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If the dynamical quasiparticle spectrum of a Fermi liquid (FL), e„r, given by the poles of the
single-particle propagator, is used in the expression for the entropy of a noninteracting Fermi gas, one
finds that the result is different from that calculated directly from the thermodynamic potential. In
particular, the coefBcient of the T ln T terms, the leading correction to the linear T dependence for
a three-dimensional (3D) FL, is overestimated when calculated from e„r. The thermodynamic prop-
erties may be calculated correctly from a second quasiparticle spectrum, the statistical quasiparticle
spectrum, e„". In this paper I calculate the corrections to leading linear energy and temperature
dependences for a 2D FL. I compare the difFerence between the two spectra in the 2D and 3D cases.
Although these differences are qualitatively the same, they are quantitatively larger in the 2D case.

I. INTRODUCTION

Calculations of the properties of many-body systems
using perturbation theory involve terms with denomina-
tors given by the differences between energy levels for
intermediate states. In a finite-size system with a dis-
crete spectrum and an energy-level spacing &, where
L is the size of the system, there are terms in which
the energy denominators can vanish. Contributions to
calculated quantities of these terms are smaller than the
contributions where the energy denominators do not van-
ish by a factor of volume and so are negligible for large
systems. As the volume of the system goes to infinity,
the energy-level spacing approaches zero and the spec-
trum becomes quasicontinuous. The energy denomina-
tors can become arbitrarily small and are referred to as
"vanishing" energy denominators. There is no volume
factor associated with these terms; they are responsible
for the leading corrections to low temperature and en-
ergy behavior of the many- fermion systems. The pres-
ence of vanishing energy denominators introduces the
need for a regularization procedure in order to calculate
such terms. Regularization schemes for the calculation of
thermodynamic properties have been investigated for a
system of fermions with random impurities by Balian and
DeDominicis and by Luttinger and Liu. They showed
that the quasiparticle spectrum that enters the calcula-
tion of thermodynamic properties, the statistical quasi-
particle spectrum, e„', is different from the the dynamical
quasiparticle spectrum, e„~, calculated from the poles of
the single-particle propagator.

Luttinger and Ward derived an expression for the
thermodynamic potential of an interacting Fermi liquid
(FL) in three dimensions (3D), which consists of the dif-
ference between two terms. One term is given by the fully
renormalized single-particle propagator and self-energy.
The other is the sum of all skeleton diagrams, closed-
linked diagrams without self-energy insertions, whose
lines are fully renorrnalized propagators. Starting from

this expression, Carneiro and Pethick showed how the
regularization of contributions to the entropy for a 3D
FL, S, leads to extra terms beyond the result given by
the single-particle propagator and self-energy alone, S ~.
The difference comes &om the fact that the closure line in
the self-energy contribution has a Matsubara &equency
and so does not have to be regularized while the corre-
sponding line in the temperature derivative of the skele-
ton diagram does. This difference is clearly associated
with the vanishing energy denominators in perturbation
theory, which arise &om real scattering processes involv-
ing at least two vanishing energy denominators. As the
temperature approaches zero, the phase space for scat-
tering falls and this difference, S—S ~, comes from terms
with two vanishing energy denominators. These pro-
cesses lead to T lnT contributions to the entropy of 3D
FL.

In their work Carneiro and Pethick considered fully
renormalized propagators, which went beyond the ear-
lier calculations of these terms based on perturbation
theory. In these earlier perturbation theory calcula-
tions, the interaction between free fermions was described
by a contact interaction. These calculations had shown
that associated with the T lnT terms in the entropy
there is a („in ~(„~ term in the real part of the single-
particle self-energy, E(p, (z) where („ is the difference
between the quasiparticle energy and the chemical po-
tential. Pethick and Carneiro also calculated these ef-
fects within the Landau theory of Fermi liquids. In this
work they discussed the difference between e„' and e„~
in terms of the T matrix and the reactance matrix. This
treatment parallelled the work based on scattering theory
by Fukuda and Newton and DeWitt who were the erst
to discuss the relation between phase shifts and energy-
level shifts as the volume of the system goes to in'. nity.
More recently Coffey and Bedell have shown that in 2D
the leading corrections to linear temperature dependence
in the entropy go as T and have corresponding terms in
Z(p, („)which go as („~(„i.

