as in a
wire. The probability that carriers return to the obstacle
is just expressed by the quantity o.oT in the denomina-
tor of p, t, . Such a nonlinearity had been predicted long
ago. '

The situation in the third group lies between the first
two groups. Due to the extended bulk, the angles at
which carriers can move form a continuum. On the other
hand, due to the translational symmetry with respect
to the barrier-bulk interface, it bears a resemblance to
one-dimensional problems. To a certain extent, the sys-
tem can be viewed as a wire with an infinite number
of lateral modes. This has also been noted in recent
work. The similarity with one-dimensional problems
implies that the carriers cannot bypass the barrier. One
should therefore expect the resistivity to diverge like T
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if the transmission coefIicient T tends to zero for all an-
gles of incidence. On the other hand, the continuum of
angles suggests a certain averaging procedure for B(cos 0)
and T(cos 0).

In Ref. 22 the Boltzmann theory is applied to a pla-
nar impurity layer sandwiched between reservoirs. Ref-
erence 23 shows the treatment of the transport problem
through a barrier using a quantum mechanical superposi-
tion method in the quasiclassical limit. The main result
there is an analytical expression for the extra resistivity
of the form (R) / (T) containing simple angular averages
of B(cos 0) and T(cos 0). It was obtained employing a
dift'usion picture, taking into account only the constant
excess and deficit densities on both sides of the barrier. In
Ref. 24, the Boltzmann distribution function was calcu-
lated, and it was found that, within some bulk mean free
paths (MFP's) around the barrier, it depends sensitively
on R(cos0) and T(cos0). The focus of Ref. 24 is that
the angular distribution of the current density incident
onto the barrier must be determined self-consistently in-
cluding scattering processes both from the barrier and
from the bulk scatterers. Taking this self-consistency ap-
proach seriously, it seems to be not possible to find a
simple closed Landauer formula for the total range of B
and T. In Ref. 24, analytical formulas for the extra re-
sistivity could be derived for the limiting cases B &( 1
and T &( 1. The result for the second case was obtained
under the assumption that the angle-dependent part of
the current-induced distribution function around the bar-
rier tends to zero in the limit T ~ 0. While we confirm
the result for the first case, we present arguments and nu-
merical calculations which show that the said assumption
for the second case is generally not correct. The situa-
tion T = 0, where the density distributions on both sides
of the barrier are in equilibrium, cannot be connected
by a perturbational method to the nonequilibrium case
0 ( T &( 1 where a, current even though weak, Bows.
Both cases represent physically difI'erent situations. The
same problem was encountered in the attempt to derive
a general Landauer formula for obstacles in resistive mul-
timode wires.

In the present paper we treat the transport problem
through a planar barrier using a classical kinetic equation
and solving the arising difFusion problem self-consistently.
We feel this method is particularly simple and transpar-
ent. The current is driven by a density gradient that
takes a constant value far from the perturbation. Scatter-
ing of an incident current density from the barrier leads to
a redistribution of carriers over all angles which deviates
from the asymptotic distribution far from the barrier.
Due to momentum relaxation in the bulk, a fraction of re-
jected particles returns to the barrier and forms anew an
incident current. Therefore particle and current density
can be obtained self-consistently from each other. The
results obtained from the diffusion picture can be easily
translated into the language of a force-driven current us-
ing the Einstein equivalence. The elastic bulk scattering
is assumed to be isotropic and homogeneous. The condi-
tion that the Fermi wavelength is much smaller than the
bulk mean free path justifies our classical model. A sim-
ilar method has been used in recent works ' where

more details can be found.
As we did not succeed in deriving a complete solution

of the resulting integrodifI'erential equations with a con-
tinuum of angles at which carriers can move, we solve
them on an (arbitrarily fine) grid of discrete angles 0
Nevertheless, we are able to obtain all essential results
from the discrete equations. Besides, we present numeri-
cal calculations of the density to support our conclusions.

