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If the dynamical quasiparticle spectrum of a Fermi liquid (FL), egy, given by the poles of the
single-particle propagator, is used in the expression for the entropy of a noninteracting Fermi gas, one
finds that the result is different from that calculated directly from the thermodynamic potential. In
particular, the coefficient of the T In T terms, the leading correction to the linear T' dependence for
a three-dimensional (3D) FL, is overestimated when calculated from egy. The thermodynamic prop-
erties may be calculated correctly from a second quasiparticle spectrum, the statistical quasiparticle
spectrum, €. In this paper I calculate the corrections to leading linear energy and temperature
dependences for a 2D FL. I compare the difference between the two spectra in the 2D and 3D cases.
Although these differences are qualitatively the same, they are quantitatively larger in the 2D case.

I. INTRODUCTION

Calculations of the properties of many-body systems
using perturbation theory involve terms with denomina-
tors given by the differences between energy levels for
intermediate states. In a finite-size system with a dis-
crete spectrum and an energy-level spacing ~ %, where
L is the size of the system,! there are terms in which
the energy denominators can vanish. Contributions to
calculated quantities of these terms are smaller than the
contributions where the energy denominators do not van-
ish by a factor of volume™?! and so are negligible for large
systems.? As the volume of the system goes to infinity,
the energy-level spacing approaches zero and the spec-
trum becomes quasicontinuous. The energy denomina-
tors can become arbitrarily small and are referred to as
“vanishing” energy denominators. There is no volume ™!
factor associated with these terms; they are responsible
for the leading corrections to low temperature and en-
ergy behavior of the many-fermion systems. The pres-
ence of vanishing energy denominators introduces the
need for a regularization procedure in order to calculate
such terms. Regularization schemes for the calculation of
thermodynamic properties have been investigated for a
system of fermions with random impurities by Balian and
DeDominicis® and by Luttinger and Liu.* They showed
that the quasiparticle spectrum that enters the calcula-
tion of thermodynamic properties, the statistical quasi-
particle spectrum, e;f, is different from the the dynamical
quasiparticle spectrum, egy, calculated from the poles of
the single-particle propagator.

Luttinger and Ward® derived an expression for the
thermodynamic potential of an interacting Fermi liquid
(FL) in three dimensions (3D), which consists of the dif-
ference between two terms. One term is given by the fully
renormalized single-particle propagator and self-energy.
The other is the sum of all skeleton diagrams, closed-
linked diagrams without self-energy insertions, whose
lines are fully renormalized propagators. Starting from
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this expression, Carneiro and Pethick® showed how the
regularization of contributions to the entropy for a 3D
FL, S, leads to extra terms beyond the result given by
the single-particle propagator and self-energy alone, S9v.
The difference comes from the fact that the closure line in
the self-energy contribution has a Matsubara frequency
and so does not have to be regularized while the corre-
sponding line in the temperature derivative of the skele-
ton diagram does. This difference is clearly associated
with the vanishing energy denominators in perturbation
theory, which arise from real scattering processes involv-
ing at least two vanishing energy denominators. As the
temperature approaches zero, the phase space for scat-
tering falls and this difference, S —S9, comes from terms
with two vanishing energy denominators. These pro-
cesses lead to T3 InT contributions to the entropy of 3D
FL.

In their work Carneiro and Pethick® considered fully
renormalized propagators, which went beyond the ear-
lier calculations of these terms based on perturbation
theory.” 0 In these earlier perturbation theory calcula-
tions, the interaction between free fermions was described
by a contact interaction. These calculations had shown
that associated with the 72InT terms in the entropy
there is a 513, In|&,| term in the real part of the single-
particle self-energy, 3(p,£,) where &, is the difference
between the quasiparticle energy and the chemical po-
tential. Pethick and Carneiro!! also calculated these ef-
fects within the Landau theory of Fermi liquids.'? In this
work they discussed the difference between e;t and egy
in terms of the T' matrix and the reactance matrix. This
treatment parallelled the work based on scattering theory
by Fukuda and Newton! and DeWitt!2 who were the first
to discuss the relation between phase shifts and energy-
level shifts as the volume of the system goes to infinity.
More recently Coffey and Bedell'* have shown that in 2D
the leading corrections to linear temperature dependence
in the entropy go as T? and have corresponding terms in
2(p,&p) which go as &€,

