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The properties of the simple metals are controlled largely by three density parameters: the
equilibrium average valence electron density 3/4zr, , the valence z, and the density on the surface
of the Wigner-Seitz cell, represented here by the equilibrium number N;„t of valence electrons in
the interstitial region. To demonstrate this fact, and as a refinement of the "stabilized jellium" or
"structureless pseudopotential" model, we propose a structured local electron-ion pseudopotential
m(r) which depends upon either r, and z ("universal" choice for N;„~), or r„z, and N; t, for each
metal ("individual" potential). Calculated binding energies, bulk moduli, and pressure derivatives of
bulk moduli, evaluated in second-order perturbation theory, are in good agreement with experiment
for 16 simple metals, and the bulk moduli are somewhat better than those calculated from first-
principles nonlocal norm-conserving pseudopotentials. Structural energy di8'erences agree with those
from a nonlocal pseudopotential calculation for Na, Mg, and Al, but not for Ca and Sr. Our local
pseudopotential ~(r) is analytic for all r, and displays an exponential decay of the core repulsion
as r —+ oo. The decay length agrees with that of the highest atomic core orbital of s or p symmetry,
corroborating the physical picture behind this "evanescent core" form. The Fourier transform or
form factor w(Q) is also analytic, and decays rapidly as Q —+ oo; its first and only zero Qo is close to
conventional or empirical values. In comparison with nonlocal pseudopotentials, local ones have the
advantages of computational simplicity, physical transparency, and suitability for tests of density
functional approximations against more-exact many-body methods.

I. INTRODUCTION

The Hohenberg-Kohn theorem tells us that the prop-
erties of a crystal are fixed by the electron density distri-
bution n(r) inside a unit cell, but does not tell us which
if any features of the density dominate. For simple or Sp-
bonded metals in close-packed structures, the dominant
density parameters are the equilibrium average valence
electron density, represented by the density parameter
r8 'l

n = 3/47rr. = k~/3m

and the valence z. Together these parameters define the
radius rp of the signer-Seitz sphere, whose volume is the
volume per atom,

7p = z rsx/s

A third parameter is the electron density averaged over
the surface of the Wigner-Seitz sphere, which is cor-
related with the bulk modulus ' and plays a role in
Miedema's rule for the heat of formation of a binary
alloy. We shall work with a nearly equivalent parameter,
the number %;„t of valence electrons in the interstitial re-
gion between the polyhedral surface of the Wigner-Seitz
cell of a monatomic crystal and the surface of the largest

inscribed sphere.
In earlier work, we have developed a "stabilized jel-

lium" or "structureless pseudopotential" model, which
achieves equilibrium at any chosen r, (unlike jellium,
which is stable only at r, = 4.1 bohr). The only inputs to
the model are r, and z, and the outputs include realistic
estimates of the bulk and surface properties of the simple
metals, including void and cluster properties. Exceptions
to this statement are the bulk modulus and its pressure
derivative for the polyvalents, where the crystal struc-
ture plays an important role. In the present work, we
will show that a structured pseudopotential model whose
only inputs are r, and z (our "universal" pseudopoten-
tial) corrects the worst errors of stabilized jellium, while
an "individual" pseudopotential which also reproduces
%;„t is quantitatively accurate for all the simple metals.
The extent to which this pseudopotential is transferable
from the solid state to other environments will be the
subject of a later study.

The goal of pseudopotential theory is to obtain the
key physical properties of atoms, molecules, and solids
by dealing only with the valence electrons. To avoid a
complicated all-electron problem, an efFective weaker po-
tential between the valence electrons and the atomic core
is introduced. Interactions among the valence electrons
are often described by density functional theory.

Pseudopotentials which exactly match the valence elec-
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tron orbital energies have been derived by orthogonal-
ity arguments, and those which reproduce the valence
electron orbitals outside the core have been derived by
norm-conserving methods. Those constructions typi-
cally start from the &ee atom, leaving open the question
of transferability to the solid state. Moreover, they pro-
duce nonlocal pseudopotentials zv(r, r'), although some
success has been achieved with semiempirical local pseu-
dopotentials m(r).

A local pseudopotential m(r) can match the electron
density n(r) outside the cores, but a nonlocal one io(r, r')
would be needed to match the Kohn-Sham density ma-
trix p(r, r ) in this region. If the properties of the simple
metals are set by just a few density parameters, as we
propose, then a local pseudopotential m(r) which repro-
duces those dominant density parameters is fully justi-
fied. While the first goal of our study is to establish
the idea of dominant density parameters, the second is
to develop a comprehensive collection of accurate local
pseudopotentials for the simple metals, using no empir-
ical input except r, . (z and N;„t are theoretical inputs
from an all-electron calculation. )

Nonlocal pseudopotentials are to be preferred for ac-
curate predictions of the properties of real materials,
and the use of nonlocal potentials is not a serious hin-
drance in most pseudopotential calculations. Neverthe-
less, local pseudopotentials have some advantages over
nonlocal. (1) Their relative simplicity is an aid to con-
ceptual understanding. (2) They are more convenient,
and present practical advantages in complex calculations
such as quantum Monte Carlo, or in extensive studies
of cohesion involving very many structures or materi-
als. (3) The Kohn-Sham scheme of density functional
theory requires that the external potential be local. ' '

When it is nonlocal, the exchange-correlation energy is a
functional of the noninteracting density matrix p(r, r'), is
and not just of the density n(r).