In order to avoid misunderstanding it must be said
that no direct comparison can be made between the re-
sults for a single barrier considered here and Landauer's
considerations concerning an array of barriers and the
characteristic velocity distribution between them.

II. CLASSICAL KINETICS GF THE BULK

We adopt the model shown in Fig. 1 where the barrier
is of zero thickness. According to our classical picture,
the particle and current densities are

(2)

where g(r, 0) and j(r, 0) are the particle and current
densities due to cariers moving in the direction of the unit
vector equi. 0 = (p, 0) is the usual solid angle. j(r, 0) and
g(r, 0) are connected by the relation j(r, 0) = vg(r, 0).
Due to the background scatterers, the carriers can change
their direction of motion. This process is described by the

j" (cos8) Qg

h7

—g(x)

FIG. 1. (a) Schematic representation of the barrier with
incident current density. (b) In the mathematical model, the
thickness of the barrier is neglected (below). The symmetric
density profile around the barrier consists of the asymptotic
value —gz (dashed), the constant part A of the excess density,
and the exponentially decaying relaxation density g„&(x).



ELECTRONIC TRANSPORT THROUGH A PLANAR DEFECT IN. . .

local kinetic equation

e~ —j(r, &) = —pg(r, 0) + — dO'g(r, 0'), (3)
OF 4'

where p is the bulk scattering rate. Let us define the
quantities g(r, 0) = g(r, 0) + g(r, 0') and j(r, 0)
v[g(r, 0) —g(r, 0')] where 0* is defined by e~, = —e~.
With the kinetic equation for g(r, 0*) and j(r, 0*), com-
plementary to Eq. (3), and either adding or subtracting
both equations, we find

Inserting this into Eq. (7) leads to the linear eigenvalue
problem

m=1

the solutions of which can readily be written down,
namely,

O
eg —g(r, 0) = ——j(r, 0)

Ox' v

O
e~ —j(r, 0)

Or

= —pg(r, O) +-y
4m

dp' d8' sin 0' g(r, 0'). (5)

O2 1 1
I'C' &,g(x, C) = g(x, C) —

2
«'g(x &'). (6)

In the diffusion picture employed here, g(x) is determined
up to an additive equilibrium density. However, we mean
with g(x) the nonequilibrium part only.

We did not succeed in deriving a complete set of so-
lutions of Eq. (6) in its continuous form. Therefore we
solve it on a grid of discrete values („.If we divide the
interval [0 & ( & 1] into W equal parts, Eq. (6) reads

If the density gradient is constant, Bg(r)/Br = —ge,
we have g(r, 0) = —gx/2n, and the usual difFusion law
follows from Eq. (4) with the difFusion constant D = vl/3
where I = v/p is the bulk MFP. Since the present problem
is invariant with respect to translations parallel to the y-
z plane, the difFerential operator e~ 8/Br is reduced to
(0/Ox where ( = cos0. Moreover, due to the isotropy
of the bulk scattering, the symmetry relation g(x, 0) =
g(x, () = g(x, —() holds. Then, combining Eqs. (4) and
(5) gives

N

) g~ C'g~ =4~, (12)

where the normalization has been at once suitably fixed.
Any density distribution g(x, ( ) on either side of the

barrier can be represented as a superposition

N —1

Pp is a normalization constant. From Eqs. (10) and

(11) follows immediately P z g& = N/3&. The solu-
tions (9) describe the relaxation of a density distribution
g(x, g ) which deviates from the distribution (8) of the
unperturbed bulk. Each eigenvalue v& corresponds to an
eigenvector lop accounting for a narrow angular range
around ( = (+pl) . gp has a maximum around that
point. This is obvious from Eq. (11). It is also consistent
with the notion that carriers moving at an angle 0 should
be relaxed after a distance v —I, cosa. Since it is the
bulk background scattering that causes the relaxation,
the upper limit to the relaxation lengths K& is of order
jt. The eigenvalue spectrum can be checked numerically.
We find indeed that K& ( L.

