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Signatures of Fano resonances in four-wave-mixing experiments
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Optical transitions into discrete levels coupled to an optically active continuum lead to asymmet-
rical Fano lines in the linear absorption spectra, reflecting interference between the excitation chan-
nels. We investigate the corresponding four-wave-mixing spectra for the nonlinear optical response
within a model of noninteracting electrons. Our results show that four-wave-mixing experiments
provide a useful tool to identify Fano resonances.

I. INTRODUCTION

Asymmetrical Fano line shapes and antiresonances in
the linear optical spectra (LS) result if an optical tran-
sition from a given ground state ~g) into a state ~a) is
energetically degenerate with transitions from ~g) into a
continuum ~E, ) of states, and if the state ~a) is quantum
mechanically coupled to the continuum ~E, ) by some in-
teraction v~, , see Fig. 1(a). The asymmetry is a conse-
quence of interference between the excitation of the dis-
crete state and that of the continuum due to the coupling
v~, . In addition to that, the Fano situation requires that
both the discrete level and the continuum are optically
coupled to a common ground state. Fano line shapes are
found in many areas of spectroscopy. For semiconduc-
tors, diferent situations have been discussed including
magnetoexcitons in bulk semiconductors, semiconduc-
tor heterostructures, shallow quantum wells in an ex-
ternal electric field, doped semiconductors, and biexci-
ton resonances. Asymmetrical absorption lines and an-
tiresonances have been observed in some of these cases .
Fano situations have also been discussed in relation with
Raman scattering.

The existence of an asymmetrical optical-absorption
line alone, however, is not sufhcient to prove the ex-
istence of a Fano interference. For example, excitonic
absorption lines in semiconductors are not symmetrical.
The lowest 1s-excitonic line of a direct semiconductor
has an exponential shape at the low-energy side, while
it is Lorentzian at the high-energy side. Asymmetrical
shapes of the absorption spectrum may also be produced
simply by overlapping resonances without mutual cou-
pling. It would therefore be useful to find less ambiguous
criteria for the existence of Fano resonances. Experi-
mental investigations of the temporal dynamics are quite
promising in this respect, because they may give direct
evidence for the interference processes which are at the
origin of these resonances. This is the basic idea of the
present paper, in which we look for signatures of Fano
interference in transient optical experiments.
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FIG. 1. Pictorial representation of the Hamiltonian for (a)
1V=l, and(b) lV =2.

It is evident that the importance of interference scales
with the coupling v~, . For vanishing v~, the linear
spectrum is given by the superposition of a spectral line

~g) ~ ~a) and the spectrum of the continuum. The fact
that the ground state is common to both sets of tran-
sitions is of no relevance to the linear spectrum in this
particular case. On the other hand. , this internal coupling
of optical transitions by a common state can be observed
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in nonlinear optics. For example, transient four-wave
mixing spectroscopy is widely used to identify the dy-
namics of coupled optical transitions, for which quantum
beats are the most prominent example (see references in
Ref. 11).

Quantum beats occur if short laser pulses coherently
excite two discrete optical resonances with frequency dif-
ference L~ having one level in common, thus forming
a three-level system. As mentioned above, the coupling
of optical transitions due to the common state does not
show up in linear spectra as a special feature. Two com-
pletely independent transitions, i.e. , a pair of two-level
systems having the same resonance frequencies as the
three-level system, show exactly the same linear spec-
trum. Four-wave-mixing spectroscopy in the time do-
main, on the other hand, reveals the coupling due to a
common state by showing beats in both the time-resolved
(TR) and time-integrated (TI) mode with a particular
signature in the t-7- plane diKering &om that of two in-
dependent systems. DiQ'erent quantum beat situations
have been discussed in the literature, as 18 —2s ex-
citonic beats, heavy-hole —light-hole excitonic beats,
beats from excitonic wave packets formed from the dis-
crete and part of the continuous spectrum, and beats
resulting from optical excitation of eigenstates in two
resonantly coupled quantum wells . Beats with period
2'/Aw are observed in both the TR-trace and the TI-
trace. Both the linear spectrum (LS) and the four-wave-
mixing spectrum (FWMS) then show peaks separated by
L(d.