For comparison of density functional pseudopotential
approximations against experiment, point (3) is only a
quibble. But this point is more germane to the test-
ing of density functionals against the results of accurate
quantum Monte Carlo calculations for solids or atoms.
The Monte Carlo and density functional calculations typ-
ically invoke the same nonlocal pseudopotential; we sug-
gest that our local pseudopotential would better meet the
strict requirements of such a comparison.

The local pseudopotentials we propose here are con-
structed directly in and for the solid state, and to be
used with the local density approximation (LDA). Be-
cause these pseudopotentials reproduce the observed r,
by construction, they avoid the underestimation of r, (by
several percent) that LDA makes in first-principles all-
electron or nonlocal pseudopotential calculations. Partly
for this reason, the equilibrium properties of bulk simple
metals are given somewhat more accurately by our local
individual pseudopotential than by first-principles nonlo-
cal norm-conserving pseudopotentialsi i (Table I). The
root-mean-square relative errors for the bulk moduli of
the metals in Table I are 12%%up for our local pseudopo-
tentials, 18% for the nonlocal ones, and 13% for the all-
electron calculations of Ref. 2.

TABLE I. Comparison of bulk properties for some simple
metals calculated with norm-conserving (NC) uonlocal pseu-
dopotentials and with our individual (I) local pseudopoten-
tials against experiment (A). r, is the density parameter of
Eq. (1.1) in bohr, while R in Mbar and H' are the bulk
modulus and its pressure derivative.

Metal
Be

Al

Li

Method
NC
I
X

NCb

I
X

NC'
I
X

NC
I

NC'
I
X

NC"
I
X

NC'
I
X

1.85
1.87
1.87
2.05
2.07
2.07
2.55
2.65
2.65
3.17
3.24
3.24
3.76
3.93
3.93
4.75
4.86
4.86
5.03
5.20
5.20

B
1.310
0.867
1.144
0.715
0.771
0.794
0.418
0.314
0.369
0.130
0.140
0.133
0.096
0.071
0.073
0.043
0.034
0.037
0.035
0.026
0.029

B'

3.8
4.6

4.4
4 7

4.2
3.9
2.6
3.6
3.5
4.1
3.6
3.9
3.8
3.7
4.1
3.9
3.6
4.1

Reference 17.
Reference 18.

'Reference 19.
Reference 20.

'Reference 21.

The 8p-bonded metals are "simple" and deserve an ac-
curate theory which is comparably simple. The extent
to which these ideas can be extended to other classes of
materials will be explored in a later study.

Our pseudopotentials have been tested for 16 simple
metals, in the &amework of second-order perturbation
theory and using local-Beld exchange-correlation correc-
tions to the Lindhard dielectric function. In particular,
we have evaluated binding energies e, bulk moduli B',
and pressure derivatives of bulk moduli R' = dB/dP,
and compared them with experimental values. Chemical
potentials p have also been calculated, as have structural
energy differences. Omitted from our list of simple metals
are the noble metals Cu, Ag, and Au, and their neighbors
in the periodic table, Zn, Cd, and Hg, which may show
significant core-electron contributions to cohesion. Ga,
In, and Tl, which are less suspect, have been included.

In the conventional view, at best eight of these metals
(Na, K, Rb, Cs, Mg, Al, Ga, and In) have reasonably lo-
cal pseudopotentials which can be treated accurately by
nonrelativistic second-order perturbation theory. How-
ever, our calculations for the perfect crystals at or near
their equilibrium volumes present little evidence (except
in the structural energy differences for Ca, Sr, and Ba)
for nonlocality or for the inadequacy of nonrelativistic
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perturbation theory in any of the 16 simple metals. The
need for nonlocality will show itself more clearly when
we attempt to transfer those local pseudopotentials to
radically difI'erent environments, such as the free atom.

The outline of this paper is as follows. Section II re-
views some previous work which is related to our own,
presents our new evanescent core form for the local pseu-
dopotential, and discusses how to fix its two parameters.
In Sec. III, we show the results for e, B,B', p, and the
structural energy differences, based upon the universal
and individual versions of this potential, and show that
one of the two parameters has a transparent physical in-
terpretation. Section IV summarizes our conclusions.

A brief announcement of this work, with preliminary
values for ¹„t,appears in Ref. 23.

II. THE EVANESCENT CORE POTENTIAL

Before introducing our new pseudopotential, we shall
review some related work with local pseudopotentials.

The Ashcroft electron-ion pseudopotential is local and
characterized by a single parameter r, the radius of the
empty core,

(2.1)

with z the valence and 8(x) the step function. (We use
hartree atomic units 5 = m = e2 = 1.) The value of
r may be taken from Fermi surface data or measured
transport properties of solids, which are sensitive to the
first zero of the form factor. In practice, the simple form
(2.1) is inadequate for an accurate calculation of bulk
properties of the simple metals (atomic volume, binding
energy, and bulk modulus). It is clear from Table 2 of
Ref. 24 that "Ashcroft pseudopotentials with unadjusted
zeroth Fourier component ... lead to disaster for any
reasonable choice of r," when used to calculate the bulk
modulus by the method of homogeneous deformation. To
surmount this problem, Ashcroft and Langreth, in a
second-order perturbative calculation, decoupled the ze-
roth Fourier coeKcient of this potential, which they de-
termined instead from the equilibrium condition of zero
pressure at the observed average electron density. More-
over, they retained only the first shell of reciprocal lattice
vectors. Thus they modified both the average value and
the short-range behavior of the potential (2.1) in such a
way that the result cannot be transferred from the bulk
solid to other arrangements of atoms. However, they
did identify the important physics and so found realis-
tic results for the binding energy and bulk modulus of
the simple metals, including the polyvalents for which
the band-structure contribution to the bulk modulus is
crucial.