We can formally write the constant part of the homo-
geneous solution (8) as go exp( —ro~x~) where go

——Po
and ro ——0. From the symmetry of Eq. (7) follows then
immediately the orthogonality relation

O2I'C' ~, g(x, C ) = g(x ( ) —~ ).g(» C ).
m=1

(7) The total density is therefore

Equation (7) resembles the second-order difFerential
equation for the channel densities in a quantum wire con-
sidered in Ref. 11.

One solution of Eq. (7) is easily found if the left-hand
side vanishes:

(8)

The fii.rst term corresponds to the homogeneous diffusion
process in the unperturbed bulk (cf. above), whereas the
constant contribution accounts for the RRD, as we shall
see later on. The superscript r/I indicates the side of the
barrier. In the following, we will consider only the left-
hand side, and therefore omit the superscript. To find a
complete set of solutions of Eq. (7), we employ the ansatz

N —1

g(x) = —gx + 2vr ) Cp &Pp e (14)

We will call the sum in Eq. (14) for x & 0 the excess
density and, accordingly, the d.eficit density for x ) 0.
The sum in Eq. (14) which excludes the term A = 0 is
called the relaxation density g, ~(x) (see Fig. 1).

The coefBcients Cp must be determined so as to fulfill
the boundary condition g(0, ( ) = g (( ) on the barrier
interface. If g(0, ( ) matches the boundary condition,
g(x, g ) describes the correct density distribution in the
corresponding half space. g (() will be considered be-
low. For the moment, we assume it to be given. The
coeKcients C& can then be obtained by using the or-
thonormality relation (12),
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N

C~ = ).g~ C„'g (C )

B((„)= 1 —T((„).
If the barrier were inhomogeneous or rough, the re-
Aection and transmission coefBcients would contain ofF-

diagonal elements.
If a current density j'"'(( ) is incident on the barrier,

the density at the left interface is

g (C-) = (i+ &(&-) —T(&-)1 (17)

From Eq. (14) we see that the coefficients Cg with
0 determine the density ffuctuation within a few

MFP's around the barrier, whereas Co corresponds to the
long-ranged density change. 2vr&PoCp = A can therefore
be viewed as I andauer's RRD which determines the ad-
ditional resistance due to a perturbation.

I.et us now consider how the boundary condition
g (( ) on the barrier can be obtained from the current
density incident on the barrier. The latter is assumed
to be internally homogeneous and ideally smooth. The
reflection and transmission coefffcients, B(( ) and T(r', ),
obey then the relation

where

N

»~ =4~ —p) ). " &(c )
g~ („

1+ rg l(„n=1
(2i)

and

N

).g~ C' &(C ). (22)

Using Cramer's rule, we can express the solution Cp
as the ratio of two determinants, namely,

N —1

) ap), t"),
det (Ag ~) p p

det(A) ).a~~ A~~
A'=0

(23)

Ap~G. denotes the matrix A where the 4th column has
been replaced by the vector Gp. The asap are the cor-
responding cofactors. For the resistance (see Sec. III),
we are particularly interested in the coeKcient Co of the
long-range density change or, respectively, in the density
dipole A. With relations (12) and (16) we And for the
corresponding column A' = 0 of Agp

The minus sign in front of T((„)is due to the antisymme-
try of the nonequilibrium density g(x) with respect to x,
i.e. , g(x) = —g( —x). Currents from the right half space
must be counted negative. j'"'(( ) in turn can be cal-
culated from the density g(x) using the kinetic equation
(3) in its integral, yet discretized form, i.e. ,

Co is then

N

»o = ).4 O'T(C ).

