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Effect of superlattice structure on the thermoelectric figure of merit
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The electrical conductivity, the thermoelectric power, and the electrical contribution to the thermal
conductivity of superlattices have been studied within the envelope-function approach for the electrons.
The effects of tunneling through the barriers due to finite potential offsets and of the thermal currents
through the barrier layers are shown to be essential to describe properly the thermoelectric figure of
merit of realistic superlattices. The figure of merit is calculated as a function of superlattice period, po-
tential barrier offset, and barrier width. It is found that the figure of merit has a maximum as a function
of superlattice period and that its value there can be somewhat larger than that of the corresponding
bulk. For larger periods the figure of merit is generally less than that of the correponding bulk.

INTRODUCTION

Recently there has been increased interest in finding
additional materials for use in cleaner, more efficient
cooling systems. ' For some time the materials that have
shown the most promise have been alloys of Bi2Te3. The
dimensionless figure of merit ZT provides a measure of
the desirability of a material for use in cooling systems.
It is given by ZT =a o.T/sc, where a is the thermoelec-
tric power, o. the electrical conductivity, ~ the total
thermal conductivity, and T is the temperature. Even
modest improvements in ZT would be quite desirable for
a number of applications. Currently several avenues are
being investigated in the pursuit of improved thermoelec-
tric materials. Nevertheless, in recent years little im-
provement in the figure of merit of thermoelectric materi-
als over those of Bi2Te3 alloys, which have ZT & 1, has
been achieved.

Calculations of the thermopower and other transport
properties of superlattice systems have been reported
over the years. Recently, however, Hicks and co-
workers ' have proposed that very large increases in ZT
can be achieved in superlattices for conduction parallel to
the planes. This work has attracted considerable atten-
tion in the thermoelectrics community because of the ap-
pearance that superlattice systems may be highly desir-
able for applications, and in the superlattice community
because of the unusual transport properties predicted for
these systems. The physical origin of the large increase
in ZT proposed for these superlattice systems comes
mainly from the large density of electron states per unit
volume that occurs for small well widths in a quasi-two-
dimensional geometry. This density of states is given by
m/m6 a, where m is the carrier mass and a is the
quantum-well width. These authors made calculations
for what are essentially superlattices composed of layers
of materials having two-dimensional electronic properties
given by infinite potential barriers and zero barrier
widths, and they found that ZT increased dramatically
for decreasing well widths.

Such a treatment, however, neglects two physical

CALCULATIONS

The coupled equations for the electrical and heat
currents J, and J, are given in terms of the gradients of
the electrostatic potential P and temperature T by
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where 0, y, and cx, respectively, are the electrical conduc-

eff'ects, which we show here are essential to describe the
figure of merit of realistic superlattice systems. They are
(i) that thermal current Aows through the barrier layers
in addition to the well layers, whereas electrical current is
associated mainly with the wells, thus giving a decreased
overall electrical conductivity and decreased ZT, and (ii)
that electron tunneling occurs between the layers, espe-
cially for superlattices with small periods, which modifies
the density of states and gives a decreased ZT. Recently
Lin-Chung and Reinecke' addressed the first issue with
model calculations in which layers with quasi-two-
dimensional electronic properties without tunneling were
separated by barriers of finite width, and they found that
the thermal transport through the barriers reduces ZT
considerably. "

In the present work we have addressed these two issues
in a unified way, and have produced a description of ZT
of realistic superlattice systems. The electronic proper-
ties have been calculated including finite potential bar-
riers, and the transport properties have been obtained in-
cluding the finite widths of the barriers. We find that
these effects substantially decrease ZT for superlattices as
compared to those for quasi-two-dimensional systems.
ZT for superlattices has a maximum, which can be
greater than the bulk value, for small superlattice
periods, and it generally is smaller than the bulk value for
larger periods.
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tivity, the electrical contribution to the thermal conduc-
tivity at zero field, and the thermoelectric power, and in
general they are 3X3 matrices in the Cartesian coordi-
nates. In the relaxation-time approximation to the
Boltzmann equation, these quantities can be expressed

s12
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g =J 0, era. = — L&, y= L»

e e T
(2)

and the thermal conductivity at zero current is
K =p To a . It should be noted that the total thermal
conductivity is composed of a phonon part in addition to
the electronic contribution, v=vzi, +v, . In Eq. (2),

the overlap integrals 6; give the half-width of the sub-

band, and the + ( —) sign corresponds to positive (nega-
tive) band dispersion. b, ; depends on the potential height