The Ashcroft potential may be viewed as a special
case of a family of pseudopotentials (the so-called Heine-
Abarenkov pseudopotentialszs) characterized by a con-
stant value, not necessarily zero, of the potential inside
the core. These two-parameter pseudopotentials are

with u a constant. Shaw has presented the case for the
continuous potential obtained with u = —1: its quicker
convergence in reciprocal space is a clear advantage. Ling
and Gelatt have used the Shaw potential to account
for the bulk and shear moduli of simple metals. Unlike
Ashcroft and Langreth, Ling and Gelatt did not use any
empirical input besides the average density and the va-
lence; we call a potential constructed in that way a uni-
versal pseudopotential. Stabilization of the metal at the
observed density was used to determine B. A sum over
relevant reciprocal lattice vectors was performed. Like
Ashcroft and Langreth, Ling and Gelatt neglected the
local-Geld exchange-correlation contribution to the band-
structure energy. Unfortunately, as noted in Ref. 28, the
Ling-Gelatt potential has unphysical values for the first
zero of its form factor.

In the present work, we propose a local pseudopoten-
tial which, in contrast to the Shaw form, is not only con-
tinuous but has continuous derivatives. We were moti-
vated to search for such a smooth local pseudopotential
by two main considerations. (1) Smoothness leads to a
better convergence of sums over reciprocal lattice vec-
tors. (2) Smoothness and evanescence (exponential de-
cay of the core repulsion as r -+ oo) are properties to be
expected from the orthogonalization construction of a
pseudopotential. The first pseudopotential, proposed by
Hellmann in 1934, had an evanescent form, but this
was lost in the rediscovery of pseudopotentials which oc-
curred in the 1960s. [See, however, Refs. 6 (Sec. 8.8),
30, 31, and 32.]

At r = 0, our potential is designed to have a finite value
and vanishing first and third derivatives. This analyticity
guarantees a quick convergence of its Fourier transform
limp~ w(Q) Q s, in contrast with the Shaw poten-
tial, which goes only like Q s for large Q. At large r,
our potential approaches the Coulomb tail, with a con-
tribution from the core which decays exponentially (like
a core orbital).

This evanescent core pseudopotential may be written
as

(2.3)

with x = r/R, B being a core decay length, and with
0, ) 0. An analyticity condition at r = 0 determines A
and P in terms of n. However, if we choose instead to
treat all four parameters as independent, then Eq. (2.3)
reduces to the form used by Krasko and Gurskii when
P = 0 and n = 1, and to the form used by Harrison in
Sec. 8.8 of Ref. 6 when P is finite and n —+ oo. Equation
(2.3) is not broad enough to encompass the form used
in Refs. 29 and 30, which represents the repulsion by
Ce ~ /r, except when ( = z, or that used in Ref. 31,
which cannot be Fourier transformed analytically.

The pseudopotential concept may be justified by the
construction of Austin, Heine, and Sham, in which the
pseudopotential is written as

H~( )
zu/B, r (R

z/r, r)B, — (2.2) (2.4)
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where V is the real potential, the A are constants (real
numbers), and the Ig, ) are core states. In the limit
r ~ oo, the last term can be represented in real space by
Ae "/

) with B a parameter which measures the decay
length of the core, when (2.4) is applied to a wave func-
tion which does not vary significantly over the core. The
core electron density decays as e

The evanescent core pseudopotential (2.3), with a & 1,
has the right behavior at x —+ oo:

z zA „gR
tU —+ ——+r B (2.5)

On the other hand, when x —+ 0,

[n —p —A]+ xB

—cx —a P —A
1 3 2

3

1 2n+ a—P+ A
2

x 13
——n +a P+A

6 4

+ ~ ~ ~ (2.6)

We impose the following analyticity (cusp-free) condi-
tions:

—2n2+ aP+ A = 0,
4

—-'a4+ a'p+ A = O .

(2 7)

(2.8)

From these equations we obtain

Q! —2a3

4(a2 —1)
'

=12A. = —a —nP.
2

(2 9)

(2.1o)

sin p
dr 47rr u)(r)

We are therefore left with two parameters, o. and B. The
parameter A is positive for n & 1. If n & 1 + v 3, then
u)(r = 0) & 0. If R m 0 at fixed n, then m(r) ~ z/r. If-
a -+ 0 at fixed B, then ip(r) vanishes identically.

In Fourier space, the conditions (2.7) and (2.8) have
a simple meaning: they make the potential fall ofF like
Q, since the contributions proportional to Q and
Q vanish. In fact, the Fourier transform of m(r) is

1 (P
urR = 4vrnB —+ 2

I

—+ Aa2 (a3 j (2.14)

is positive for all o. & 0.
Straightforward algebra shows that the single zero Qp

of ip(Q) is given by

(QpB) (2.15)

In order to have a real zero, we need a & ~3.
For a given metal, the two parameters B and o. are

fixed by two conditions: The binding energy e should
minimize at the observed density parameter r„as in Eq.
(3.10), and the valence interstitial electron number %;„t
should equal either its uniform-electron-gas value (uni-
versal pseudopotential fixed by r, and z) or its actual
value for each metal (individual pseudopotential fixed
by r„z, and 2V;„t). The actual value of %;„t is found
from the valence electron density of an all-electron cal-
culation at the observed bulk density within the local
density approximation, ' using a full-potential version
of a linearized augmented Slater-type orbital (LASTO)
program. The STO basis functions for the interstitial
region included two 8-type, six p-type, ten d-type, and
seven f-type functions (i.e. , s, p, and d functions for two
principal quantum numbers, and an f function for one
principal quantum number). In an attempt to smuggle
some relativistic eÃects into a nonrelativistic pseudopo-
tential, the LASTO calculations were performed at the
scalar-relativistic level, using the approach of Koelling
and Harmon. s For the fcc (bcc) structures, 110 (70) spe-
cial k points in the irreducible wedge of the Brillouin
zone were used, and 283 (249) reciprocal lattice vectors
were retained in the Fourier expansion of each orbital
in the interstitial region; for the hcp crystal, 72 special
k points and 311 plane waves were used. Within each
sphere, the wave function was truncated at I = 6, while
the potential was truncated at l = 8.