2D FL's have recently been of general interest as mod-
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els for the normal state properties of the high-T cuprate
superconductors. The generic temperature dependences
of FL's have not been observed in transport and ther-
modynarnic properties. This may be partly due to the
high value of the superconducting transition tempera-
ture in these materials. In this case, the temperature
dependence of quantities in the normal state are mea-
sured at such high temperatures that the temperature
dependence is dominated by the corrections to the lead-
ing low-temperature dependences. Another possible ex-
planation is that the ground state of a system of fermions
in 2D is not a FL but is similar to a 1D Luttinger liquid
in which the weight in the quasiparticle pole vanishes at
the Fermi surface.

The principle focus of the most recent work is to And
out if the FL ground state is stable in 2D or if the ground
state is closer to that suggested by Anderson. The aim
of much of this work is to find signatures of the break-
down of perturbation theory other than the conventional
charge-density wave (CDW), spin-density wave (SDW),
or BCS instabilities. Serene and Hess have investigated
the leading frequency dependence of the self-energy and
the leading temperature dependence of the thermody-
namic potential with the Hubbard model. Includ. ing both
particle-particle and particle-hole channels they found re-
sults consistent with a Rnite quasiparticle weight at the
Fermi surface and a T depend. ence for the thermody-
namic potential as expected for a Fermi liquid. Other in-
vestigations have concentrated on the low doping regime
in which Z(k, E) is approximated by an expansion in
the particle-particle channel. ' This approximation be-
comes exact in the limit of very low density. Engelbrecht
and Randeria discovered that as a result of the two-
dimensionality a two-particle bound state appears below
the band. with a repulsive interaction. This is a collec-
tive efFect absent from 3D. However, it does not appear
to inHuence the leading corrections to the low energy or
temperature dependences of Z(k, E) and the difference
between 2D and 3D can be traced to the difference in
phase space. No evidence has been found for the break-
down of perturbation theory and. arguments have been
presented showing that in general there is no breakdown
for systems with dimensionality greater than one. How-
ever, Anderson questions whether perturbation theory is
valid to begin with. Here I assume that the corrections
to a free Fermi gas can be calculated in perturbation the-
ory.

In this paper, I calculate the corrections to the leading
term in the statistical and dynamical quasiparticle spec-
tra for a 2D FL in pertubation theory using the same
short-range interaction used previously in the investiga-
tion of 3D FL's, and of 2D FL's. I show that the
difference between these two spectra in 2D depends on all
powers of the scattering amplitude but the ratio of the co-
efFicients of the leading temperature energy corrections is
independent of the strength of the interaction within the
approximation used here. This is in contrast to 3D where
the difFerence is proportional to scattering amplitudes to
the third. power and the ratio approaches three only in the
limit of strong interaction. I find that the temperature
dependence of the quasiparticle spectrum contributes a

larger &action of the corrections to linear temperature
dependence of the entropy in 2D than in 3D. The out-
line of the paper is as follows. In Sec. II, I introduce
the paramagnon model and calculate the corrections to
the linear (z dependence of Z(p, (~) at low temperatures
close to the Fermi surface. In Sec. III, I calculate the
thermodynamic potential for a 2D FL. In Sec. IV I com-
pare the contribution to the entropy kom the dynamical
quasiparticle spectrum, e ~, with the entropy calculated
IIrom the statistical quasiaprticle spectrum, e„' .

II. MADEL

First I calculate the leading corrections to the dynam-
ical quasiparticle spectrum using a short-range interac-
tion between fermions. This model was originally used to
investigate the corrections to the linear temperature de-
pendence of the specific heat for a 3D FL by Engelsberg
and co-workers: '

II = ) (pc cp~
Pz&

+ ) I(q) cp cp c, , cp+q ~.
p, q, o,u I

I is the the strength of the interaction and multiplied
by the density of states of one spin is the paramagnon
parameter, I The inte. raction is cutofF at ~q~

= q, . I will

consider a doping regime in which the leading corrections
to the FL behavior at low energy and temperature comes
primarily from particle-hole pairs excitations. (p is the

