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Surface elastic waves in superlattices: Sagittal localized and resonant modes
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We investigate the existence and behavior of localized and resonant acoustic modes of sagittal polar-
ization associated with the surface of a semi-infinite superlattice. These modes appear as well-defined

peaks of the density of states, either inside the minigaps or inside the bulk bands of the superlattice. The
densities of states, which are calculated as functions of the frequency co and the wave vector k~~ {parallel
to the interfaces), are obtained from an analytic determination of the Green function for a semi-infinite
superlattice. We show the existence of 5 peaks of weight —

2 at the limits of any bulk band. The conser-

vation of the total number of states leads to the necessary existence of surface localized modes inside the

gaps, but also of semilocalized modes which appear as well-defined resonances inside the bulk bands of
the superlattice.

A great deal of work has been devoted during the last
decade to the study of acoustic vibrations in superlattices
(SL's). ' Besides the bulk waves propagating in the
whole SL, it has been shown that the presence of inhomo-
geneities within the perfect SL, such as a free surface, an
internal surface (i.e., a substrate/SL interface), or a layer
defect, give rise to localized states inside the minigaps
separating the bulk bands. " The knowledge of the
density of states (DOS) in these systems also indicates the
spatial distribution of the modes, and in particular the
possibility of resonant states which may appear as well-
defined peaks of the DOS inside the bulk bands. '

Such a study can be performed by means of a Green's
function technique which is also of interest for scattering
problems. '

In some recent works, ' ' we have studied in detail
transverse-acoustic modes in a semi-infinite SL with or
without a cap layer, and in a SL in contact with a sub-
strate. For these modes involving only one direction of
vibration, the Green's functions have been calculated
analytically in the above systems and the density of states
obtained as functions of the frequency co and the wave
vector k~~ (parallel to the interfaces). The localized and
resonant modes associated with such inhomogeneities
(surface, interface, . . . ) in the SL appear as well-defined
peaks of the density of states either inside the minigaps or
inside the bulk bands of the SL. In particular, we have
obtained general rules' for the existence of transverse lo-
calized modes associated with the free surface of a semi-
infinite SL, as well as for resonant modes associated with
the interface between a SL and a substrate.

Acoustic modes of sagittal polarization have been in-

vestigated during the last few years using a transfer ma-
trix method. In particular, surface-localized modes have
been obtained and discussed in detail. ' However, to
our knowledge, the variation of the total vibrational den-
sity of states associated with the above-cited perturbation
of the SL, and in particular the existence of surface reso-
nant states, have not yet been studied. In this paper, we
study localized and resonant modes together with the
variation of the density of states associated with a free
surface in a SL. Due to the coupling of two degrees of vi-
brations, the Green's function calculation, from which
the density of states is deduced, becomes rather compli-
cated as compared to the case of transverse vibrations.
For this reason, we limit ourselves in this paper to the
case of a semi-infinite SL without changing the thickness
and the nature of the surface cap layer.

The Green's function is calculated by using the inter-
face response theory in composite materials' in which
the solution is first searched in the restricted space of in-
terfaces before being extended to the whole material. We
avoid the detail of the analysis which is similar to, al-
though more cumbersome than, that for transverse
modes. ' ' ' The detail analytic expressions of the
Green's functions are given in Ref. 15. In the following,
we shall focus on a few illustrations of these results. In
these examples the SL's are made of Al and W with the
parameters given in Ref. 8. The thicknesses d, and d2 of
the layers in the SL are assumed to be equal, the period of
the SL being D =d&+d2=2d, .

For given ~ and k~~, the wave vectors along the axis x 3

of the SL which can be deduced from the bulk dispersion
relations are called k3. In the case of sagittal modes in-
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volving two components of the displacement field, there
are two pairs of k3 associated with given k~~ and ~, which
can be written as ' +(Ki+iL&) and +(K2+iL2). Now
an elastic wave at the frequency m propagates in the SL if
L, =0 or Lz =0, while it is attenuated if both L

&
and Lz

are different from zero. Each pair of k3 (the first, for in-
stance) can take four different forms; it can be

(i) pure real (Li =0),
(ii) pure imaginary (Ki =0),

( iii ) complex but with K, =+—

(iv) complex with Ki&+—.
D

However, in case (iv) the two pairs of k3 necessarily be-
come

K+iL, —(K+iL),K iL, —(K— iL) . —

Figure 1(a) gives an example of the complex band
structure in a W-Al SL showing the combinations of the
above-mentioned cases. One can see the presence of
direct gaps at the center and the edge of the reduced Bril-
louin zone, but also the possibility' of indirect gaps in-
side this zone [Fig. 1(b)]. This is a consequence of cou-
pling between the components of the displacement, i.e.,
the mixing between waves polarized in each constituent
as a result of reAection and transmission phenomena at

the interfaces. Let us also mention that the imaginary
parts of k3 wave vectors in Fig. 1(a) give the attenuation
of the possible localized waves in the gaps.