We now turn to the Fano situation. In addition to
the coupling via the common ground state, the quantum
coherent dynamics of the excited states is due to the cou-
pling v~, between Ia) and the continuum states IE;). An
excitation initially prepared in Ia) would decay exponen-
tially into the continuum. However, since the continuum
is simultaneously excited, the decay is modified by inter-
ference. A related interesting situation is found if more
than one discrete state couples to a common continuum.
This mutual indirect interaction results in an interference
narrowing of the linear line shapes under certain con-
ditions, and we may expect a reduced decay rate of the
nonlinear traces. In the frequency domain the coherent
dynamics is expressed by the particular features of the
linear Fano spectrum. The temporal dynamics seen in
the FWM traces rejects these spectral features.

In the present work we want to explore the principal
features of FWM traces due to Fano resonances. We
will therefore restrict ourselves to the most simple model
and ignore the electron-electron interaction altogether.
The resonant levels can be thought of as either atomic
or molecular states or excitonic resonances in semicon-
ductors. In the latter case the TR traces are strongly
modified by many-particle efI'ects. A comparison of the
results for, e.g. , quantum beats described in terms of the
optical Bloch equation on the one hand and in terms of
the full many-body dynamical equations on the other
hand, however, shows that the dominant features of the
dynamics are already obtained without taking into ac-
count many-particle efFects. .For a quantitative descrip-
tion of forthcoming experiments in semiconductors, the

II. THE MODEL

We start by considering a single level Ia) with energy
E, coupled by an interaction v~, to the unstructured
continuum states IE;), see Fig. 1(a). Taking the energy
of the ground state to be zero, the Hamiltonian Hq reads

IIp = E.la)(al+) E;IE,)(E;I

+) (v~, IE;)(aI+ H.c.).

The continuum states IE;) and the state Ia) are coupled
to the ground state Ig) by the light field of two successive
pulses,

E(t) = /pi (t) (e'"'" * "+ c.c.)
+Ep2(t)(e*"'" ' "+c.c.) (2)

which are characterized by the envelope functions Epi(t)
and Ep2(t). The respective interaction Hamiltonian is

Hi ———E(t) ) (v@,gIE;) (gI + H.c.).
z

—E(t) (v Ia) (gI + H.c.).

The optical dipole matrix elements of the discrete level
and the continuum states are v g and v~, g, respectively.
Following Refs. 20 and 21, Ho can be diagonalized ne-
glecting the real part of the self-energy. The new eigen-
states IE;) are coupled to the ground state by the energy-
dependent optical matrix elements p, (E,),

(E )I2 (&+ ~)
(4)

with the Fano parameter

application of the many-body semiconductor Bloch equa-
tions is, however, mandatory.

We start by introducing the Fano model. The coupling
is treated in a phenomenological way, and we do not at-
tempt to explain its microscopical origin for the various
possible experimental situations here. The continuum is
represented by a dense ensemble of levels. Following the
literature we diagonalize the excited state part of the
Hamiltonian in the presence of the coupling. This leads
to an M-level system, where M ~ oo. The dipole ma-
trix elements then depend in a characteristic manner on
the excitation &equency re8ecting the interference be-
tween the two concurring optical-excitation paths into
resonant levels and into the continuum. The Hamiltonian
of the M-level system defines the equation of motion of
the density matrix (the optical Bloch equations), from
which we calculate the optical polarization. We solve the
optical Bloch equations to third order in the laser field
and for signals in the phase-matched self-diKraction di-
rection. The TR and TI traces as well as the FWMS are
then obtained for various situations.
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(5)
Hp = ) .E'IE')(E'I.

Here g is the density of states of the unstructured con-
tinuum, I' is the reciprocal lifetime,

I = 2'7t vE. g

and

For this M-level system we set up the equations of motion
for the density matrix p;~(t), where (i, j}= (g, E,}.The
polarization P(t) is then obtained from

P (t) = Tr (pP),

I'/2

1.e. )

P(&) = ) p(E~)pg~. + c.c.