2 2

Fermion dispersion, which I take to be "& "~, where mo
is the mass of the Fermion. The expression for the self-
energy due to repeated scattering of particle-hole pairs
is

Z(p, zE„) = T) Gp(p——q, zE„—z~()V' (q, u)(),
q&O &+1I

(2)

where ~~ ——2vrk~T/ are Bose Matsubara frequencies and
T is the temperature. Go(p, E) is the unperturbed Green
function. V' (q, cu) is given by

V2y(q, ~) V2y(q, (u)'
1 —V.y(q, ur) 1 —V y(q, cu)

V, = I, V = I, v, = 1/2, and —v = 3/2, and

x(q~ ~) = )
P

(4)

where fr are Fermi-Dirac distributions. The form of
y2D(q, w) is shown in Figs. 1 and 2 for q = 0.0lp~,
q = p~, and q = 2.1p~ at zero temperature. The sharp
structure in y(q, w) in the long-wavelength limit leads to
the strong temperature dependence shown in Figs. 3 and
4.
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FIG. 1. Imaginary part of y2D(q, cu) at zero temperature
plotted as a function of s = for q = 0.01pp (full line),
q=pI"z (dashed line), and q = 2.1pF (dot-dashed line).

FIG. 3. Temperature dependence of the imaginary part of
y2D ~q, u~ as a unc ion(, ) f ction of s = for zero temperature (full

line) T = 0 01E~ .(dot-dash line), T = 0.02E~ (dash line),
and T = 0.05E~ (long dash line) with q = 0.0lp&.
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FIG. 2. Real part of y2D(q, ~) at zero temperature plotted
as a function of s = for q = 0.01p~ (full line), q = p~
(dashed line), and q = 2.lpga (dot line).
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The real part of E(p, („),ReZ(p, („),is

R Z(p, („)= —) [1 —2f, ,]R V' (q, („—(, ,) (5)

de
[1 + 2n~ (ur ) ]27'+).

xImV' (g, (u)ReGO(p —g, („—cu),

where nii(cu) is the Bose Einstein distribution function.
The dynamical quasiparticle spectrum is given by the
poles of the single-particle propagator. To the present
order of approximation e„~ = („+ReK(p, („).

In the particle-hole expansion, the leading corrections
to the linear dependence on (z and E in Z(p, E) come
from the long-wavelength limit of the efkctive interac-
tion, V'ff(q, w). In the long-wavelength limit and low
energies (z ——vp (p —p~), v~ = p~/mo is the Fermi ve-
locity, and the q are dropped in (~ z. X(q, cu) becomes
a function of s = only. In the long-wavelength limit,

X(q, w) becomes

B," P g„b' ~Z Tb'
RebZsD(p, („)= sD(„

24 " (Ep) Ey )
K~ ] +~(T. (s)

Qc'U~
(1o)

where

7t-2
Bs~~ = ) vgA„1 — Ap

A=s, a

8 comes from the use of bare propagators in the particle-
hole propagator, X2D(s). If the single-particle propaga-
tor lines in X2D(s) were dressed so that lifetime effects
due to scattering with other quasiparticles were included,
ImZ(p, E) g 0, the sharp feature in XzD(s) at zero tem-
perature would be smoothed out and the strong temper-
ature dependence would be considerably reduced. Con-
sequently the temperature dependence of X2D(s) will be
neglected, although I will return to this point below. In
3D, Pethick and Carneiro found

x2D(q, ~) = x2D(s) + ixz'D(s)
I

= m(0) —1+ i
'

O(1 —~s~),/1 —s'

(6)

XsD (q, ~) = XsD(s) + ~Xs'D(s)

s 1+s&= N(0) —'

1 ——ln
2 1 —s )

«(1 —~s~),

~yReSZ2D(p, („)= —B D(„ 8+E~ srE~

+0((„',g„T'),

where

where K(0) is the density of states at the Fermi sur-
face for a 2D or 3D parabolic band. The diBerence in
phase space leads to di8'erent results for 2D and 3D FL's.
ReV ff(s) is an even function of s and, expanding in pow-
ers of s, one finds for 3D that the well-known („1n~(„~
corrections to the leading („ term in ReZ(p, („) come
from the 8 term in the expansion but that all orders of
s contribute to the g term. In 2D on the other hand,
all powers of s contribute to („~(„~,which is the leading
correction to the linear („ term in the self-energy. The
corrections to the linear term („ term in the self-energy
are

