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Self-sustained Aharonov-Bohm flux in mesoscopic rings: Continuum hard-core
boson model
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We perform analytical calculations to study the persistent current I of a q-charged hard-core
boson gas in mesoscopic rings enclosing a magnetic Qux C, and find that this current is periodic in
4 with the period 4'0 = hc/q. More interestingly, in the presence of a single 6-function impurity,
it has been found that there generally exists a spontaneous Aharonov-Bohm Hux as long as the
current-induced Aux is included.

Mesoscopic metallic rings exhibit a spectacular ther-
modynamic property: they carry a persistent nondissi-
pative current due to the Aharonov-Bohm (AB) efl'ecti
when they are threaded by a magnetic flux 4 = g A. . dl,
where A is the vector potential. This current is a pe-
riodic function of the flux C' with the period C'o = hc/e.
In this case the flux 4 which drives the persistent cur-
rent I is the sum of the externally applied flux C „& and
the flux 4I induced by the current itself, 4 = 4e~t + 41.
Most theoretical discussions neglect the second term, '

which is justified for the experimental structures realized
so far. Recently, Wohlleben et al. addressed a possi-
bility that in the ballistic regime a mesoscopic metallic
ring can self-sustain a persistent current in the absence
of an external magnetic flux. Note that in metallic sys-
tems the charged carriers —electrons —are fermions. To
the best of our knowledge, there have been no investiga-
tions on the persistent current of a q-charged hard-core
boson gas in mesoscopic rings. Although a hard-core bo-
son is fermionlike in some sense, the parity eÃect due
to the finite number of hard-core bosons % will play a
crucial role in the existence of a spontaneous AB flux in
the ground state. In this paper, we study the persistent
current of a hard-core boson gas, via the AB effect, in
mesoscopic rings. As an interesting prediction, in the
presence of a single impurity with b-function potential,
the spontaneous AB flux does appear in these systems
regardless of the boundary condition being antiperiodic
or not and % being even or odd, which are, respectively,
in marked contrast with the impurity-free situation and
the case of metallic rings.

Let us erst consider % impenetrable q-charged bosons
in a ring with radius B (circumference L = 2mB), van-
ishingly small circular cross section 7t (d/2), lying in the
xy plane. Here the magnitude of B should be chosen
so that bosons retain the phase memory throughout the
ring. A solenoid passes through the opening of the ring
and carries the static magnetic flux 4,„t, which can be
continuously varied. This is a typical problem described
by the Hamiltonian of a one-dimensional (1D) hard-core
boson gas in the presence of the AB flux, which is defined
by the following conditions.

(i) The wave function is symmetrical with respect to
the interchange of particle coordinates (Bose-Einstein
statistics) .

with a similar condition for the derivative. Here f
4/C'o is the AB flux in units of the flux quantum 4o =
hc/q. Equation (1) shows clearly that all physical quan-
tities will be the periodic function of 4 with the period
40+

(iii) The wave function vanishes whenever two particle
coordinates coincide.

Because the wave function must vanish if any two par-
ticles touch, the full configuration space can be divided
into N! subspaces of the type Ai. (0 ( zi ( z2

. ( zN ( L). Inside Bi, iII satisfies a free particle
Schrodinger equation, but since 4 = 0 on the boundary
of Bi, 4 must be a determinantal wave function, namely,

iII (zi, z2, . . . , ziv) = det (2)

in Ri. On the other hand, condition (i) requires that @
should not change sign when two coordinates are inter-
changed. Consequently, in any region which is a permu-
tation of Ai,

iII = (—1) det (e'""

where (—1)+ denotes the sign of the permutation, and is
defined as the parity of the number of transpositions of
two variables which brings any other region to the region
Bi. Under the modified boundary condition (ii), Eq. (1),
the k's are found to be

(27r/L) (n + f ) for odd N
(27r/L)(n+ f + 1/2) for even N, (4)

where n = 0, +1,+2, . . . , and f is in the range
[—1/2, 1/2). Thus the energy level in the presence of
AB lux is given by