Vo, and the barrier and well widths a and b on the sub-
band index i. For strong tunneling between wells, as
occurs for small barrier widths and low barrier heights,
Eq. (6) is in general not a good approximation. However,
for the range of parameters a, b, and Vo considered in
this work, we find that Eq. (6) gives a good fit to the
relevant portion' of the exact Kronig-Penney band
structure. The density of states of the superlattice is then
obtained analytically by summing over wave vectors at a
given energy. The density of states for each subband is

and
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where r(E) is the relaxation time, E(k) is the dispersion
relation of an electron in the conduction band,
k = ( A:„,k, k, ) is a three-dimensional wave vector, f0 is
the equilibrium Fermi distribution, u„=h' BE(k)/Bk,
and g is the chemical potential of the carriers. We have
taken the transport to be in the x direction.

Here we are primarily interested in the effects of car-
rier confinement in realistic superlattices having finite
barrier heights and nonzero barrier widths. In order to
address these issues we have made calculations for super-
lattices with periods d =a+&, where a and b are the
widths of the quantum well and the barrier, respectively,
and Vo is the conduction-band offset in the barrier. For
simplicity we assume that the well material and the bar-
rier material are each characterized by a single parabolic
but anisotropic conduction band, and we take the carrier
masses, mobilities, and phonon thermal conductivities of
the barrier material to be the same as those of the quan-
turn well. That is, the essential effect that we study is the
modification of the bulk electronic band structure into a
superlattice band structure, which is modeled here by the
potential offset in the barrier.

The calculations are done within the effective-mass ap-
proximation using a rectangular potential offset Vo in the
barrier regions. The resulting electronic energies are
given by a set of Kronig-Penney-like subbands that derive
from the bulk conduction band. ' The dispersion of the
ith subband is

k k
c,;(k)=E;(k, )+ +

2 m~ my

Here the superlattice axis is chosen to be the z direction,
m and m are the anisotropic effective masses in the
plane of the layers, and E;(k, ) is obtained by solution of
the Kronig-Penney model.

For relatively weak coupling between wells, e;(k, ) can
be approximated by

E;(k, ) =e;o+b, , (1+-cosk, d),
where c,;0 is the energy at the bottom of the ith subband,

k„.=—cos 1—1

Employing the superlattice band structure of Eq. (6), o',
a, and y can be expressed as
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In these expressions, the energy and chemical potential of
the carriers g; =(g—E;o) are measured from the bottom
of the ith superlattice subband, and p„=e~/m is the
carrier mobility. For simplicity, the relaxation time ~ is
assumed to be independent of energy and of subband in-
dex. For each set of superlattice parameters, the quanti-
ties, cx, o., and K, give ZT as a function of the chemical
potential g.

To illustrate the effects of the superlattice band struc-
ture on ZT, calculations have been made for Bi2Te3 su-

perlattices. The transport properties of Bi2Te3 are highly
anisotropic. For this material, we take the x direction to
be in the quantum-well plane and to be along the ao axis
of the hexagonal unit cell. The superlattice direction,
taken to be the z direction, is chosen to be along the bo
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axis of the unit cell, which gives' m =0.021, I =0.32,
and m, =0.081, and a mobility p =1200 cm /Vs. Cal-
culations were done at room temperature, T =300 K is
assumed. The value of the phonon contribution to the
thermal conductivity is' ~ &=0.015 W/cmK for both
the well and barrier materials.

RESULTS AND DISCUSSION

We have made calculations of ZT using the results for
o, a, and Ir, obtained from Eqs. (8)—(10) for superlattices
and compared to the corresponding results for bulk ma-
terials. In each case, the chemical potential g is chosen
so as to maximize ZT. In practice such variations in g
can be obtained by changing the carrier densities through
doping.