Eventually, we will consider more (X) than one single
state coupled to the same continuum; see Fig. l(b) for
1V = 2. Denoting these K discrete levels by li) and their
energies and Fano parameters by E, and qi, respectively,
we obtain

The derivation of the equation of motion for the density
matrix

p = 'I.H(t) pl

is standard and is given in Appendix A. We will write

P(t) = e * 'P(t) + c.c. (15)

As we will assume an unstructured continuum IE, ) we
set vE ——vo.-2 2

ig

In the new basis the Hamiltonian reads

H = Hp —F(t) P

with the polarization operator

and accordingly

pE„(t) = e ' "pg„(t)

such that

P(t) = ).p*(E~)P~,.(t).
P = ).~(E')IE*)(gl+ H'

In the rotating wave approximation the equations of mo-
tion (the optical Bloch equations) for the resonant con-
tribution p(t) read

p@ g+ ~(Ea —~r.)pz, g

p~„~ + i(Eg —E;)p~„~,

~gg

i+p (&)" " '&(EA:)pgg —'+p (t)e " ) p(E*)«~&
E,

i+pn(t)e' " "p(E~)pg~ —iE'p (t)e '""
. p*(E;)pz„g,

'

iFp (t)e '""") p*(Eg)p@„g —ihip„(t)e'"" ") p(Ey)pg~, .
Ea

This set of optical Bloch equations is the basis of the
analytical and. numerical calculation discussed below.

III. FOUR-WAVE MIXING

In the self-difFraction geometry of degenerate transient
four-wave-mixing experiments (see Fig. 2) a light pulse
no. 1 arrives at the sample with wave vector kq at t = 0,
followed by a delayed (delay time w) pulse no. 2 with
wave vector k2. A nonlinear signal is then emitted at

I

times greater than 7 in the direction 2k2 —k1. The sig-
nal intensity is proportional to the square of the non-
linear third-order optical polarization. IP~ l (t, w) I

of the
sample and depends on time t and parametrically on ~.
In the time-resolved detection mode (TR) the signal is
mixed with a reference pulse in a nonlinear crystal, thus
producing a cross-correlation function TRoc

I
P ~ l (t, 7 ) I

while in the time-integrated mode (TI) the signal is moni-
tored by a slow detector and the output depends on delay
w only, TI oc J IP~ l(t, w)l dt. The four-wave-mixing
spectrum (FWMS) is determined by spectrally resolving
the TR signal.
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FIG. 2. Schematic drawing of the FWM experiment.

discussed. For the more general case of finite pulses the
full optical Bloch equations are solved numerically. The
first-order polarization Eq. (20) can be written as an
integral,

Pl'l (t) = 'rt, O(t) g

which can be rewritten as

Pl'(t) = iq, O(t)gv,'[2~b(t) + L(t)].

IV. ANALYTICAL SOLUTION FOR 8 PULSES

The optical Bloch equations can be solved analytically
by assuming ultrashort laser pulses, represented by

The absorption into the continuum is represented by the
b-function contribution to the above expression, while the
second part L(t) contains the transition into the discrete
states and the contribution due to the interference.

Eo, ——glib(t),

F02 928(t —T) . VI. SINGLE DISCRETE STATE

Again, the derivation is standard and is given in Ap-
pendix B. In linear response to the first pulse the polar-
ization reads

We first consider a single state Ia) coupled to the con-
tinuum and use Eq. (4) which yields

P~'l(t) = iqiO(t)e*"'"+* ") lp(Eg)l e ' "'. (20)
Ea

L(t) = vr —(q —i) e
2

(28)

In third order we obtain for radiation into the self-
diffraction direction 2k2 —kg

Note that within the single-particle picture and for b-
pulse excitation the linear polarization determines the
dependence of the third-order polarization on both t and
'T. From now on we will omit both the phase factor con-
taining the laser frequency and the spatial phase factors.

V. TRACES AND SPECTRA

We are interested in the time-integrated (TI) traces,
the time-resolved (TR) traces, the linear spectrum (LS),
and the spectrum of the FWM-signal FWMS, given by

TR ~ IP ' (t, 7)l', (22)

TI oc

LS oc I&(E)l', (24)

Pl (t, T)e' dt (25)

Since for b-pulse excitation the nonlinear signal traces
and spectra are determined by the linear polarization,
we concentrate on this function if analytical results are

For vp M 0 the optical transitions into the continuum
are switched off and the b contribution vanishes. In this
limit we have gvo(q —i) 2n ~ v, i.e. , we obtain the
response to a b pulse of an exponentially damped single
absorber corresponding to a Lorentzian linear polariza-
tion spectrum.