2D FL’s have recently been of general interest as mod-
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els for the normal state properties of the high-7,. cuprate
superconductors. The generic temperature dependences
of FL’s have not been observed in transport and ther-
modynamic properties. This may be partly due to the
high value of the superconducting transition tempera-
ture in these materials. In this case, the temperature
dependence of quantities in the normal state are mea-
sured at such high temperatures that the temperature
dependence is dominated by the corrections to the lead-
ing low-temperature dependences. Another possible ex-
planation is that the ground state of a system of fermions
in 2D is not a FL but is similar to a 1D Luttinger liquid
in which the weight in the quasiparticle pole vanishes at
the Fermi surface.!®

The principle focus of the most recent work is to find
out if the FL ground state is stable in 2D or if the ground
state is closer to that suggested by Anderson.!® The aim
of much of this work is to find signatures of the break-
down of perturbation theory other than the conventional
charge-density wave (CDW), spin-density wave (SDW),
or BCS instabilities. Serene and Hess'® have investigated
the leading frequency dependence of the self-energy and
the leading temperature dependence of the thermody-
namic potential with the Hubbard model. Including both
particle-particle and particle-hole channels they found re-
sults consistent with a finite quasiparticle weight at the
Fermi surface and a T? dependence for the thermody-
namic potential as expected for a Fermi liquid. Other in-
vestigations have concentrated on the low doping regime
in which ¥(k, E) is approximated by an expansion in
the particle-particle channel.1”'® This approximation be-
comes exact in the limit of very low density. Engelbrecht
and Randeria!” discovered that as a result of the two-
dimensionality a two-particle bound state appears below
the band with a repulsive interaction. This is a collec-
tive effect absent from 3D. However, it does not appear
to influence the leading corrections to the low energy or
temperature dependences of X (k, E) and the difference
between 2D and 3D can be traced to the difference in
phase space. No evidence has been found for the break-
down of perturbation theory and arguments have been
presented showing that in general there is no breakdown
for systems with dimensionality greater than one.2° How-
ever, Anderson questions whether perturbation theory is
valid to begin with.2! Here I assume that the corrections
to a free Fermi gas can be calculated in perturbation the-
ory.

In this paper, I calculate the corrections to the leading
term in the statistical and dynamical quasiparticle spec-
tra for a 2D FL in pertubation theory using the same
short-range interaction used previously in the investiga-
tion of 3D FL’s,” 10 and of 2D FL’s.16718 T show that the
difference between these two spectra in 2D depends on all
powers of the scattering amplitude but the ratio of the co-
efficients of the leading temperature energy corrections is
independent of the strength of the interaction within the
approximation used here. This is in contrast to 3D where
the difference is proportional to scattering amplitudes to
the third power and the ratio approaches three only in the
limit of strong interaction. I find that the temperature
dependence of the quasiparticle spectrum contributes a
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larger fraction of the corrections to linear temperature
dependence of the entropy in 2D than in 3D. The out-
line of the paper is as follows. In Sec. II, I introduce
the paramagnon model and calculate the corrections to
the linear £, dependence of ¥(p, ;) at low temperatures
close to the Fermi surface. In Sec. III, I calculate the
thermodynamic potential for a 2D FL. In Sec. IV I com-
pare the contribution to the entropy from the dynamical
quasiparticle spectrum, e Y, with the entropy calculated

from the statistical quasxaprtlcle spectrum, ep

II. MODEL

First I calculate the leading corrections to the dynam-
ical quasiparticle spectrum using a short-range interac-
tion between fermions. This model was originally used to
investigate the corrections to the linear temperature de-
pendence of the specific heat for a 3D FL by Engelsberg

and co-workers:7'8
H E £P P, acpy
E : T
+ paCP O"Cp qa”cP‘f'qy (1)
P,q,0,0'

I is the the strength of the interaction and multiplied
by the density of states of one spin is the paramagnon
parameter, I. The interaction is cutoff at |q| = g.. I will
consider a doping regime in which the leading corrections
to the FL behavior at low energy and temperature comes
primarily from particle-hole pairs excitations. £y is the
Fermion dispersion, which I take to be il s , where my
is the mass of the Fermion. The expression for the self-
energy due to repeated scattering of particle-hole pairs
is