To fit ¹„t,only the bcc, fcc, and hcp structures were
used; tetragonal and orthorhombic metals were treated
as fcc. (Only bcc and fcc structures were used to cal-
culate %;„q in Ref. 2.) In terms of the radius rp of the
Wigner-Seitz sphere, the radius r;„of the inscribed (or
muKn-tin) sphere is 0.87944rp (bcc), 0.90470rp (fcc),
and f(c/a)rp (hcp), where

= 4~zB 1 1

(QB)2 (QB)2 + nz

2aP 2A

[(Q&)'+ ']' [(Q&)'+ 1]' (2.11)

f()=~ 1.065 37 x-'/'3,

1.065 37x / —+ —x3 4

Then the uniform-gas value of ¹„qis

From Eqs. (2.9), (2.10), and (2.11) we find

lim n)(Q) = 4mz[ —a +6n P+6A]B Q . (2.12)
Q —+oo

zuni f min

~0

The result of first-order perturbation theory is

(2.16)

In the other limit,

4vrz z
lim iU(Q) = — + —ip~,
g-+p Q~ n (2.13)

n ). ip(G)[Re s(C)]y(G)
~(G)Gs

where the volume-averaged core repulsion
x sin x —x cos x (2.17)
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where C denotes a reciprocal lattice vector, and

1 "-
s(G) = —) exp( —iG . d )J'.=1

(2.18)

III. RESULTS

is the structure factor for the basis of p atoms in the
primitive unit cell, which reduces to unity for p = 1.
Equation (2.17) is derived by subtracting the number of
electrons in a sphere of radius r;„from the number z in
the Wigner-Seitz cell. y(G) and the dielectric function
e(G) are defined in Eqs. (3.6) and (3.7).

of the electron gas in a real solid. For that purpose, we
use second-order perturbation theory. ' ' The band-
structure energy which must be added to (3.2) is

eas ———). I

='
I

liii(G)s(c)I'
. (n;) .&(G)—

2 (n) e(G)
(3.5)

~(G) = —,F(~)

1-~', l1+~l
4u

(3.6)

where n; denotes the average ion density (n/n; = z for a
neutral system),

The binding energy per electron of a homogeneous elec-
tron gas in the field of a positive charge background (jel-
lium model) is

and e(G) is the Lindhard dielectric function

.(G) =1-4~, [1 —g„.(G)j .x(G) (3.7)

3k
e (n) =

10
3k@ + e, (n),4~

(3.1) Here

where the first term is the kinetic energy, the second the
exchange energy, and. the third the correlation energy.

The electrostatic energy of the jellium model is zero.
This description of the valence electrons of a metal can
be significantly improved by taking into account, in first-
order perturbation theory, the localized ions of a real
lattice. Then, the energy incorporates a Coulomb part,
due to the attraction between the electronic density and
the positive charges and the self-repulsion of both the
electronic cloud and the positive background, and a non-
Coulomb contribution due to the repulsion of the valence
electrons from the core, as described by a pseudopoten-
tial.

To first order, the total binding energy (energy to as-
semble the valence electrons and ions to form the solid)
is

e =e +eM+SJ J (3 2)

with

9z'/'
lor, (3.3)

e"(r., z, mR) =O,
+S

(3 4)

the Madelung energy (electrostatic energy of point ions
in a uniform negative background) and wR the average
repulsive part of the pseudopotential, which is given by
Eq. (2.14) for the evanescent core potential. (We have
used the exact Madelung energy for each bcc, fcc, or
nonideal hcp lattice in our calculations. ) From the sta-
bility condition

O..(G) = ~ ~, ~ =1-, , (-")k~ (3.8)

is the local-field correction in the local density
approximation. ' All sums over reciprocal lattice
vectors C have been fully converged.

The binding energy per valence electron of the solid is
therefore

e = e + eM + tU~ + eBsJ (3.9)

The equilibrium condition is now

(3.1o)

In the case of hcp metals, this variation has been per-
formed for a fixed c/a (experimental value).

Table II shows the result for R arising from (3.10).
Comparing this B with the Hartree-Fock decay length
BHF = 1/g —2eHF, with eHF the Hartree-Fock energy
of the highest core orbital of s or p type, we note the
overall good agreement. The main discrepancies occur for
Be and Li. These elements have no p core state, making
their first-principles pseudopotentials highly nonlocal.

Table II also shows universal and individual values for
the first zero Qo of the form factor, &om Eq. (2.15).
The "individual" Qo/2k~ values agree rather well with
conventional (mainly empirical) values from Ref. 7, also
displayed in Table II.

Figures 1 and 2 illustrate the evanescent core potential,
in real and momentum space, respectively, for a selection
of simple metals.