For I' ~ 0 we arrive at another trivial limit. Here
again gvo2(q

—i) 2 —m —+ v2, and the linear polarization is
a superposition of the b contribution due the continuum
and a nondecaying signal due to the discrete state.

For vp ) 0, the optical excitation into the continuum
interferes with that of the state Ia). This interference is
described by the term (q —i) . It is instructive to compare
the functions L(t) for the interfering Fano situation and
for a noninterfering system described by a Lorentzian line
superimposed on a continuum. In the latter case L(t) has
the same form as above, except that the term —i is miss-
ing. The interference effects are most important for small
q values. For large q we get (q —i) q, and the Fano
line as well as the corresponding FWM traces recover the
form characteristic for the non-interfering superposition.

In the case of b pulses considered above, the term
(q —i) enters as a prefactor for t ) 0, and the time depen-
dence of the intensities of both the linear and nonlinear
TR signals is completely unafFected by this interference.
In view of the nontrivial Fano shape of the linear spec-
trum this result is rather unexpected. It shows that the
TR spectra are signatures of the dynamics and cannot
be inferred simply &om the linear polarization spectra.

The state Ia) influences the optical properties and dy-
namics of the system even if the transition Ig) ~ Ia) is
optically forbidden (q = 0). The linear spectrum then
shows a Lorentzian hole with zero absorption at E due
to the admixture of the forbidden transition into the con-
tinuum absorption. In the time-dependent signals there
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with real Wq ——gA —I' and W2 —— v 1 —3 for
the underdamped and the overdamped case, respectively.
This result is to be compared with the noninteracting
case where the two levels ~a) and ~b) decay into separate
continua (see dashed lines in Fig. 5),

U

(0

(t) (
.
) 2( i(E~+—A) —(I'/2)t + —iZ~ (I /2) i)

I'

2

(32)

While in the underdamped case we have damped quan-
tum beats, beating is completely absent in the over-
damped situation, see also Fig. 5. At first sight, this
looks very surprising, since the linear polarization spec-
tra for both cases look qualitatively similar with their
double peak structure, as is shown in Fig. 5 for large
q. The absence of quantum beats in the overdamped
case can be easily understood by realizing that in con-
trast with the underdamped case the function ~p, (E)

~

is composed. from two single-level Fano-like contributions
[Eq. (4)] which are centered at the same frequency. We
note, however, that the overdamped traces are not mono-
toneous. In fact, there is a single zero in L(t), separat-
ing the fast and slow decaying contributions. The phase
shift responsible for this can be seen most clearly for
I'/A )) 1, where

time

FIG. 6. Time-resolved trace for Rnite pulse width and for
the strongly overdamped case (N = 2, o' = 0.1, r = 1, 4 = 5,
q = qt, = 10, I' = I' = 10).

I' . , / „, b, '
L(t) -+ —2 —~(q —i)

~

e — e
2 q

4I'2

For short times the first term dominates, while for longer
times L(t) is given by the second term which has the op-
posite sign.

The decaying traces do not depend on the parameter
q. This again is rather counterintuitive. In fact, the lin-
ear spectra (see Fig. 5, upper part) differ remarkably
from each other for diferent q. The independence of the
decaying traces on q is due to the fact that for b-pulse
excitation and for t ) 0 the q dependence is given by
a prefactor, which has no inIIIuence on the time depen-
dence. The interference we are discussing here is that
between the transitions into the discrete states ~g) -+ ~a)
and ~g) ~ ~b), mediated by the common continuum ~E,).
Whether or not the continuum is excited as well is of
no importance. We will see below that for Gnite pulse
widths this feature is preserved as long as we look at
times exceeding the pulse width.

The numerical solution of Eq. (18) can of course be
obtained for arbitrary values of the parameters. For short
pulses with o = 0.05 we recover the analytically obtained
results for the same set of parameters.