E(p,zE'n) =-T z GO(p —q, 1En

q,0' Wy

- zw[)veff(q’ wl)a

(2)

where w; = 2wkgTl are Bose Matsubara frequencies and
T is the temperature. Go(p, F) is the unperturbed Green
function. V*f(q,w) is given by

Veﬁ'(q’w) _ Z

L, Vax(a,w)
“1-V, (q,w)

(3)

V x(q,w)
Vex(q,w)

Vo=I1,Vo,=—-I,v,=1/2, and v, = 3/2, and
X(qvw) = Z%? (4)

P

where f,, are Fermi-Dirac distributions. The form of
X2p0(gq,w) is shown in Figs. 1 and 2 for ¢ = 0.01pp,
q = pr, and ¢ = 2.1pr at zero temperature.?? The sharp
structure in x(g,w) in the long-wavelength limit leads to
the strong temperature dependence shown in Figs. 3 and
4.
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FIG. 1. Imaginary part of x2p(q,w) at zero temperature
plotted as a function of s = # for ¢ = 0.01pr (full line),
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FIG. 2. Real part of x2p(g,w) at zero temperature plotted
as a function of s = -2 for ¢ = 0.01pr (full line), ¢ = pr
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and T = 0.05EF (long dash line) with ¢ = 0.01pF.
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FIG. 4.
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FIG. 3. Temperature dependence of the imaginary part of
x2D (g, w) as a function of s = # for zero temperature (full
line), T = 0.01EFr (dot-dash line), T' = 0.02EFr (dash line),
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Temperature dependence of the real part of
x2D(g,w) as a function of s = qu for zero temperature (full
line), T = 0.01EFr (dot-dash line), T = 0.02EFr (dash line),
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The real part of ¥(p,&,), ReX(p,§p), is

- Z[l - 2fp—q]ReVeﬂ(Q» &p

+E/

XImVER(q, w)ReGo(p — q,&p — w),

ReX(p, &) = —&p-a) (5)

1 -+ 27’13( )]

where ng(w) is the Bose Einstein distribution function.
The dynamical quasiparticle spectrum is given by the
poles of the single-particle propagator. To the present
order of approximation egy =&, + ReXZ(p, &p).

In the particle-hole expansion, the leading corrections
to the linear dependence on &, and E in X(p, E) come
from the long-wavelength limit of the effective interac-
tion, V*f(q,w). In the long-wavelength limit and low
energies £, = vp(p — Pr), vF = pr/mo is the Fermi ve-
locity, and the g? are dropped in &p_q. X(g,w) becomes

a function of s = _*- only. In the long-wavelength limit,

x(g,w) becomes

x2p (¢, w) = X2p(5) + 1xap(s) (6)
x3p(¢,w) = X3p(s) + 2x3p(s) (7)
:N(O)[ (1— ®In Hiz ) +z-7f2f}

xO(1 — [s]),

where N(0) is the density of states at the Fermi sur-
face for a 2D or 3D parabolic band. The difference in
phase space leads to different results for 2D and 3D FL’s.
ReV*f(s) is an even function of s and, expanding in pow-
ers of s2, one finds for 3D that the well-known &3 1n |&,|
corrections to the leading £, term in ReE(p,fpS] come
from the s% term in the expansion but that all orders of
5% contribute to the Eg term. In 2D on the other hand,
all powers of s? contribute to &,|£,|, which is the leading
correction to the linear &, term in the self-energy. The
corrections to the linear term £, term in the self-energy
are

In2T
RedX2p(p,&p) = ‘B pép [8525- + :TF}
O(€3,6,T?), (8)
where
Veﬂ‘ Veff 0
B;%=—ZVA/ dex m() ©

da Af‘\
";"*/o Vi—at {1-a?)+

The temperature dependence of x2p(s) is limited to
values of s close to one. Furthermore, the singularity in

[Axa)?}

D. COFFEY 51

s comes from the use of bare propagators in the particle-
hole propagator, x2p(s). If the single-particle propaga-
tor lines in x2p(s) were dressed so that lifetime effects
due to scattering with other quasiparticles were included,
Im¥(p, E) # 0, the sharp feature in x2p(s) at zero tem-
perature would be smoothed out and the strong temper-
ature dependence would be considerably reduced. Con-
sequently the temperature dependence of x2p(s) will be
neglected, although I will return to this point below. In
3D, Pethick and Carneiro!! found

e (&) + ()]