N —1 N

(24)

We can replace g(x) in Eq. (18) by the superposition
(14). With Eqs. (17) and (16) we obtain for the density
distribution g+g' ) on the barrier interface

g (C)=)

= &(C-)

(i9)

N —1

).A» C~ = G~,
A=o

(2o)

where the integration over x in Eq. (18) has been car-
ried out. The right-hand side is just the expansion of
g (( ) into the eigenvectors gp . It is hence possible to
determine the coefficients Cp and thus the density self-
consistently. Note that the inhomogeneity in Eq. (19),
proportional to the asymptotic density gradient g, fixes
the total current through the barrier. If we apply the pro-
jection procedure (15), we arrive at the linear equation
system

).a~o).k 4'&(C )
g A=O n=1I

2~~Pp N 11v-
).a~o ).ga („'T(( )

n=1

(25)

III. EXTRA RESISTIVITY

Here we show briefl. y how the results of the diffusion
picture considered throughout this paper can be trans-
lated into the conventional picture of a force-driven elec-
trical current. To this purpose, we employ the quan-

Note that the cofactors a~o also depend on B(r",„)and
T(( ). Equation (25) expresses therefore no simple av-
eraging of B and T but a considerably more complex
procedure. It can be simplified only in certain limiting
cases; see Sec. IV. Generally, the total density variation is
established after many scattering cycles &om the barrier
back into the bulk. In each cycle, all directions of mo-
tion are mutually coupled according to the kinetic equa-
tion (3). The complex interplay of all scattering cycles
prevents a simple averaging scheme for B(() and T(() as
proposed, for example, in Ref. 23. We also point out that
the dipole moment b, = 27r&PoCp does not depend on
N if the resolution is 6ne enough to sample all variations
of R(( ) and T(g ). This has been checked numerically.
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tity u(x) = g(z)/n(E~) rather than the density itself.
n(E~) = m v~/2m 6 is the local density of states. We
restrict ourselves to the zero temperature limit. Then all
quantities must be taken at the Fermi surface. The dif-
ference b'u( —x) —6u(x), introduced by the barrier, leads
to an additional drop e4 of the electrostatic potential
which is established within some microscopic screening
lengths across the barrier. For a large distance I from
the interfaces, i.e. , I )) l, the difFerence bu( —L) —hu(L)
is constant,

1269.95

X

GD 1269.90

1269.85

2L
Su( —L) —Su(L) =

n(Ep )
(26)

In this region it is sensible to define the extra resistivity
p,„t,as ratio of [hu( —oo) —bu(+oo)] to the electroiuc
currrent density ~j~ driven through the system. ~j~ is given
by the diffusion law as ~j~

= g l v~ e/3. Thus we get for
the extra resistance

363
2~e2~2 m2 gl

We note that the total carrier density in a real trans-
port situation is constant (over distances large compared
to the screening length). If the screening length is much
shorter than the bulk MFP (as is mostly the case in met-
als), the band bottom mirrors the deiisity fluctuations
found in our dift'usion picture.

IV. RESULTS AND LIMITING CASES

This result has been obtained also by other authors us-
ing difFerent methods. ' The situation here is relatively
simple since the current density incident on the barrier
can be replaced by the unperturbed bulk current density.
A perturbation approach is possible, and higher-order ef-
fects can be neglected. The relaxation density can be
obtained directly f'rom Eq. (20) and of order g I O(B).

The situation changes drastically if we consider the
opposite limit of a strong barrier (T « 1). Here a per-
turbation expansion definitely fails. Figure 2 shows the
normalized excess density [g(x) + g x]/gl where the coef-
ficient Cg in Eq. (14) have been calculated numerically
from Eq. (23). We use the same model transmission co-
efBcient as in Ref. 24, namely,

(29)

with o. = 10 . The relaxation density g, ~ is roughly of

Consider first the limit of a weakly scattering barrier
(B « 1). In this case the cofactors of the flrst column
are asap = 8'pp + O(R), where R means the typical order
of B((). We insert this into Eq. (25) and replace the
summations over n with integrations over (. Then we
get

FIG. 2. Normalized excess density on the left-hand side of
the model barrier described by Eq. (29). While A is of order
g l T, the relaxation density is of order g l. The resolution
is N= 10.

order gl within a few mean free paths around the barrier
before it exponentially vanishes. The dipole moment L,
on the other hand, is of order g l o.