', "R, (n+ f)' for odd N

2 "&, (n + f + 1/2) for even N,

(ii) The wave function satisfies the cyclic boundary
condition, which in the presence of the AB flux reads
in part

e(z, +L, z, . . . , ztv) = e*' f@(zi,z2, . , ziv), (1)
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h~n2 Nh+2mR2 2mR2 (6)

for N = 2nD+ 1 with no ——G, 1, . . . , and

which is explicitly parity dependent due to the evenness
or oddness of ¹ Then, at zero temperature, the total
energy for a fixed number of particles is

which may be observable.
Now, it is very desirable to explore the eBects of impu-

rity scattering on the I-C characteristics because such a
situation may be more realistic. For simplicity, we con-
sider only a single impurity characterized by a b-function
potential, V(z) = pb'(z) (p ) 0). Obviously, the solution
to this model has the form

C(zi, z2, . . . , ziv) = (—1) det~a„e'""*'+ b„e ""*
~

.

h2(n + 1/2)2 Nh2
+2mR2 2mR2

for N = 2nD with no ——1, 2, . . . . Using the relation

Using the transfer-matrix method, it is not difBcult to
obtain

q OE„
2vrh Bf

cos(kI) + —sin(kI) = (—1) cos(2~f),
k

(14)

one can obtain the persistent current in the ring

I= f,2' mB2

Zc
e.' (10)

and

@,2

2dc2

which is a piecewise periodic function of the AB flux. In
each periodic region, I varies linearly with 4 and there
are discontinuous jumps when one period Co is over.

VA then consider the AB flux induced by the persistent
current itself. It is easy to see that the induced AB flux
and the magnetic energy are, respectively,

where 0 = mp/h2. Note that, for the odd N case, the
problem investigated here is quite similar to the one-
dimensional Dirac comb, is with 2' f in Eq. (14) being
replaced by the dimensionless Bloch wave vector KI.
Figures 1 and 2 show, respectively, the numerical results
for E-4 and I-C characteristics at zero temperature for a
ring with odd ¹ It can be clearly seen from Fig. 1 that
the energy E for a Gxed N has a minimum at a nonzero
~4( i

~, which is due to the fact that the presence of the
b-function impurity in the ring eliminates the zero-valued
k, and therefore for an odd number of hard-core bosons
(N = 2no + 1), either +k, or —k, , is not filled while
the currents in other occupied states with +k are pairwise
cancelled. Consequently, the spontaneous AB flux can be
roughly expected near this point. More rigorously, this
AB flux should be determined self-consistently, the value
of which, Ci'('~, is just the nontrivial intersection of the

which means that when 4y becomes comparable to C,„t,
the energy stored in the magnetic Geld of the system
also changes appreciably, away from the value C 2„t/2l:c2
supplied by the external source to 4' /22c . Here j: is
the self-inductance of the ring and has the classical ex-
pression for the ring with circular cross section geom-
etry, l: = ( —,, ) R 1n(16R/d) —

4 . In the absence of
the external Hux, f,„t ——0, Eqs. (9) and (10) lead to
a unique self-consistent solution: fi') = 0. On the other
hand, the total energy of the whole system consists of
two parts: the energy of particles in the ring E and the
energy of the magnetic field E~, i.e., ET ——E + E~.
It is very interesting to find that the total energy E~
reaches its minimuin just at f = f('i = 0, which implies
that unlike the case of metallic rings, the spontaneous
current is absent in 1D mesoscopic rings composed of
hard-core bosons, regardless of the number of particles
N being even or odd. However, if we choose the an-
tiperiodic boundary condition in the absence of the AB
flux, 4'(xi+ I., z2, . . . , z~) = —4(z„z2, . . . , ziv), which
is not unreasonable when we insert a vr-phase-shift junc-
tion in the ring; we could easily Gnd a ground state with
a spontaneous AB flux

(12)
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FIG. l. Energy of particles versus the dimensionless Qux f
for an odd number of particles in the ring with the strength
of a single 6-function impurity OL as (a) 0.5, (b) 2.0, and (c)
4.0, where so = h /2mB .
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