The bulk modulus or elastic stiKness is

the stabilized jeihum (SJ) value of KR is determined.
The model defined by (3.2) and (3.4) is "bulk stabilized
jellium. " In this simplified model, the value of K~ does
not depend upon the form of the local pseudopotential.

We have not yet taken into account the inhomogeneity

(3.11)

with P = —
&

———4, ' the pressure. The pres-

sure derivative of the bulk modulus is
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dB dB/dr,
dP dP/dr,

dB/dr,
3B/r, (3.12)

2
3 Z3

(~ )ws = —— +
10 r, (3.15)

s 8

The chemical potential is de6ned as

(3.13)

+{~v) +p

(3.14)

where the derivative is taken at constant ionic density n;,
and

Qe note that, at equilibrium, B' relates the second and
third derivatives of the binding energy is the average over the signer-Seitz cell of the discrete

lattice perturbation hv(r). This bulk chemical potential
p, a second parameter of Miederna's rule, is the Fermi
level measured from the vacuum level, neglecting the re-
laxation of the electron density in cells near the surface.
The vrork function is AP —p, vrhere AP is the surface-
relaxation dipole barrier.

Table III shows the output of our calculations of equi-
librium binding energies, bulk moduli, pressure deriva-
tives of the bulk moduli, and chemical potentials per-
formed with the evanescent core pseudopotential. The
derivatives (3.11), (3.12), and the third term on the right

Structure
hcp

c/a= l.567
fcc

N;„~
0.577
0.563
0.779
0.705 '

0.779
0.559
1.038
0.696
1.038
0.638
0.779
0.593
0.824
0.560
0.526
0.529
0.320
0.344
0.519
0.548
0.51.9
0.552
0.640
0.693
0.320
0.341
0.320
0.356
0.320
0.354
0.320
0.358

Qp/2k
0.83
0.85
0.71
0.77
0.72
0.92
0.64
0.84
0.64
0.89
0.72
0.88
0.72
0.97
0.84
0.84
1.07
0.93
0.84
0.80
0.84
0.80
0.86
0.81
1.08
0.96
1.09
0.92
1.09
0.93
1.09
0.93

A
0.197
0.192
0.334
0.317
0.365
0.319
0.443
0.388
0.466
0.406
0.423
0.388
0.439
0.405
0.382
0.383
0.361
0.341
0.535
0.538
0.609
0.612
0.647
0.649
0.528
0.492
0.745
0.679
0.824
0.755
0.920
0.843

1.87 2 V
I
U
I

2.19 3 rhombic V
I

2.22 4 tetragonal U
I

2 30 4 fcc V
I

2.41 3 tetragonal U
I

hcp U
c/a=1. 599 I

hcp U
c/a=1. 625 I

bcc U
I

3.27 2 fcc U
I

fcc U
I

bcc U
I

3.93 1 bcc U
I

bcc U
I

bcc U
I

5 62 1 bcc V
I

4.542
4.552
3.635
3.573
3.542
3.256
3.376
3.056
3.337
2.912
3.401
3 ~ 133
3.362
2.897
3.502
3.508
3.549
4.133
3.194
3.279
3.098
3.194
3.006
3.128
3.075
3.517
2.807
3.349
2.748
3.228
2.692
3.170

0.7

0.39

0.33
Sn

0.83
Pb

0.37 0.90

0.38 0.90
2.48 3

0.39

0.47
3.24 1

0.45 0.8

0.61 0.7
3.57 2

0.7
Ba 3.71 2

0.7

0.57 0.98
4.86 1

0.72 0.93
5.20 1

0.94

1.0

TABLE II. Parameters of the evanescent core potential in the universal (U) and individual (I)
forms. The parameters n and R are determined from r, z, and ¹„tfor a given lattice structure.
The structures employed for most of the metals are the physical ones. We have used the "nominal"
fcc structure in all calculations for Ga, Sn, and In. Perhaps because we do not make the muKn-tin
approximation, our values of ¹„tare significantly lower than those of Refs. 2 and 3 for Ga, In,
Sr, and Ba. RHp is the Hartree-Iock decay length of the highest 8 or p core orbital, from Ref.
40. (Qp/2k~)' "" is the conventional first zero of ip(Q), from Ref. 7. (Double-digit values are
solid-state empirical. Single-digit values are read from a plot of the Animalu-Heine form factor. )
The unit of r„A, and AHF is the bohr.

Metal r, z BHF ~ (Qp/2k')' "
Be
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of (3.14) have been evaluated numerically, and checked
by varying the r, mesh. For the sake of comparison, the
values obtained with the stabilized jellium model [Eqs.
(3.2) and (3.4)] are displayed. In the latter case, the
derivatives were obtained analytically.

Tables II and III display some clear trends. The band-
structure contributions eBS and EBS depend strongly
upon the choice of model, but within a given model
eBS pBS. When ¹„tis increased, holding the bulk sta-
ble at the observed r„ the quantities o. , e, B,B', and p all
increase, with approximately equal increases in e and p,
while eBS and EBS decrease to more negative values, and
Qo decreases. However, the cohesive properties e, B,B',
and p are not very sensitive to such changes in ¹„qor
Qe over a plausible range. As Qo changes, there are
compensating changes in the G = 0 and G g 0 Fourier

components of tii(G). Thus a precise determination of
Qo requires fitting not to the cohesive properties but to
some property that has no contribution from tii(G = 0),
such as the interstitial electron density of Eq. (2.17).

The root-mean-square relative errors of the bulk mod-
uli in Table III are 90% for the stabilized jellium (SJ)
model, 40%%uo for the universal pseudopotential (U), and
only 11% for the individual pseudopotential (I).