Using Eq. (23), we can qualitatively understand the
orders of magnitude of g„~and L. One easily convinces
oneself that the cofactors ago become independent of
T(g ) in the limit T + 0. The dependence of Cp on T(( )
is then only determined by the terms P„gp„(„T(g„)in
the denominator in Eq. (25). We find that Cp diverges
like T if T tends to zero. This is obvious from Fig. 2.
On the other hand, we find after a little calculation &om
Eqs. (21), (22), and (23) that Cp gl/NPp for all A g 0.
Therefore the relaxation density is generally of the same
order as gl. This is also visible in Fig 2. Therefore the
relaxation density must be taken into account when we
determine the incident current density, even in the limit
of weak transmission through the barrier.

The aforesaid, however, means that we do not recover
the simple resistance formula derived in Ref. 24 (and,
earlier, in Ref. 23) for the limit T « 1. Instead, the
determinants in Eq. (25) must be calculated to obtain the
correct extra resistance. p „t,is proportional to T, of
course, but its actual value depends on T(() and B(() in
a more complex fashion.

The reason for this discrepancy is, in our opinion, the
assumption g„i T made in Ref. 24 [where the quan-
tity y(() corresponds to the relaxation density g„i(x)].
We present a simple calculation in order to make this
point more transparent. Going back to the the continu-
ous kinetic equation in integral form, we write down the
density distribution g+(g) at the left-hand side interface
of the barrier,

+ g-i(0 C)

or, rearranging the terms,

T(()A —g I R(() ( = 2~([1 —T(()]v j,'"„'(()
g i(0 ()) g i (31)

j,'" (()iis the contribution of the relaxation density to the
incident current density and is proportional to g, j. From
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Eq. (31) it is clear that the relaxation density must be
generally of order g l. Et is also clear that no perturbation
approach can be used in order to connect the two cases
T = 0 (where g = 0) and 0 ( T (( 1 (where g g 0). The
asymptotic current which forms the inhomogeneity in the
self-consistency integral equation (Ref. 24) or equation
system [Eq. (19)] jumps from zero to a finite value.

We want to emphasize that the disagreement between
the results presented in Refs. 23 and 24 and our results in
the T && 1 limit only results in a factor of order 1. This
can be seen qualitatively from Eq. (31), too. Whether we
include g, I or not in the calculation of 4 does not change
the order of magnitude of the extra resistance. This
makes it hard to devise experiments that could prove
the correctness of our result. Such measurements would
require that the parameters of a planar barrier be exactly
known. This, however, is dificult to achieve in practice.

In the special case T(( ) = Tp( Tp (( 1, Eq. (25)
becomes particularly simple and we find

2.0—

l.5 ---—

X
CD

+ 8 1.0

3h3

2'7t C 'U~m To
(32)

.5 '

Equation (32) exactly reproduces the result found by
Laikhtman and Luryi. From Eqs. (30) and (31), it is
also easy to see why the relaxation density vanishes if
T(g) (. Then the barrier transmission exactly fits
the angular distribution of the incident current density,
g l (+4 (up to small corrections Tp ). No relaxation is
needed to redistribute rejected or transmitted carriers.