The vr-phase shift separating the fast decaying short-
time regime from the slow decaying long-time regime,
present for q = qg, survives even if Rnite pulse widths
are considered, as shown in Fig. 6 for 0 = 0.1. For large
pulse width the zero may convert into a dip, see Fig. 7,
which does not look unlike a strongly damped beating
signal. However, in this overdamped situation beats are
not present.

In atomic (molecular) systems or semiconductor het-

time
FIG. 7. Pseudobeating for larger pulse width, weakly over-

damped case (K = 2, q = qt, = 1, r. = rg = 10, A = 9,
o =05, +=1).

U

M

time
FIG. 8. Time-resolved trace for N = 2 and for the over-

damped case, one transition being forbidden (q = 0, qs = 10,
I' =rs=05, A=025, cr=005, x=1).
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erostructures one often encounters the situation in which
two successing levels have opposite parity. From the com-
mon ground state one of the transitions is then allowed,
the other one forbidden. In Fig. 8 we present a TR trace
for a pair of discrete levels with 6nite q and qp ——0 for the
overdamped case. Now the fast and slow components are
no longer separated by a zero, even for the short pulse
width of cr = 0.05 assumed here. (The high frequency
wiggles are due to the high- and low-energy boundaries
used in the numerical description of the continuum. )

VIII. THE FOUR-WAVE-MIXING SPECTRUM
0
—10

photon energy

10

For b-pulse excitation we are again able to calculate
the FWMS [see Eq. (25)] analytically. From Eq. (21) we
have

FIG. 9. Linear absorption spectrum (dashed line) and
FWM spectrum (solid line) for N = 1, q = —1, I' = 1.

P(')(t)e' 'dt

For b-pulse excitation the linear polarization is essen-
tially the linear optical susceptibility, P( )(t) = qy(t),
and therefore

FWMS oc y' ((u) + y" ((u),

where

+ 1~(~') =— y(t)e' 'dt = y'((u) + iy" (~)

is the complex linear response function, which for b-pulse
excitation reads

1
y((u) = igvo

~

1+ — L(t)e' 'dt ~.
r0

(37)

The dissipative part is the linear optical absorption spec-
trum, y" (w) = gvo~p(E)~, and the reactive part its
Kramers-Kronig transform,

For one single discrete state we obtain

, ( -', (q —i)'
y((u) = igvo

I
1+ —;-'( -E-)& (39)

and

2 2q +4q2+4qe+ ez

1+ e2 (40)

An example is shown in Fig. 9. The asymmetry of the
linear Fano-absorption spectrum is still present, but the
zero is suppressed by the contribution of the reactive sus-
ceptibility y'(tu) to the FWMS.

IX. CONCI USIONS

In the present work we have looked for characteristic
features in the FWM traces, which can be used to iden-
tify Fano interaction. Our results show that in systems
with a single discrete state coupled to a continuum, the
identification of a Fano interference in terms of FWM
traces is possible if the oscillator strength for the dis-
crete transition is weaker than that of the continuum.
In this case a single dip, or even zero (for forbidden dis-
crete transitions) is predicted in both the time-integrated
and time-resolved traces, provided the pulse separation
is sufBciently large. For overlapping pulses an additional
dip is produced in the temporal range of overlap. The
interference features become negligible if the transition
probability into the discrete level becomes large with re-
spect to the transition probability into the continuum,
and the traces recover the form of those produced by a
simple superposition of a damped resonance and a con-
tinuum.

For two discrete states coupled to a continuum with
strength I' and separated by an energy AE, one has to
distinguish between the underdamped (AE ) I') and the
overdamped case (AE ( I ). Beats are seen in the un-
derdamped situation, determined by the separation of the
broadened spectral peaks. Quite surprisingly, although
the linear polarization spectrum of the overdamped case
looks very similar and also shows two peaks, there are no
beats in the corresponding FWM traces. Instead, a fast
initial component followed by a slow component at later
times is predicted. This feature can be seen as the time
analog of Fano-interference narrowing. For equal optical
transition probabilities into the two discrete states, the
fast and slow components are separated by a zero in TR
traces. This zero disappears if the transition probabilities
are different. The effects due to interference of two states,
mediated by a common continuum, are seen irrespective
of the strength of the absorption into the continuum.