In Fig. 2 we represented the so-called projected band
structure of the bulk and surface modes, namely, co versus

k~~. The bulk bands associated with each polarization
(L, =0 or L2 =0) of the waves are, respectively,
represented by horizontally and vertically dashed lines.
The ranges of frequencies belonging simultaneously to
both types of bands are drawn in black in Fig. 2, while
the regions separating the different shaded areas corre-
spond to gaps. Due to the large difference between the
elastic parameters of W and Al, these gaps are rather
large in contrast to the case of more usual systems like
GaAs-A1As. ' Inside these gaps, we have represented
surface modes corresponding to two complementary
semi-infinite SL s obtained by cleaving the infinite W-Al
SL in such a way that one obtains one SL with a full W
layer at the surface (dashed lines) and its complementary
with a full Al layer at the surface (solid lines). In these
figures some of the surface modes are very close to the
bulk bands and cannot be distinguished from the latter on
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FIG. 1. (a) Complex band structure (co versus complex k3) in
a W-Al SL with d 1

=d2 = D /2 and k!~~D =3. coD/C, (A1) is a di-
mensionless frequency where C, (A1) is a transverse velocity of
sound in Al given by (C44/p)' . Solid curves are k3 real (mid-
dle panel of the figure). Dashed-dotted curves are k3 imaginary
(left panel). Dashed curves are the imaginary part of k3 when
its real part is equal to ~/D (right panel). In addition, when k3
is a complex quantity [Eq. (2)], the dotted curves give both its
real and imaginary parts; in this case the imaginary part is
presented in the left panel. (b) Same as in (a) enlarged in the
range of frequencies where the indirect gap appears.

FIG. 2. Bulk and surface sagittal elastic waves in W-Al SL.
The curves give coD/C, (A1) as a function of kI~D, where m is the
frequency, k~~ the propagation vector parallel to the interfaces,
C, (Al) the transverse speed of sound in Al, and D =d

1 +d2 the
period of the SL. The horizontally and vertically shaded areas
correspond to bulk bands associated with each of the two polar-
izations of the waves. The range of frequencies belonging simul-
taneously to these two types of bands is represented in black.
The surface modes associated with two complementary SL's
(ending, respectively, with a full W layer or a full Al layer) are
represented by dashed lines (W at the surface) and solid lines (Al
at the surface). Some of the surface modes are very close to the
bulk bands and cannot be distinguished from the latter at the
scale of the figure; they are indicated by arrows. The extensions
of the localized modes into the bulk bands as resonances are in-
dicated by crosses.
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the scale of the figure; we have indicated their positions
by arrows.

Besides the localized modes which appear as 5 peaks
inside the gaps, the variational density of states (discussed
below in Figs. 3 and 4) also contains well-defined features
falling inside the bulk bands of the SL. These peaks can
be considered as resonant states associated with the sur-
face of the SL s. Their dispersion is plotted in Fig. 2 by
crosses; some dispersion curves appear to be continua-
tions of localized branches into the bulk bands of the SL.
Let us remark that these resonant modes may be local-
ized with respect to one type of band and propagating
with respect to the other. This situation, which can
occur when the vibrations involve at least two degrees of
freedom, is of course without analogue in the case of
transverse waves. '

The behavior of localized and resonant modes in the
density of states is illustrated in Figs. 3 and 4 where the
variation of the total density of states is sketched when
two complementary semi-infinite SL's are created by the
cleavage of an infinite SL. For the sake of clarity and
despite the analytic nature of our calculation, the 5 peaks
in the density of states are broadened by adding a small
imaginary part to the frequency co (i.e., co~co+i e ).

50

40—

In Fig. 3 we have chosen k~~D =0 and, as a conse-
quence, the sagittal modes separate into decoupled longi-
tudinal and transverse waves. The latter have been inves-
tigated in detail in Ref. 12, whereas the former can be
studied from the same general expressions when replac-
ing the elastic constants C44 by C». In Fig. 3, the peaks
L), L3 L4, L6 are associated with transverse surface lo-
calized modes whereas L2 and L 5 give longitudinal sur-
face modes. The mode labeled L& is associated with the
semi-infinite SL ending with a W surface layer, while the
modes labeled L2, L3, L4, L5, and L6 belong to the com-
plementary SL having an Al layer at the surface. In Fig.
3, one can also notice 5 peaks of weight —

—,
' (antireso-

nances) existing at the limits of any bulk band; these
peaks are denoted B,(' and T,.'~' referring, respectively, to
the bottom and top of the band i having the polarization
labeled j (j=1 for longitudinal and j=2 for transverse
polarization).