The individual option of the pseudopotential leads, in
most cases, to good agreement with experiment. An ex-
ception is the binding energy of Pb, where a spin-orbit
correction of about 2 eV may be invoked to restore the
agreement. The bulk moduli of the tetravalents Pb and
Sn are properly described only by the individual pseu-
dopotential, which takes into account that ¹„t&& ¹"„~'
in these metals.

TABLE III. Bulk binding energy per electron e, bulk. modulus B, pressure derivative of the bulk modulus B', and chemical
potential p for the universal (U) and individual (I) choices of the evanescent core potential. S3 labels the stabilized jellium
result. X refers to experimental values: e was taken from Ref. 55; B and B' were taken from a compilation in Ref. 56,
except that B of Ga, Sn, and Sr were taken from Ref. 37, B' of Be, Sn, Tl, and Mg from Ref. 57, B and B' of In from
Ref. 58, B' of Ba from Ref. 59, and B and B' of Na, K, and Rb from Ref. 60. The "X" values for p are semiempirical
estimates from Ref. 61. The unit of binding energy and chemical potential is the eV, while the unit of B is the Mbar
(1 hartree = 27.21 eV, 1 hartree/bohr = 294.2 Mbar). The structures used are the physical ones from Table II, except for
Ga, Sn, and In, which were treated as fcc. (We have verified that r„R, and B' are nearly the same for the fcc, bcc, and hcp
structures, when the pseudopotential is held fixed, for all metals in this table. Whether this is also true for the orthorhombic
structure of Ga is an open question. ) For the hcp structures, c/a was held fixed while r, was varied.

Metal
Be

Al

Ga

Sn

SJ
U
I
X
SJ
U
I
SJ
U
I
X
SJ
U
I
X
SJ
U
I
X
SJ
U
I
X
SJ
U
I
X
SJ
U
I
X

-16.51
-16.03
-16.18
-15.45
-19.10
-18.49
-19.05
-18.88
-18.20
-17.64
-19.61
-20.03
-21.22
-20.55
-23.03
-24.08
-20.57
-19.91
-22.91
-24.68
-16.76
-16.26
-17.63
-18.40
-16.34
-15.91
-17.86
-19.42
-12.39
-12 ~ 14
-12.12
-12.11

(e»)

(-1.31)
(-i.2i)

(-1.24)
(-0.86)

(-1.08)
(-o.6o)

(-1.54)
(-0.74)

(-i.43)
(-o.83)

(-0.85)
(-0.41)

(-0.75)
(-0.50)

(-0.40)
(-0.41)

B
1.722
0.899
0.867
1.144
1.576
0.952
0.771
0.794
1.279
0.790
0.497
0.565
1.471
1.001
0.518
0.480
1.287
0.900
0.433
0.488
0.896
0.578
0.380
0.418
0.805
0.511
0.330
0.382
0.487
0.310
0.314
0.369

3.2
4.5
3.9

3.3
4.6
4.3
6.0
3.3
4.6
4.2
5.5
3.2
4.5
4.2
4.8
3.2
4.5
4.0
5.7
3.2
4.2
4.2
3.9

-0.59
0.03
-1.83
-2.4
-0.68
0.17
-2.24
-3.1
-0.88
-0.04
-2.77
-3.7
-1.11
-0.55
-1.91
-2.6
-1.24
-0.78
-2.50
-3.4
-1.49
-1.25
-1.23
-1.7

B' p
3.2 0.68
3.9 1.10
3.8 0.96
4.6 0.8
3.2 -0.21
4.5 0.47
4.4 -0.17
4.7 -0.8

(Pas)

(-i.a6)
(-1.26)

(-1.18)
(-0.88)

(-i.oi)
(-0.43)

(-1.36)
(-0.49)

(-1.25)
(-0.38)

(-o.78)
(-o.sa)

(-0.73)
(-0.24)

(-0.41)
(-0.42)

Metal
Li

Ca

Sr

Ba

Cs

SJ
U
I
X
SJ
U
I
X
SJ
U
I
X
SJ
U
I
X

e
-7.45
-7.39
-7.28
-6.97

-10.15
-10.04
-9.91
-9.56
-9.41
-9.29
-9.21
-9.24
-9.13
-8.98
-8.54

SJ -634
U -6.30
I -6 23
X -6.25
SJ -5.28
U -5.25
I -5 17
X -527
SJ -4.98
U -4 95
I -4.88
X -502
SJ -4 65
U -4 62
I -4.56
X -4.68

(ess)

(-0.10)
(-o.s6)

(-o.23)
(-o.as)

(-0.18)
(-o.29)

(-o.i2)
(-0.24)

(-0.04)
(-o.i5)

(-0.02)
(-0.15)

(-0.01)
(-o.ii)

(-o.oi)
(-o.ii)

B B'
0.155 3.2
0.133 3.5
0.140 3.6
0.133 3.5
0.222 3.3
0.156 4.2
0.167 4.2
0.152 3.2
0.160 3.3
0.114 4.2
0.124 4.3
0.116 3.5
0.138 3.3
0.095 4.3
0.105 4.3
0.103 3.4
0.076 3.2
0.068 3 ~ 5
0.071 3.6
0.073 3.9
0.035 3.3
0.031 3.6
0.034 3.7
0.037 4.1
0.027 3.3
0.025 3.7
0.026 3.6
0.029 4.1
0.020 3.3
0.018 3.6
0.020 3.7
0.023 4.0