As ) A~ y
and I is the paramagnon parame-]

ter. A, and A are the scattering amplitudes in the sym-
metric (density) and antisymmetric (spin) channels. The
coefficient in the log term, q, v~(, depends on the details
of the q dependence of the efFective interaction deter-
mining the region of temperature over which the T ln T
terms characterize the corrections to the linear temper-
ature dependence in the entropy. The temperature de-
pendence of the self-energy increases the coeKcient of the
leading correction in both 2D and 3D appreciably.

These results may also be obtained by erst calculat-
ing the imaginary part of the self-energy as a function
of energy and then using the Kramers-Kronig relation
to calculate the real part. Ignoring the momentum de-
pendence, the energy dependence in 2D ImZ(p, e)
e2 ln ~e~.

zs Calculating E(k, E) using an expansion in
the particle-particle channel, Fukuyama and Hasegawa
found the same functional dependence on the energy.
However, in these calculations of some of the e ln ~e~

terms come from particle-particle pairs with a net mo-
mentum 2k~ as opposed to long-wavelength particle-
hole pairs in the present work. Moriya pointed out
that because x"(q, iv) was finite for small w as q -+ 2k~,
there are no T lnT terms &om particle-hole pairs with
q 2@~. As can be seen from Fig. 1, X"(q, w) is finite as
q —+ 2k~ for all w in 2D and so the same result applies to
2D. There are no contributions to the („~(„~ terms &om
finite q dependence in 2D.

B2D = —) vg
Veff( ) Veff(0)

d& III. THERMODYNAMIC PROPERTIES

dc' A~~

+1 —c ' ((1 —~') + [A),c ]')
The temperature dependence of X2D(s) is limited to

values of s close to one. Furthermore, the singularity in

The shift in the thermodynamic potential is calculated
by coupling constant integration using the same approx-
imation used in the calculation of the self-energy. This
gives
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q)@pe ) A= S)CL

vp in[1 —VpX(q, ~„)]
terms in temperature, but no T terms so that from the
point of view of the leading correction the efFective inter-
action is

+V~x(q, ~-) + —V&'x'(q ~-)
4

= AO~p+ LB
&-. ..„,(-Vx"() &, Vx"()

I 1 —VpX'(s) ) 1 —V),X'(s)

AAqp(p, T) = )
+2I'x'(q, ~)x"(q, ~)]

where

, ( —V»"(q, ) ~E' jq uj = vp tan
( 1 —Vpx'(q, ~) )

+Vox" (q, (u„) (14)

where ~ are Matsubara frequencies. The last term in
the large brackets of Eq. (12} is present to account for
the double counting of terms quadratic in Vp, which
appear both in the sum of the ring diagrams and lad-
der diagrams. AO(p, T) is broken into a contribu-
tion from quasiparticles, AOqz(pt T) and a contribution
from collective modes given by poles of the T matrix,
AA, ii g, (T, p, V). First, we consider AOq~(p, , T),
which is

3((3)n
2D~

7C F
4

st
20 T~

(17)

B2D ) V

Ap8 + t —i
(

—Ag )tt
/1 —s2 +1—82

d8
8

CigB
)2

Making the wavelength approximation, the effective in-
teraction is a function only of odd powers of 8. Expand-
ing in efI'ective interaction in powers of s, one finds in
3D that the T lnT terms in the entropy come from the
8 term in the expansion, which depends on A& and A&.
The corresponding T terms in 2D come from all terms in
the expansion. The leading corrections to the linear tem-
perature dependence of the entropy are I'2DT + O(T )
in 2D and I'sDT ln T + O(T ) in 3D where

Calculating the contribution to the entropy due to inter-

actions ASq~(T) = — &&'" one finds

(is)

des Bn~(~)
7t BT g) MaS„=—2 )

Jq/(q

+2I'x'(q, ~)x"(q, cu)]
OO

t9
n~(~)) ZT

7'"(~ ~)—2)
+2I x'(q, ~)x"(q, ~)].