The signatures of interference in the temporal traces
express the particular form of the energy dependence of
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the dipole matrix elements. Spectra resulting from a
simple superposition of peaks, although looking similar
to a Fano line, will not produce the features discussed
here. Therefore, it would be extremely interesting to
look for these interference phenomena in FWM experi-
ments performed on atomic or molecular systems. Sim-
ilar measurements could also be performed for semicon-
ductor heterostructures. In this case one has the addi-
tional possibility to design the band structure and thus
the excitonic level scheme at will. It should, however,
be noted that the many-particle Coulomb interaction in
semiconductors is expected to have a strong inhuence on
the TR-FWM traces. Further theoretical work is there-
fore needed to substantiate the predictions drawn here in
this case.

ipgg = ) .{~IHIEk)p~. g
—).pg~. (EklHI~) (A2)

~p~.~. —(EklHI~) pg~, p~ag{glHIE')

+ ) {Ek]H/E )p@,@., —) p~„@,{E.[.H/E;)

= (Ek —E;)p~„@, —F(t.)p(Ek) pg~,

= -F(t) ) .» *(E )p "—F(t) ).» (E.)». ,
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APPENDIX A

The set of equations then reads

p&ag + iEkp&~g iF(t)&(Ek)pgg

—iF(t) )»J,(E;)p~„~„

PEgE, + i(Ek Ei)PEgE, iF(t)P(Ek)pgE; (A4)

ipg~„= ) {g~H~E„)p~ ~„

pg~. {E-IH IEk) —
pgg {alHIEk)

= —Ekp, z, + F(t)» *(Ek)p„
—F(t) ).» *(E')«.~,

E;

(Al)

Taking matrix elements of the equation of motion (14)
we obtain

With

we have

F(t)»J, (E—; )
'*p@„,

pgg —xF(t) ) p (Ek)p~~g
Ea

-'F(t)). » (E )p. '

P (t) = ' P (t) (A5)

(~E, +'(Ek —~~)p~. gl'

pz. x, + i(Ek —E,)px, ~,

= iF(t)p(Ek) pgg
—iF(t) ) p, (E;)p~, @, ,

= i F(t)»»(Ek) pg@, e' ' —iF(t)p*(E;)p~, ge

= iF(t) ) p*(Ek)p~„ge ,

* ' —iF(t) )»J(Ek)pg~„e*

(A6)

We insert F(t), apply the rotating wave approximation
by omitting all nonresonant terms, and finally obtain Eq.
(18). s.e. ,

p~ = ip(Ek)r»ie ' " ~ '8(t)e'"'",

APPENDIX B P ' (t) = ir»i8(t)e'"'" '"") ~»J(Ek)~ e ' "'. (B3)

In linear response (i.e. , with pgg = 1 and pg„g, = 0)
to the first pulse Eq. (18) reduces to

In second order (first pulse no. 1, second pulse no. 2) we
obtain

p@„+i (Ek —(uL, )p@,g
——ir»ih(t) p(Ek)e*"'"

which is solved by

pZ R, + i(Ek E')PR R,

= '»~(t r)&(Ek) pz g(r)e ' (B4)
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which in turn is solved by

p~()~ = iil20(t —r)p~~')*(~)e '( " *)(' )p(Eg)e*"'"

p~„+i (Et, —tol, )p@„s —irl28(t —7)p,-(EI,)p( l (7 )e'"'"
—iq, b(t —r)
x ) p(E;)p~~)~ (r)e*"'

and analogously

p( l = —irl28(t —r) ) p(EA, )p~(')*(7-)e*"'".

with the solution
-(s) 2 2O(] )

—i(Eg cot—, )(t—r) (E )«aa
x ) p(E, )p~('I*(r)e""'"

Finally, in third order (first pulse no. 1, then twice the

pulse no. 2) the equation of motion for p&(, giving the
third-order polarization, reads

which corresponds to radiation into the direction 2k2 —A:q.

There are other terms, which we omit, radiating into dif-
ferent directions. The polarization to third order is then
given by Eq. (21).
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