P
-1.95
-1.90
-1.80
-1.9
-1.96
-1.82
-1.71
-1.6
-2.05
-1.93
-1.81
-1.6
-2.08
-1.96
-1.79
-1.3
-2.10
-2.06
-2.00
-2.0
-2.07
-2.04
-1.98
-2.2
-2.04
-2.01
-1.95
-2.1
-1.99
-1.96
-1.90
-2.2

(-0.10)
(-0.39)

(-o.26)
(-0.38)

(-o.21)
(-0.33)

(-0.12)
(-o.21)

(-o.o4)
(-0.16)

(-0.02)
(-0.16)

(-0.01)
(-0.12)

(-0.01)
(-0.11)
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6 0 —'

0.0

Al
Mg
Na(l)
Na(u)

TABLE IV. Energy diff'erences per valence electron (&e)
between di8'erent crystal structures, in meV, as calculated
from the individual pseudopotential (I) and from a nonlo-
cal pseudopotential (GPT, Refs. 42—44), both treated in
second-order perturbation theory. GPT values in parenthe-
ses include sd hybridization. X labels the nominally exact
ground-state structure. Calculated values for a given metal
assume the same r, for each crystal structure. The hcp struc-
tures we have considered for the non-hcp metals are ideal,
with c/a = 1.633. Although Li and Na are conventionally
bcc, the hcp structure is really lower in energy (Ref. 62).
Under pressure, Pb makes a phase transition to an unknown
structure, usually considered to be hcp, while Tl changes over
to fcc (Ref. 63).

Metal Structure
I X

fcc-bcc
I GPT

fcc-hcp
I GPT

bcc-hcp
I GPT

0.0 1.0 2.0 3.0
r (bohr)

FIG. 1. Evanescent core potential in real space for Al and
Mg (individual form), and for Na (individual form I and uni-

versal form U).

6.0

4.0

2.0

I

I

I

I
I

II
II
II

Al
Mg
Na(l)
Na(U)

As a striking example of the quality of the agreement
with experiment, we point out the bulk moduli of the
polyvalents, which are overestimated by the stabilized
jelli.um model. As shown by Ashcroft and Langreth,
band-structure effects play a decisive role for the com-
pression properties of the polyvalents. As far as the B'
are concerned, the stabilized jellium model gives an ap-
proximately universal value (B' = 3.2), while the evanes-
cent core potential yields higher values, in closer agree-
ment with the empirical data.

Table IV compares structural energy differences cal-

Be
Al
Pb
Tl
Mg
Li
Ca

Sr
Ba
Na
K

Rb
Cs

hcp hcp -15.2
fcc fcc -28.6 -33.1
hcp fcc -1.3
hcp hcp -3.8
hcp hcp -9.2 -9.5
hcp hcp -0.4
hcp fcc -5.2 -2.3

(-8 8)
(-12.2)hcp fcc -4.5

hcp bcc -4.8
hcp hcp -0.4
bcc bcc 0.1
bcc bcc 0.1
bcc bcc 0.1

-0.7

-7.4 -7.7
1.6
0.4
4.0 4.1
0.0
5.8 2.1

(-5.4)
5.5 (-3.4)
4.6
0.1 0.2
0.0
0.0
0.0

16.2
21.2 25.4
2.8
4.3
13.2 13.6
0.4
11.0 4.4

(3 4)
10.0 (8.8)
9.3
0.5 0.9
-0.1
-0.0
-0.1

IV. CONCLUSIONS

culated from our local pseudopotential and those from a
nonlocal one, also evaluated in second-order perturbation
theory. 4z 4s (Nonperturbative results4 '47 are also avail-
able. ) For the "local pseudopotential metals" Al, Mg,
and Na, the agreement is excellent. In most cases, the
observed ground-state structure is predicted; Ca, Sr, and
Ba, for which sd hybridization is important, are the only
glaring exceptions. Table U shows the convergence of var-
ious properties with respect to shells of reciprocal lattice
vectors; this convergence is rapid only for the monovalent
metals.

—4.0

—6.0

II
II

II

II

II

ii
I

I

II

(I

Il

II

II
1

1
rp = zsrs 7BHF (4 1)

The controlling properties of an sp-bonded metal are
the equilibrium average valence electron density param-
eter r, and valence z. Together they define the Wigner-
Seitz radius rp, which is set in part by the decay length
BHF of the highest-energy s or p core orbital of the free
atom:

0.0 1.0 2.0 3.0 4.0 5.0 6.0
q/ZI,

FIG. 2. Evanescent core potential in momentum space for
Al and Mg (individual form), and for Na (individual form I
and universal form U).

from Table II. A third controlling solid-state property
is the interstitial electron density2 s ~ (or, alternatively,
the first zero of the form factor).

A useful zero-order picture of a simple metal is the sta-
bilized jellium or structureless pseudopotential model,
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TABLE V. Partial sums of properties over the first n shells of reciprocal lattice vectors. n = 0
corresponds to G = 0, n = 1 includes also the shortest nonzero reciprocal lattice vectors with
nonzero structure factors, etc. The number of reciprocal lattice vectors included in a calculation is
roughly 4zz, where z = 0.44 G „(n)/2k~+0. 56 G „(n+1)/2kF and z is the valence. (Individual
or "I" pseudopotentials. ) Note that the structural energy differences for Al, Mg, and Na (Table
IV) are converged for G „/2k~ ) 4.