Finally we want to discuss the density profile around a
barrier with a transmission window in a narrow angular
range. We choose a Inodel transmission coeKcient of the
form T((„)= Tp if g„=(p, and zero otherwise. Even
though such a model might seem too academic, it pro-
vides some interesting insights. Figure 3 shows the excess
density due to the barrier for four diferent transmission
windows. From curve (a) to curve (d), the transmission
angle increases. We notice two significant features. First,
the density dipole moment 4 and thus the extra resis-
tance increase with the angle of the transmission window.
[Note the diferent ofFsets of curves (a)—(d) for better rep-
resentation. I This is appealing since the contribution of
particles moving at an angle 0 to the total current de-
creases as cos0. The second, more interesting obser-
vation is that the profile of the excess density changes
with (p. For perpendicular transmission, as in curve (a),
the relaxation density increases towards the barrier. At
oblique transmission, as in curve (d), the density drops at
the interface. Finally, for a transmission window around
gp = cos(vr/4), the relaxation density shows a nonmono-
tonic behavior with a local minimum. This is shown in
curves (b) and (c).

Now we want to give a simple qualitative explanation
of the density in Fig. 3 curves (b) and (c). The dis-
cussion of the other cases is straightforward. Consider
Fig. 4 where g(x, ( ) has been depicted in a simplified
model of only three directions Oq ( Oq & 03. The bar-
rier has a transmission window at Oz. Figure 4(a) shows
g(0, ( ), i.e. , at the left interface. Since carriers mov-
ing towards the barrier at an angle 02 can easily leave

—5 —4 —3 —2 —1 0

FIG. 3. Excess density on the left-hand side of the barrier
for diferent transmission windows. Appropriate offsets ensure
that all curves can be represented in a single diagram. At 00,
Tp = 0.5, and is zero otherwise. Curve (a) 8p ——0', offset 4.5;
curve (b) Op

——38', offset 7.0; curve (c) ep ——46', offset 9.0;
curve (d) Hp ——68', offset 19.5. The resolution is in all cases
N =10.

the left half space without being compensated by carri-
ers from the right half space, g(0, (z) is lower than the
average (g(0, t,

'
)) over all angles. In Sec. II we have

seen that carriers moving at an angle 0 are relaxed af-
ter a distance leos 0 [see the remarks after Eq. (11)].
Thus after a distance l(s, as shown in Fig. 4(b), we have
g(lgs (3) (g(l(s, ( )). The average density, however, is

(a)

e& H2 H3

(b)

H& H3

(c)

B) H2

FIG. 4. Density distribution for three distances x from
the barrier in a simple three-angle model. (a) 3:i = 0; (b)
2;2 = l(3) (c) x3 l(2. The dashed line denotes the density
averaged over n, i.e. , (g(x;, ( )) . Thicker arrows indicate
faster relax:ation between two steps x, and x,+q than thinner
ones. See tex:t for further explanations.
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now lower than it was at x = 0. At a distance t(z then,
the relaxation of carriers moving at (z has again led to
a rise of the average density. Thus the joint endeavor of
carriers at minimizing deviations of their partial density
&om a common average, on the one hand, and the differ-
ent lengths needed to reach this relaxation, on the other
hand, lead to the characteristic density profiles shown in
Fig. 3.

V. CONCLUSIONS

the extra resistivity p „t,, found in Refs. 23 and 24. How-
ever, the derivation of a generalized Landauer formula,
containing simple angular averages of B(() and T((),
seems generally not possible. Within our discrete angle
model, we have instead derived an expression for the ex-
tra resistivity of the barrier that requires the calculation
of determinants containing B(( ) and T(( ) [Eq. (25)j. It
can be used for practical calculations of p,„t,. Whether
the discrete formalism developed here can be translated
into a continuous form remains a mathematical task for
future investigations.

Our investigation of the carrier density around a pla-
nar perturbation in the bulk has revealed fluctuations
within a few MFP's. These fluctuations can be calcu-
lated self-consistently and are sensitive to the angular de-
pendence of the barrier transmission and reflection coefB-
cients. Numerical calculations show that the density near
the barrier can exhibit concave, convex, or even a non-
monotonic shape, depending on B(() and T(g). In the
limit of a weak barrier, we have confirmed the result for
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