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Transport properties of coupled one-dimensional interacting electron systems with impurities
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We consider two one-dimensional interacting electron systems that are coupled via interchain tunneling to
calculate transport properties in the presence of impurities or a single barrier by using the bosonization
formalisms for the non-Luttinger-liquid phases on the phase diagram obtained by Fabrizio [Phys. Rev. B 48,
15 838 (1993)].We find for the weak- and strong-interaction phases, where the superconducting correlation
dominates in the ground state, that the interchain transfer enhances the conductivity and the Anderson local-
ization is suppressed. This shows that multichain systems can have unique transport properties.

There is a long history of studying transport properties of
one-dimensional (1D) systems and applying the results to
organic conductors. On the other hand, recent studies of
quantum transport in mesoscopic systems have brought to
light the features specific to low-dimensional systems that
are unexpected for classical systems. ' A motivation for
studying these is the semiconductor nanostructure technol-

ogy by which quasi-1D quantum wires are fabricated. It is
interesting to ask what happens when there are two such
chains interacting with electron-electron interactions and/or
interchain tunneling. In particular, transport properties of the
coupled 1D systems are of crucial interest. In a previous
publication we have shown that, in the absence of interchain
tunneling, the interchain electron-electron interaction does
exert an unexpected enhancement of the conductance of the
system even when the interaction is repulsive, which comes
from a suppression of the charge-density wave (CDW) fluc-
tuations. Another essential question is what happens when
we introduce the interchannel tunneling. Effects of the inter-
channel tunneling also concern a recent interest in the so-
called t-J ladder system, which is a tunneling-coupled 1D
chain in the limit of large interaction, that is a model for
some cuprates, while we are interested in the weak and in-
termediate interaction regimes.

For single 1D systems, an interacting electron system is
generically expressed as the Luttinger liquid. For the trans-
port, Apel and Rice and Suzumura and Fukuyama have
found that the Luttinger liquid in the presence of impurities
with finite densities should exhibit Anderson localization or
delocalization according as K~+K (3 or )3. Here K~
(K ) is the critical exponent for the charge (spin) phase of
the Luttinger liquid, where, roughly speaking, K~ and K
decreases (increases) from unity for repulsive (attractive) in-
teractions.

On the other hand, Kane and Fisher and Furusaki and
Nagaosa studied the tunneling through a single barrier in the
Luttinger liquid. Their results may be summarized that the
barrier potential is renormalized to infinity (resulting in a
reflection) for repulsive electron-electron interactions, while
the barrier is renormalized to zero (transmission) for attrac-
tive interactions. This statement holds rigorously for spin-
independent [SU(2) invariant] electron-electron interactions
(for which K =1). We can relate this to the 2k~ CDW
which has the most important influence on the transport phe-

nomena, since it couples with the 2kF component (backward
scattering) of the impurity or barrier potentials (while the
forward scattering is absorbed in the Hamiltonian in the
clean system ). The CDW correlation is enhanced (sup-
pressed) by repulsive (attractive) interactions, i.e., the con-
duction and the CDW formation are anticorrelated.

For dirty multichain 1D systems, few studies exist for the
transport phenomena, which is the purpose of the present
study. For the clean coupled chains, there are some works.
Penc and Solyom investigated a coupled double chain.
They found that, in terms of the bonding and antibonding
bands obtained by diagonalizing the interchain hopping, the
system renormalizes into the usual two-component
Luttinger-liquid fixed point for repulsive interactions when
the bands are inequivalent with different electron-electron
interactions and Fermi velocities, while the situation be-
comes quite different when the bands are equivalent as in
lattice systems exemplified by the Hubbard model.