The temperature dependence of the term in brackets van-
ishes in the long-wavelength limit and so does not con-
tribute to the leading corrections to the linear temper-
ature dependence. This term is the counterpart of the
contribution to ReK(p, („),which contained the Bose fac-
tors.

The double-counting terms may also be dropped be-
cause the leading corrections come solely from long-
wavelength efFects. In this case, the q's of interest in
the ring diagrams are small. On the other hand, the net
momenta Rowing in the ladders are small but the q ex-
changed at each interaction along the ladder is not in
general small. As a result there is little overlap between
the relevant values of q in the two channels. In efFect,
there is no double counting in the calculation of these
leading corrections and I drop the contribution to the
shift in the entropy from the double-counting terms.

The term in the effective interaction linear in X"(q, cu)
contribute linear terms, cubic terms, and higher-order
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FIG. 5. The contribution to B2D which comes from the
channel where Ag = — as a function of Aq.
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7r2
B3"D = ) vPA„ I ——AP

A

and ((3) 1.202 is the Riemann zeta function. 2 The
variation of B2D is dominated by the contribution of the
channel in which lApl = — can increase as the Stoner
instability is approached. In Fig. 5 I plot this contribu-
tion, BzD(A) as a function of Ap.

The contribution to the entropy in 2D from the col-
lective mode determined from the poles of the T ma-
trix goes as T, because the collective mode dispersion
oc q and so has the same temperature dependence as the
leading temperature dependence from interactions. The
term that has been calculated here would be identified
in measurements of the specific heat by subtracting off
the contribution to the T dependence determined from
the measured collective and phonon dispersion curves.
This is unlike the case in 3D where collective modes and
phonons give a T contribution and so contribute to the
cutoff of the T ln T term rather than its coefFicient. Next
I consider the contribution to the entropy from e„and
compare this spectrum with the statistical quasiparticle
spectrum, e„' . AB(p, , T) = ) ~"(q ~)&(q ~)[2n~(~) +1)]

dence in 2D would underestimate the magnitude of the
coefFicient by 8 in 2D and by zz in 3D. The importance
of taking the temperature dependence of the quasiparti-
cle spectrum into account was first pointed out by Brenig
et a/. for the 3D case and the effect is similar in 2D al-
though somewhat bigger.

After making this correction for the use of the zero-
temperature spectrum, there is still a difference between
the entropy as calculated from the thermodynamic po-
tential and the dynamical quasiparticle spectrum. This
is due to the difference in the statistical and dynami-
cal quasiparticle spectra. The expression for the dynam-
ical quasiparticle spectrum, determined by Z(p, („), is
given in Eq. (2). The corresponding part of the sta-
tistical quasiparticle spectrum can be found by rewrit-
ting the shift in the thermodynamic potential in terms
of fermions rather than with a Bose distribution. Multi-
plying the Bose factor by y" (q, cu) and dividing E' (q, u)
by y" (q, w), the integral over w of the Bose distribution
times g" (q, w) is turned into a sum over a fermion mo-
mentum of Fermi-Dirac distributions with a new effective
interaction between the fermions

IV. QUASIPARTICLE SPECTRA
AND THERMODYNAMiCS

Putting the dynamical quasipaticle spectrum, e„~
(„+ReZ(p, („) into the expression for the entropy for a
noninteracting Fermi gas and expanding to linear order
in the self-energy, one finds for the leading correction to
the linear temperature dependence

= ):fp-9(1 —fp)I""(q &p
—&p-~)

'9)P

+) fP ~(1 —fP)P" (q (P (P—g) (23)

where I"' (q, cu) = I"' (q, w)/y" (q, w). Taking a deriva-
tive gives the entropy and one finds an expression for
AS given by

~- 4~(p 4) &f(e)
T2

)-~(„()~f(t'P)
(20)

where

) P~ st
AT

P

Ae„" = ) (1 —2f )E"(q („—( ).

(24)

dy 3 3 vr ln 2 n dy
2D ~( ) 8

+
9((3) T2 2D

= ——((3)[1.007] B
7t T+

(21)

7 5 (nl
T')

vr' (n& gy

20 l(T3 )I B3D.