RedX3p (P, 617) =

max(&p, T 3 ¢3

X In|——=—| 4+ O(T", &), 10
el o), (10)

where

dy E : 2 L
B3D = R V)\A/\ l:l - ZA,\] . (11)
- I _ -1 T

Ay = fon g A, = 5 and I is the paramagnon parame-

ter. A; and A, are the scattering amplitudes in the sym-
metric (density) and antisymmetric (spin) channels. The
coefficient in the log term, q.vr(, depends on the details
of the ¢ dependence of the effective interaction deter-
mining the region of temperature over which the 73 InT
terms characterize the corrections to the linear temper-
ature dependence in the entropy.?® The temperature de-
pendence of the self-energy increases the coefficient of the
leading correction in both 2D and 3D appreciably.
These results may also be obtained by first calculat-
ing the imaginary part of the self-energy as a function
of energy and then using the Kramers-Kronig relation
to calculate the real part. Ignoring the momentum de-
pendence, the energy dependence in 2D Im¥(p,e) ~
€?In|e|.2728 Calculating ©(k, E) using an expansion in
the particle-particle channel, Fukuyama and Hasegawa!®
found the same functional dependence on the energy.
However, in these calculations of some of the €*In|e]
terms come from particle-particle pairs with a net mo-
mentum ~ 2kg as opposed to long-wavelength particle-
hole pairs in the present work. Moriya?? pointed out
that because x"(¢,w) was finite for small w as ¢ — 2kp,
there are no T3InT terms from particle-hole pairs with
g ~ 2pr. As can be seen from Fig. 1, x”(q,w) is finite as
g — 2k for all w in 2D and so the same result applies to
2D. There are no contributions to the £,|{,| terms from
finite ¢ dependence in 2D.

III. THERMODYNAMIC PROPERTIES

The shift in the thermodynamic potential is calculated
by coupling constant integration using the same approx-
imation used in the calculation of the self-energy. This
gives
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T, p) = kgT >
Q,wn,A=s,a

U |:1n[1 - VAX(Q: wn)]

+VAX(q1 wn) + - V (q7 wﬂ)] (12)

= A(lqp + As—zcoll.modes

where w,, are Matsubara frequencies. The last term in
the large brackets of Eq. (12) is present to account for
the double counting of terms quadratic in V), which
appear both in the sum of the ring diagrams and lad-
der diagrams. AQ(u,T) is broken into a contribu-
tion from quasiparticles, AQq,(u,T) and a contribution
from collective modes given by poles of the T' matrix,
AQcoll.modes(T, 11, V).  First, we consider AQq,(p,T),

which is
M T) = 5 [T Heoth (57) 17 0.0)
lal<qc
+21I%x/ (q,w)x" (q,w)] , (13)
where
1 —Wx"(q,w)
F(q,w) = vy [tan™1 | —2X VD)
)= 3 o (20
+Wax"(q, wn)} . (14)

Calculating the contribution to the entropy due to inter-

actions AS,(T) = — [?—Aa%&] one finds
"

ASqp = =2 Z /Ow%M[FSt(QvW)

oT
lal<qe
+2I%x (q,w) ”(q,w)] (15)
_9 Z/ —(1+2n3(w) (,;;,[F“(Qa )
lal<qe

+2I%x' (q, w)x" (q, w)].

The temperature dependence of the term in brackets van-
ishes in the long-wavelength limit and so does not con-
tribute to the leading corrections to the linear temper-
ature dependence. This term is the counterpart of the
contribution to ReX(p, £,), which contained the Bose fac-
tors.

The double-counting terms may also be dropped be-
cause the leading corrections come solely from long-
wavelength effects. In this case, the q’s of interest in
the ring diagrams are small. On the other hand, the net
momenta flowing in the ladders are small but the q ex-
changed at each interaction along the ladder is not in
general small. As a result there is little overlap between
the relevant values of q in the two channels. In effect,
there is no double counting in the calculation of these
leading corrections and I drop the contribution to the
shift in the entropy from the double-counting terms.