The ground state of the two equivalent chains (coupled
Hubbard chains) in the presence of interchain hopping, ti,
has been investigated in detail by Fabrizio with a perturba-
tional renormalization-group (RG) approach. Remarkably,
the system is found to depart from the Luttinger liquid to
flow into strong interchain-coupling phases as soon as the
interchain tunneling is turned on, although the system even-
tually reduces to one- or two-component Luttinger liquid for
large enough tunneling amplitude. This, in his words, comes
from the "flavor anisotropy, " i.e., the single-electron states
for two fermion flavors (two chains) splitting into bonding
and antibonding states. Within the non-Luttinger-liquid re-
gion, Fabrizio identified three phases: (I) weak, (II) interme-
diate, and (III) strong interaction phases. Phases I and III are
dominated by the Cooper pairing correlation, while phase II
has a dominant out-of-phase CDW correlation. In phases I
and II t~ is relevant (i.e., does not renormalize to zero). Even
when the two chains have different Fermi velocities, the dif-
ference is renormalized to zero in the non-Luttinger-liquid
region after the RG process.

We ask ourselves here how these non-Luttinger-liquid
phases of two coupled Tomonaga-Luttinger (Hubbard)
chains behave in terms of the transport properties in the pres-
ence of impurities. We shall show that effects peculiar to this
region do appear in transport, in which, surprisingly, the in-
terchain coupling enhances the conductivity and the Ander-
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dual operators. The coefficients U „~ are given by

u~, =vF/1 —go, u~, =u, =v, =uF/1 —(g/2) —=u. Here2

go = U/2mv~ is the initial coupling constant of two Hubbard
chain, uF is the Fermi velocity, while g i's the (region depen-
dent) renormalized strong coupling constant. Hereafter we
take A, =k&=1.

The last term, H', in the Hamiltonian couples different
fields. The coupling, which occurs among three fields in a
cyclic manner, changes according to the phase as

H' = dx[cos(P, )cos( P,) + cos( P,)cos( 8~,)

—cos( 8~,)cos( P, )]

in phase I,

H' = — dx[cos( P,)cos( 8,) + cos( 8,)cos( 8~, )

+ cos( 8~,)cos( P,)] (4)

in phase II, and

FIG. 1. Renormalization flow for the strength (Vo) of the po-
tential barrier and the critical exponent [K~,= g(1 —go)/(I+ go)]
for the total charge phase P, . The result is for phase II on the

phase diagram, depicted as an inset for the interchain hopping

(t~) and the Hubbard U after Fabrizio (Ref. 13).

H=H, +H, +H, +H, +H',

H»=v» dx [(VP») +(V 8)»]. (2)

Here the index v specifies the charge (p) or spin (cr) degrees
of freedom, while the index l specifies the symmetric
(pseudocharge, c) or antisymmetric (pseudospin, s) combi-
nations of the densities of the bonding and antibonding
bands, which emerge when the interchain hopping term is
diagonalized. P»'s are the density operators for the phase for
the pl degrees of freedom, while 0,I's are the corresponding

son localization does not occur in the weak interaction re-
gime. In the intermediate phase (II), by contrast, a single
impurity (potential barrier) becomes relevant to make the
transmission probability through the potential damp as
T—+0 with an even larger power than in a single chain.

We start from the observation that the key factor for trans-
port properties is the CDW correlation, where in a double
chain we have to discriminate total and in-chain CDW s. We
shall show that, peculiarly enough, both the in-chain and
total CDW correlations are always suppressed (or has a
"charge gap") with an exponential decay with distance or
time, except for phase II where the in-chain CDW correlation
has a slow (power-law) decay. The model we consider is two
Hubbard chains with the intrachain hopping t~~

= 1, the inter-
chain hopping t~, and the Hubbard interaction U)0. We
treat the model with the bosonization technique (the
g-ology). Following Fabrizio we start from the fixed-point
Hamiltonian in phases I,II,III (inset of Fig. 1),

H' = dx[cos(P, )cos( 8,) + cos( 8,)cos(P~, )

cos( Pp~) cos( Q~~) ]

in phase III, where the sign for each term is explicitly shown.
Here H' is measured in units of vugg/mo. , where a is a
short-range cutoff, while qb's and 8's are measured in units of
/2K with K= g(2 —g)/(2+g). Since g fiows towards a
strong coupling, long-range orders should exist in the phases
occurring in the cosine terms while the correlations of the
dual fields decay exponentially at large distances.