When k~~D departs from zero, both longitudinal and
transverse vibrations become coupled, and, some of the
localized branches at kI~D =0 may now fall inside a bulk
band of the SL. Such modes can radiate their energy into
the bulk modes and therefore become resonant (or leaky)
waves. This, for example, occurs for the mode labeled L6
in Fig. 3 which appears at coD/C, (Al)=-9.27 in Fig. 2.
Let us stress that in our approach the signature of such a
resonant mode is the existence of a well-defined feature in
the density of states. We have checked that the area un-
der this peak approximately corresponds to one state.

Generally speaking, the surface modes can be con-
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FIG. 3. Variation of the density of states in units of D /C, {A1)
when creating two complementary semi-infinite SL's from the
infinite SL. In this figure kIID=O and as a consequence the sag-
ittal modes are decoupled into transverse and longitudinal
modes. One can distinguish the surface transverse modes (la-
beled Ll L2 L4 and L6), the surface longitudinal modes (la-
beled L2 and L5), as well as the 5 peaks of weight —

2 {(B,."'
and T "})which appear, respectively, at the bottom and the top
of each bulk band i associated with either longitudinal or trans-
verse polarization (labeled, respectively, as j=1 and 2). Some-
times the surface modes are located very close to the limits of
the bulk bands and therefore mask the band-edge antireso-
nances.
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FICx. 4. Same as in Fig. 3 but for kI~D =5. In this case the vi-
brations along the directions x& and x3 are coupled. The sur-
face waves are labeled L; and the 5 peaks of ~eight —

~
at the

limits of the bulk bands are labeled B" and T;"' where j
represents the two polarizations called 1 and 2. R; refers to res-
onances which appear inside the bulk bands of the SL.
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sidered as the poles of the Green's function or equivalent-
ly the zeros of its denominator which we shall call D (co)
(for detailed closed-form expressions, see Ref. 15). Inside
the gaps, the function D(co) is real and changes sign
every time the frequency goes through a localized surface
mode. In contrast, inside the bulk bands, the function
D(co) becomes complex even though the frequency to is
taken to be real variable. The resonant states may be at-
tributed to the maxima of the function ~D (to)

~
because

in the vicinity of one of its maximum co+ this function
can be written in a Lorentzian form

[D (to) I

(co cog ) +cot

centered at co=coz. In our calculation, we have checked
that, for kiD —=0 and toD/C, (A1)=—9.27, the function
~D(co)~ shows a strong maximum which decreases in
magnitude as k~~D departs from zero. This branch is as-
sociated with the semi-infinite SL having an Al layer at
the surface. Let us stress that this frequency co& approxi-
mately coincides with a zero of the real part of D(to).
Another approach to obtain the leaky waves would con-
sist of searching the zeros of the complex function D (co)
when co is taken to be a complex variable co=co+ —i~I.
However, in our case we did not obtain simultaneously
the vanishing of the real and imaginary part of D (co) for
a reasonable range of values of uz and coI.

Figure 4 gives another illustration of the variational
density of states, for k~~D=S. Now the polarization of
the waves is no longer purely longitudinal nor purely
transverse. In this case, one can still notice the existence
of antiresonances of weight —

—,
' at every edge of the bulk

bands. The localized surface modes are again denoted I;,
whereas Ri and R2 are two resonant modes which ap-
pear as extensions of localized modes (see Fig. 2) located

in the second and third minigaps into the bulk bands.
We have again checked that the function

~
D ( co )

~

con-
tains maxima at the frequencies of these resonant states
when considering the SL terminated by an Al layer (but
not the complementary SL ending with a W layer).

An interesting result is the observation that the varia-
tion of the density of states (due to the creation of the two
complementary SL's) is exactly equal to zero when the
frequency co belongs simultaneously to the bulk bands of
both polarizations (black domains in Fig. 2). This result
put together with the existence of antiresonances at the
band limits and the conservation of the total number of
states implies the necessary existence of surface states
which may appear either as localized modes in the gaps
or as resonant states belonging to only one type of band
(there is no analogue of such resonances in the case of
pure longitudinal or pure transverse waves). Let us em-
phasize that the localized states are a combination of two
decaying waves while the eigenvectors of the resonant
modes contain one propagating and one decaying com-
ponent.

In conclusion, the main results of this work (apart
from the analytic derivation of the Green's function in
the case of sagittal waves' ) are the existence of antireso-
nances of weight —

—,
' at the edges of any bulk band due to

the creation of two semi-infinite SL s from an infinite one,
and, as a consequence, the necessary existence of local-
ized and resonant surface modes associated with either
one or the other complementary SL. The resonant (or
leaky) waves which may appear as extensions of localized
modes into the bulk bands are presented here for the first
time to our knowledge in SL's. Finally, let us mention
that the knowledge of the Green's function yields possible
a full determination of all eigenvectors' in semi-infinite
SL s. These quantities are, for instance, involved in the
study of Raman scattering by acoustic phonons.
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