Figure 1 illustrates such results for ZT for the Bi2Te3
superlattice, ZTz, as a function of the thickness of the
quantum-well layer, a, for three different ratios, b/a =

—,',
I, and 2. The barrier height Vo is taken to be 200 meV, a
value that is typical of offsets in superlattices. The results
are scaled to the bulk value for Bi2Te3, which is calculat-
ed to be ZT30=0. 53. ' For thicker wells, the ZTz for
the superlattice lies below that of the bulk, and this effect
is more pronounced for the larger barrier thicknesses.
This behavior arises from the parasitic effects of the
thermal current that Rows through the barrier layers.
This eff'ect is given by the 1/d = 1/(a +b) dependence of
a, aa, and w, in Eqs. (8)—(10) through the density of
states [Eq. (7)], where it is seen that the electrical and
thermal currents per unit area decrease when the barrier
width b becomes large. For decreasing well widths, ZTz
increases and reaches a maximum, and then for still
smaller well widths ZT& decreases as a result of carrier
tunneling through the barriers. The value of the well
width at which the maximum occurs decreases for in-
creasing barrier widths b. The maximum of ZTz for su-
perlattices is found to be somewhat larger than the bulk
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FIG. 2. The figure of merit ZT& of Bi2Te3 superlattices
(scaled by ZT») as a function of the superlattice period
d =a +b for the ratios b/a given in Fig. 1.

value, and is nearly independent of the barrier width for
this range a and b. This enhancement arises from
changes in the density of states upon electron
confinement in relatively narrow wells.

Additional insight into the behavior shown in Fig. 1

can be obtained by examining ZTz as a function of d,
which is shown in Fig. 2. For values of d in the neighbor-
hood of its maximum, ZTz is found to depend only on d.
This occurs because of the competing effects of
confinement and tunneling.

Figure 3 illustrates the dependence of ZT~ on the bar-
rier height Vo. For large periods d, ZTz increases for de-
creasing Vo and approaches the bulk value. In effect, the
thermal conduction in the barriers becomes relatively less
important as the carriers spread out into the barriers.
For superlattice periods near the maximum of ZTz, its
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FIG. 1. The figure of merit ZTz of Bi2Te3 superlattices scaled
by ZT3D for the corresponding bulk given as a function of the
well width a for several ratios of the barrier width to well width,
b/a = —' (dashed line), 1 (solid line), and 2 (dash-dotted line).

FIG. 3. The figure of merit ZTz of Bi~Te3 superlattices
(scaled by ZT30 ) as a function of the superlattice period d for
several potential barrier heights, Vo =25 (dash-dotted line), 200
(solid line), and 1000 meV (dashed line).
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FIG. 4. The figure of merit ZTs of Bi,Te3 superlattices as a
function of the well width a. The dotted curve is for bulk
Bi2Te3. The solid curve is for superlattices with b/a=1 and
V0=200 meV. The dashed-dotted curve gives similar results
for superlattices but including only carriers in the lowest
Kronig-Penney band. The dashed curve is for superlattices with
infinite potential offsets and zero barrier widths, like those stud-
ied in Ref. 8.

enhancement over the bulk value is larger for larger Vo,
which arises from greater quantum confinement manifest-
ed by Hatter superlattice dispersions. For an infinitely
large Vo, ZTs continues to increase for decreasing d (not
shown in the figure). This shows that within the present
approach the existence of a maximum in ZTz as a func-
tion of d (or of a) arises from tunneling between the lay-
ers, and the enhancement over the bulk value arises from
quantum confinement effects.

Figure 4 compares the ZTz for BizTe3 superlattices
having Vo=200 meV directly with the bulk case. For

well widths ~ 40 A, ZTz is smaller than that for the cor-
responding bulk, which is expected from the increased
effects of the thermal current through the barriers rela-
tive to the electrical current. We also note in Fig. 4 that
if only a single Kronig-Penney band is taken into account
in the calculations, rather than all thermally occupied
bands, a smaller value of ZT& is obtained for wider well
widths. ' Physically, as more subbands are included the
effective density of states at a given energy increases.

Results like those of Hicks and Dresselhaus, which
were made for infinite potential barriers and zero barrier
widths, and including only one electron subband, are
shown by the dashed line in Fig. 4. The lower overall
values obtained here for ZTz as compared to those in the
dashed curve are a consequence of our inclusion of
thermal currents in the barriers, and the decrease of ZTz
for small well widths arises from our inclusion of carrier
tunneling between wells.

In summary, a theoretical treatment of the thermoelec-
tric transport properties and the thermoelectric figure of
merit of realistic superlattice systems has been given here.
Increases in the figure of merit as compared to the bulk
are found for relatively small superlattice periods. It has
been shown that it is essential to include the effects of
thermal transport in the barrier layer and of carrier tun-
neling between layers in order to obtain a proper descrip-
tion of these systems. These effects considerably decrease
the figure of merit of realistic systems as compared to
that of layers having fully two-dimensional electronic
properties. In principle, larger values of ZT can be ob-
tained in superlattices with high potential barriers or
with barrier layers having low thermal conductivities.
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