The term in the effective interaction linear in x"(gq,w)
contribute linear terms, cubic terms, and higher-order
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terms in temperature, but no 72 terms so that from the
point of view of the leading correction the effective inter-

action is
—1f —=Wax"(s)
" 1
u,\l: an (1—V,\X’(S) +

Fst(s) = E
A=s,a

Making the wavelength approximation, the effective in-
teraction is a function only of odd powers of s. Expand-
ing in effective interaction in powers of s, one finds in
3D that the 73 1InT terms in the entropy come from the
s3 term in the expansion, which depends on A% and A3.
The corresponding 7'? terms in 2D come from all terms in
the expansion. The leading corrections to the linear tem-
perature dependence of the entropy are I'2pT? + O(T3)
in 2D and I'sp73InT + O(T3) in 3D where

Vax" (s)
1-— V)‘X/(S) ’

(16)

3¢(3)n
FZD - - 7TT2 BZD’ (17)
4
™ n
r — B3t
3D = 903 3D
and
Axs —1/ —Axs d,
d /1—3s2 +ta’n (./1__32) _ BZI)S
B3h = Z Ux s 53 — o
(18)
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FIG. 5. The contribution to B3} which comes from the

channel where Ay = 1|

Ty @s @ function of Ax.



14 074

; (19)

2
3D = ZVAAz [1 - 2A,\

and ¢(3) ~ 1.202 is the Riemann zeta function.?® The
variation of B§%) is dominated by the contribution of the

channel in which |4)| = 1_£7' can increase as the Stoner
instability is approached. In Fig. 5 I plot this contribu-
tion, B5h () as a function of Aj.

The contribution to the entropy in 2D from the col-
lective mode determined from the poles of the T' ma-
trix goes as T?, because the collective mode dispersion
o ¢q and so has the same temperature dependence as the
leading temperature dependence from interactions. The
term that has been calculated here would be identified
in measurements of the specific heat by subtracting off
the contribution to the T2 dependence determined from
the measured collective and phonon dispersion curves.
This is unlike the case in 3D where collective modes and
phonons give a T3 contribution and so contribute to the
cutoff of the T3 In T term rather than its coefficient. Next
I consider the contribution to the entropy from egy and
compare this spectrum with the statistical quasiparticle

spectrum, €5'.

IV. QUASIPARTICLE SPECTRA
AND THERMODYNAMICS

Putting the dynamical quasipaticle spectrum, egy =
& + ReX(p,&p) into the expression for the entropy for a
noninteracting Fermi gas and expanding to linear order
in the self-energy, one finds for the leading correction to

the linear temperature dependence

Asdy ZEP p7£17) a-2(6)

e=£p

— Z =(p gp) . (20)

For the 2D case, one finds AS;% = Fg%Tz and for the
3D case AS;IY) = I‘gl’;Ts InT. T3 and T'SY are given by

3 3 In2
I =—-=¢3) |3 7;({;) 72 55D (21)
3
= —;4(3)[1.007] TFB;*{),

n d
20 (12 12 (T3)B3% (22)

7'("1 n d
= — | — | BE.
20 (Tﬁ) 3D

The first terms in the square brackets in the expressions
for I‘g% and Fg% come from the zero-temperature self-
energy and the second terms from the leading temper-
ature dependence. Neglecting the temperature depen-

o 5
PSYD:”—[~+~
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dence in 2D would underestlmate the magnitude of the
coefficient by ~ g in 2D and by & iz in 3D. The importance
of taking the temperature dependence of the quasiparti-
cle spectrum into account was first pointed out by Brenig
et al.1 for the 3D case and the effect is similar in 2D al-
though somewhat bigger.

After making this correction for the use of the zero-
temperature spectrum, there is still a difference between
the entropy as calculated from the thermodynamic po-
tential and the dynamical quasiparticle spectrum. This
is due to the difference in the statistical and dynami-
cal quasiparticle spectra. The expression for the dynam-
ical quasiparticle spectrum, determined by 3(p,&p), is
given in Eq. (2). The corresponding part of the sta-
tistical quasiparticle spectrum can be found by rewrit-
ting the shift in the thermodynamic potential in terms
of fermions rather than with a Bose distribution. Multi-
plying the Bose factor by x"(¢,w) and dividing F**(q,w)
by x"'(¢,w), the integral over w of the Bose distribution
times x”(g,w) is turned into a sum over a fermion mo-
mentum of Fermi-Dirac distributions with a new effective
interaction between the fermions