Metal
Al

(fcc)

Mg
(hcp)

Na
(bcc)

Property
G „/2k'.

e (eV)
P (Mbar)
B (Mbar)

gg
I

V, (eV)
N;„t

G „/2kp
e (eV)

P (Mb&1)
B (Mbar)

~l
p (eV)¹„t

G „/2kF
e (eV)

P (Mbar)
B (Mbar)

~I
p (eV)¹„~

n=0
0

-18.19
0.24
2.054
2.94
0.70
0.779

0
-11.71
0.09
0.660
2.91
-0.81
0.526

0
-6.08
0.01
0.097
2.97
-1.83
0.320

n=1
0.768
-18.19
0.25
1.271
3.10
0.70
0.776
0.828
-11.71
0.09
0.614
2.92
-0.81
0.524
1.140
-6.13

8x10
0.069
3.60
-1.90
0.358

n=2
0.887
-18.30
0.10
0.764
4.05
0.64
0.782
0.882
-11.71
0.08
0.552
3.02
-0.82
0.533
1.612
-6.16

—1x10
0.069
3.68
-1.93
0.350

n=3
1.255
-18.53
0.03

0.702
4.53
0.37
0.709
0.938
-11.79
0.02
0.313
4.01
-0.88
0.574
1.974
-6.20

—6 x 10
0.070
3.67
-1.97
0.338

n=4
1.471
-18.78
-0.01
0.714
4.64
0.10
0.686
1.210
-11.83
0.01
0.299
4.19
-0.92
0.560
2.280
-6.21

—6 x 10
0.070
3.65
-1.98
0.338

n=5
1.537
-18.85
-0.02
0.721
4.65
0.03
0.686
1.434
-11.88

4x10
0.297
4.27
-0.98
0.542
2.549
-6.22

—4 x 10
0.070
3.63
-1.99
0.340

-19.05
0.00

0.771
4.39
-0.17
0.705

-12.12
0.00
0.314
4.1?
-1.23
0.529

-6.23
0.00
0.071
3.62
-2.00
0.341

which requires as inputs only r, and z. But this model
overestimates the bulk modulus B and underestimates its
pressure derivative B' for the polyvalents. These defects
can be repaired with the help of a structured pseudopo-
tential.

We have proposed a local pseudopotential io (r) with an
exponentially decaying repulsion from the core at large
r and simple analyticity cond. itions at small r. Two ver-
sions of the pseudopotential have been considered, with
universal and individual choices for the parameters. Both
versions are designed to give bulk stability at the ob-
served density. A second-order perturbative calculation
with these pseudopotentials has shown good agreement
of predicted physical properties (e, B, and B') with ex-
periment. The individual pseudopotential, which repro-
duces the correct equilibrium interstitial electron density
for each metal, has been found to be generally the better
choice. Moreover, the exponential decay length of the
core repulsion matches that of the highest-energy 8 or
p core orbital, corroborating the physical picture &om
which the potential was constructed, and the value Qo
of the first zero of the form factor agrees with conven-
tional values. For Al, Mg, and Na, our structural energy
differences are very close to those of a good nonlocal pseu-
dopotential.

Bulk moduli are predicted more accurately by this
local pseudopotential than by first-principles nonlocal
norm-conserving ones. Of course, nonlocal pseudopo-
tentials fitted to solid-state inputs (including r„z, and
the interstitial density) would be potentially more ac-
curate and more transferable than any local forms. To

incorporate nonlocality, the evanescent core form (2.3)
could be applied separately to each angular-momentum
component of the Bloch orbitals; to improve transfer-
ability, nonlinear core contributions to the exchange-
correlation potential could be invoked. Nevertheless, we
stress the convenience and physical transparency of lo-
cal pseudopotentials, and the need for them in quantum
Monte Carlo tests ' of density functional approxima-
tions.

From previous work, it appears that a pseudopo-
tential constructed from a first-order description of the
electron density or a second-order description of the en-
ergy is appropriate for a calculation of metallic prop-
erties in the same order of perturbation theory. This
justifies our use of low-order perturbation theory. If,
however, a nonperturbative method is to be used, the
pseudopotential parameters should in principle be reopti-
mized for that choice. In view of the remarkable accuracy
of second-ord. er pseudopotential perturbation theory for
the total energy of a close-packed perfect crystal, we
would not expect much change in these parameters. (For
the individual pseudopotential description of the metals
in Table III, 0.05 ( ~ens~/eJ; & 0.10, where ep = k&/2. )

Possible further applications of our local pseudopoten-
tial include the Fermi surface, bulk and surface phonon
frequencies, Car-Parrinello dynamics, atomistic descrip-
tion of surfaces, clusters, vacanci. es and alloys, generaliza-
tion to semiconductors, etc. While elements like silicon
or carbon do not crystallize in close-packed structures,
such structures may still be posited. for the sake of pseu-
dopotential construction. Alternatively, the pseudopo-
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tential could be chosen to reproduce the bond-center
density of the observed open structure. Even transi-
tion elements may be described by a local pseudopoten-
tial, provided that the valence is chosen large enough.

The empirical input to our pseudopotential, r„could
easily be replaced by the r, output from an all-electron
solid-state calculation, at a slight cost in accuracy. To
construct our pseudopotential, we have also employed the
observed crystal structure, which could be replaced by
the prediction of an all-electron calculation, or by any
close-packed structure, with little eKect. In any case, it
is clear that the inputs r, and z set mainly the Q —+ 0
limit of the repulsive part of the pseudopotential ur(Q),
while the input interstitial density sets ur(Q) only f'or Q

equal to nonzero reciprocal lattice vectors, and mainly
for the shortest ones.
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