Let us pay attention to the CDW correlations, which are
relevant to transport. The total CDW operator (sum of the
CDW's for two chains) is defined as

OcDw(x) = X i/';~a(x) A~L(x)+H. c.,
io

where /+III is the annihilation operator of the right (left)
going electrons. This CDW operator is constructed from

P~, , P~, , P, , and P, in the phase representation. At least
one of the operators (8~, , etc.) dual to these appear in H'
and should have a long-range order in all the phases (I,II,III),
so that the total CDW correlation should always decay expo-
nentially.

By contrast, the in-chain CDW operator, O&D~
(=X Pt ~P; I+H.c., i=1,2), is constructed from the
total CDW operator and other terms involving P, , 8, ,

P, , and 8, . Since the total CDW term is suppressed, we
can concentrate on the other terms which represent the out-
of-phase CDW(= Z Pti ~i/I I+H.c.) in terms of the bond-

ing (0) and antibonding (m) bands. In phases I and III, one
of the fields dual to these has a long-range order, and thus the
CDW correlation is suppressed. However in phase II, 8~, ,
@,, and 8, all have a long-range order, so that the result-

ing CDW operator is given by
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'+i
GcDw cos( gK~, /2 @~,),

where K~, = g(1 —gp)/(1+go) is the critical exponent of
the total charge phase @~, .

Having analyzed the total and in-chain CDW correlations,
we can now turn to our original aim of looking into the
transport properties. We assume that the impurity (or impu-
rities) are distributed at different position(s) in the two chains
with an electrode connected to the chains at either end. In
phases I and III, we can see that the impurity backward scat-
tering should be completely suppressed at low temperatures,
since all the CDW correlations decay exponentially at large
distances. Thus the Anderson localization is curiously absent
in the system with a finite impurity density and the resistivity
will exponentially vanish as the temperature goes to zero.

Let us estimate the conductance of the system with a
single barrier. Since the barrier potential is irrelevant, we can
calculate the conductance G in the low-temperature limit us-
ing the formula '

1
G= lim dr dxe'"'(T, J(r)J(0))

coJ g

2e
+pc ~

7T

where J=(e/vr)V, (0~+ 82) =(e/m') /2K~, V,@~, is the cur-
rent operator of the total system, 0&~z~ the charge phase in
the chain 1 (2), r the imaginary time, and L the system size.
The impurity-dependent terms are exponentially suppressed
at finite temperatures. One may readily check that the con-
ductance of the double chain is just twice the value for the
clean single chain with the same Hubbard U, although the
barrier potential is relevant for the dirty single chain with
U~O.

In phase II we consider the case in which the single bar-
rier only exists on chain 1 in accordance with the assumption
that the disorder in the two chains are independent. We start
from the action,

1 PP I 15= — dr
l

dx [Vrgpc(x, r)]4rr p Upc

2Vo gP
+ U~, [V,@~,(x, r)] — dr

o

X cos P,(x= 0, r) (7)

where Vo is the strength of the barrier located at x=O. We
assume Vo~O but the result is independent of the sign of
Vo. Following Refs. 8 and 9, we can integrate out the con-
tinuurn phase field leaving the phase field at the impurity site
[Pp= @~,(x=0)] to have an effective action for a particle
subject to a Caldeira-Leggett dissipation. The result is
given by

= 1 2Vp tP5 a'= g 14'o(~ )I drcos
2m em Jo 4o( )

(8)

where P=1/T. Integrating the fast modes of gp, we then
evaluate the effective action for the slow modes in the weak
barrier case. The resulting RG equation becomes

d Vp /dlnA = ( K~, —1)Vo(A),

where A-UF/n is the high-frequency cutoff. The renomal-
ization flow (Fig. 1) shows that the barrier potential is irrel-
evant if K~,)4 (gp( —15/17), or relevant otherwise.