Qp,T) = Z/
= pr—q(l
+Y_ fo-all

where F“(q,w) = F**(q,w)/x"(q,w). Taking a deriva-
tive gives the entropy and one finds an expression for
AS given by

X"(q,w)F(¢,w)[2n5(w) + 1)]

- fp)FSt(q’ & — €p—a) |

- fp)FSt(Qaép - Ep—q)v (23)

AS = Z fPAst (24)

where

AE:: = Z(l - 2fp—q)FSt(Qa§p - éP—q)' (25)

q

This is the shift in the statistical quasiparticle spectrum
due to interactions and is the counterpart of E(p, &) in
dy . The difference between AS and ASY is seen to
come from the two kinds of quasiparticle spectra, egy =
& + ReZ(p,&p) and €' = &, 4+ A€if. The coefficient of
the &,|€,| and the EPT terms in the two spectra are the
same except that BzD in egy is replaced by B354 in edy
so that the use of the dynamical quasiparticle spectrum
in the calculation of the T2 terms due to quasiparticles
in the entropy overestimates this term by a factor of 2
independent of the strength of the interaction for a 2D
FL.

The coefficient of the T2 term in the entropy is slightly
different, I';p or ~ 1.007T'zp, depending on whether it is
calculated from the statistical quasiparticle spectrum or
the thermodynamic potential. The origin of this mod-
est difference is the temperature dependence of x5p(s).
Going back to Eq. (23) and taking the derivative with
respect to temperature of the expression with the Bose
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distribution, one finds

AS = Z /_oo ;i—: [zxu(q,w)ﬁ‘(q,w)%%;u)

X" (q,w)
oT

x"(g0)2na (o) + 1) 2550

+[2np(w) + 1]F (g, w)

(26)

The first term in this expression is shifted in the entropy
as calculated directly from AQ(y,T). In calculating Ae:f

the effective interaction, F'st(s), was assumed to be tem-
perature independent just as the effective interaction was
in the calculation of ReX(p,£,). The second term involv-
ing the temperature dependence of x'(s) is seen to be
responsible for the difference in the coefficients of the 72
terms in the entropy. An analogous difference between
the calculation of the entropy from AQ(u,T) and from
Ae;t is present in 3D. In that case the difference appears
in the cutoff the T3InT terms.?® In both cases the ne-
glect of the temperature dependence of x"(g,w) leads to
a small error.

V. CONCLUSION

Thermodynamic quantities can be calculated directly
from the thermodynamic potential or from the statisti-
cal quasiparticle spectrum, which is different from the
spectrum given by the poles of the single-particle prop-
agator, the dynamical quasiparticle spectrum. I have
compared the quasiparticle spectra and entropy for 2D
and 3D Fermi liquids. In 2D one finds that the tempera-
ture dependence of the quasiparticle spectra is responsi-
ble for roughly 5/8 of I'?P, the coefficient of the leading
T? correction from the quasiparticle contribution to the
entropy. This is larger than the result for 3D Fermi lig-
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uids where the leading correction is of the form 73 InT.

Use of the dynamical quasiparticle spectrum in 3D
leads to an overestimate of the coefficient of the T3 InT
terms by a factor of 3 in the case where the scattering am-
plitude in either the spin or density is large. It is shown
here that this effect for 2D is also present but that the
overestimate of the coefficient of T2 terms from quasi-
particles is a factor of 2 independent of the interaction
strength. The difference between the 2D and 3D cases is
that I'?P depends on the scattering amplitude to all or-
ders whereas I'3P depends only on the second and third
power of the scattering amplitude.

There is a contribution to the 72 term from the
temperature dependence of the imaginary part of the
particle-hole propagator in the long-wavelength limit.
This temperature dependence comes from values of s =
qup ~ 1 and is a very small effect. The difference in
phase space between 2D and 3D means that the temper-
ature dependence of x”'(s) leads to a difference in the T2
contribution to the entropy in 3D so that it does effect
the leading T3 InT correction. As pointed out above, a
more sophisticated treatment of the propagator in x(g,w)
would reduce this temperature dependence still further.

In conclusion the relation between e;t and egy for 2D
and 3D FL’s is similar. The differences can be traced to
the difference in phase space for long-wavelength particle-
hole pairs and in general they are a bigger in 2D than in
3D.
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