(22)

The first terms in the square brackets in the expressions
for I'&D and I'3D come from the zero-temperature self-Cig Cig

energy and the second terms from the leading temper-
ature dependence. Neglecting the temperature depen-

For the 2D case, one finds LS2D ——I'2DT and for the
3D case AS&& ——I'3DT lnT. I'2D and I'3D are given by

This is the shift in the statistical quasiparticle spectrum
due to interactions and is the counterpart of Z(p, („) in
E'p The difference between Q S and A S ~ is seen to
come from the two kinds of quasiparticle spectra, 6) p(„+ReZ(p, („) and e„' = („+Ae„' The coe.Kcient of
the („l(„l and the („T terms in the two spectra are the
same except that B2D in e is replaced by B&D in e„
so that the use of the dynamical quasiparticle spectrum
in the calculation of the T terms due to quasiparticles
in the entropy overestimates this term by a factor of 2
independent of the strength of the interaction for a 2D
FL.

The coefFicient of the T term in the entropy is slightly
different, I'2D or 1.007I'2D, depending on whether it is
calculated from the statistical quasiparticle spectrum or
the thermodynamic potential. The origin of this mod-
est difference is the temperature dependence of y2D(s).
Going back to Eq. (23) and taking the derivative with
respect to temperature of the expression with the Bose
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distribution, one finds

.-(., -)P(., -)'",,"—OO

+[2n~(~) + 1]P(q, (u)
clX"(q, ~)

BT

+y (q, u))[2n~((u) + I]—/I BP (q, (u)

BT (26)

V. CONCLUSION

Thermodynamic quantities can be calculated directly
from the thermodynamic potential or from the statisti-
cal quasiparticle spectrum, which is different from the
spectrum given by the poles of the single-particle prop-
agator, the dynamical quasiparticle spectrum. I have
compared the quasiparticle spectra and entropy for 2D
and 3D Fermi liquids. In 2D one finds that the tempera-
ture dependence of the quasiparticle spectra is responsi-
ble for roughly 5/8 of I, the coefficient of the leading
T correction from the quasiparticle contribution to the
entropy. This is larger than the result for 3D Fermi liq-

The first term in this expression is shifted in the entropy
as calculated directly from AB(p, T). In calculating Ae„'~

the efFective interaction, I"' (s), was assumed to be tem-
perature independent just as the effective interaction was
in the calculation of ReE(p, („).The second term involv-
ing the temperature dependence of y" (s) is seen to be
responsible for the difference in the coefficients of the T
terms in the entropy. An analogous difference between
the calculation of the entropy from AO(p, T) and from

is present in 3D. In that case the difference appears
in the cutoff the T lnT terms. In both cases the ne-
glect of the temperature dependence of y" (q, ur) leads to
a small error.

uids where the leading correction is of the form T lnT.
Use of the dynamical quasiparticle spectrum in 3D

leads to an overestimate of the coefficient of the T lnT
terms by a factor of 3 in the case where the scattering am-
plitude in either the spin or density is large. It is shown
here that this effect for 2D is also present but that the
overestimate of the coefficient of T terms from quasi-
particles is a factor of 2 independent of the interaction
strength. The difference between the 2D and 3D cases is
that I' depends on the scattering amplitude to all or-
ders whereas I' depends only on the second and third
power of the scattering amplitude.

There is a contribution to the T term from the
temperature dependence of the imaginary part of the
particle-hole propagator in the long-wavelength limit.
This temperature dependence comes from values of 8 =

I and is a very small effect. The difference in
gVF
phase space between 2D and 3D means that the temper-
ature dependence of y" (s) leads to a difference in the T
contribution to the entropy in 3D so that it does effect
the leading T lnT correction. As pointed out above, a
more sophisticated treatment of the propagator in y(q, cu)

would reduce this temperature dependence still further.
In conclusion the relation between e' and e ~ for 2Dp p

and 3D FL's is similar. The differences can be traced to
the difference in phase space for long-wavelength particle-
hole pairs and in general they are a bigger in 2D than in
3D.
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