On the other hand, in the strong-barrier limit we can
use the dilute instanton gas approximation to obtain the
so-called duality mapping ' where we relate K~,/4 —+4/K~,
and Vp/7m +t Her—e r . is the instanton fugacity, i.e., the
matrix element for the tunneling correspinding to

gK~, /28p=0~2m (which means 0&+ 02=0 —+4rr for the
original phase, so that this corresponds to the tunneling of
four electrons). The resulting action indicates that the bound-
ary at which the barrier becomes relevant is the same as that
of the weak-barrier limit.

Thus the critical value of go at which the barrier becomes
relevant shifts from the single-chain value of
gp=O (K~= 1) to an attractive side (gp= —15/17) for two
chains, which may be traced back to the fact that three

(0, and the two spin phases) out of four phases are frozen
into a constant and exert no contribution to the RG pro-
cesses.

Remembering that we have started from a repulsive
go)0, we find that the barrier potential is always relevant in
phase II. Since even a single barrier is relevant, the Anderson
localization occurs as usual for a finite impurity density at
low temperatures in this case. The relevance of the barrier
potential indicates that we must use the perturbational ap-
proach for the tunneling matrix element to calculate the con-
ductance. In this approach, the conductance G can be calcu-
lated using Fermi's golden rule for the tunneling events to
obtain

/ r 2/ Ti 2(4/Kp~ —1)
G D e

/

where D=16vr / I (4/K, )/I (4/K~, + 2). We can see that
the shift of the boundary between the relevance and the ir-
relevance of the barrier potential makes the temperature de-
pendence of the conductance sharper than that of the single
chain, where the conductance becomes temperature indepen-
dent for g=O. In other words, the presence of two chains
makes the tunneling probability more suppressed (with a
power-law dependence on T) than in a single chain, in a
sharp contrast to the t~-assisted conduction in phases I and
III. The above argument comes from the fact that the relevant
operator is the in-chain CBW when the impurities are inde-
pendently distributed in two chains. If we unrealistically put
the impurities on both chains at the same x coordinates, the
impurities would become accidentally irrelevant because the
total CDW correlation, which now couples to the disorder, is
suppressed.
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Thus the message here is that double chains with the in-
terchain tunneling have unusual transport properties, such as
the absence of the Anderson localization, that are distinct
from either single chains or 2D systems. This is a manifes-
tation of the property of the double chain where the ground
state can be non-Luttinger liquid. Technically, the RG proce-
dure may degrade for the strong-coupling phase III, but the
result for phase I still stands.

This contrasts with the usual single-chain Luttinger liquid,
where the delocalization needs considerably large interac-
tions.

An intriguing observation is the following. Fabrizio has
looked at the superconducting correlation in each phase,
which shows that superconducting correlations dominates in
phases I and III while a CDW correlation dominates in phase
II. Since the pairing-dominated phases just coincide with the
phases ~here the localization is absent, one may be tempted

to conjecture that the superconducting correlation washes out
the localization, but such an argument would be too simple.
We can in fact find a counterexample in the clean single-
channel Luttinger liquid, where the superconducting correla-
tion diverges but the Anderson localization persists (although
a single impurity becomes irrelevant) when we increase the
electron-electron attraction to have 2~K~+ K ~3. Thus the
anticipated anticorrelation between the superconducting cor-
relation and localization cannot be always the case. Never-
theless, we note that the superconducting correlation remains
dominant for dirty systems in phases I and III, although the
conduction may not be regarded as a supercurrent in 1D
where long-range orders are inhibited. These effects should
be observable experimentally in 1D chains or quantum wires.

We are much indebted to Professor M. Fabrizio for illu-
minating discussions.
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