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Anharmonic localized surface vibrations in a scalar model
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Anharmonic excitations have been found and investigated that are localized at the surface of
one-, two-, and three-dimensional lattices having simple cubic structure. A scalar model has been
used with a single scalar degree of freedom per lattice point and short-range interactions. The
nonlinear modes involve only a small number of particles or are extended along the surface. The
stability of the nonlinear excitations has been analyzed and the nonlinear dynamics induced by an
instability has been monitored by molecular dynamics.

I. INTRODUCTION

Anharmonicity of the interaction potential between
particles in a crystal lattice can give rise to localized vi-
brations which, apart from a shift of its center, maintain
their overall shape on long time scales. In integrable
systems like the Toda lattice and other integrable lat-
tice models, these localized structures are solitons. In
addition to moving solitons, stationary localized vibrat-
ing structures have been discovered which resemble
defect modes although the underlying lattice is homo-
geneous. In the integrable case of the Ablowitz-Ladik
lattice, such localized modes are a special case of lattice
solitons. Recently, these localized modes have received a
great deal of attention although there is no clear experi-
mental evidence yet for their occurrence in real physical
systems.

Systems which we regard as particularly promising for
a successful experimental search for localized anharmonic
vibrations are crystal surfaces and edges. This is because
there are various experimental techniques to accommo-
date a high amount of energy locally on a surface and
to analyze the resulting excitations. In addition, a large
variety of adlayer structures exists with atoms of small
masses which may be weakly bound to the substrate and
therefore experience high vibrational amplitudes at given
energy. Also, anharmonic vibrations near surfaces or
edges bear additional interesting features as compared
to their counterparts in the bulk. It has been shown
by several authors that localized anharmonic struc-
tures can occur as a result of modulational instability
of a spatially extended nonlinear mode. The latter can
be viewed as a nonlinear extension of Bloch-type phonon
modes. If this nonlinear extended mode corresponds to
a surface phonon mode, the nonlinear dynamics induced
by the modulational instability is more complex than in
the case of bulk phonons with energy being radiated into
the bulk. The question then arises whether solutions of
the equations of motion for the lattice degrees of freedom
exist which are localized at the surface and involve only
a few particles and whether such hot spots remain at
the surface as a result of the instability of the extended
surface state.

The investigations reported in this paper have been
carried out on the basis of a scalar model which is natu-
ral in one dimension and has been applied for lattices in
more than one dimension as well. ' This means that
to each lattice particle we attribute a scalar degree of
freedom, which need not necessarily be interpreted as a
particle displacement but could also play the role of a ro-
tation angle in a molecular crystal, for example. For the
interactions between the particles, the general distinction
is made between systems having translational invariance
and systems with nonlinear on-site potentials.

Anharmonic localized modes near the surface are pre-
sented for simple cubic lattices in one, two, and three
dimensions. These solutions of the nonlinear equations
of motion for the scalar degrees of freedom have been
found by a search algorithm based on the rotating wave
approximation. The solutions found in this way have
been verified by molecular-dynamics simulations of the
corresponding lattice, i.e. , by a numerical integration of
the equations of motion for the lattice degrees of free-
dom. A linear stability analysis has been performed for
anharmonic surface modes analogous to the analysis of
the stability of bulk modes by Sandusky et a/. The re-
sults of this stability analysis have again been verified by
molecular-dynamics simulations. The interaction poten-
tials assumed in these calculations include up to quartic
anharmonic terms with the quartic term being positive
(hard nonlinearity) .

Recently, nonlinear surface waves in a simple cubic lat-
tice within the scalar model have been investigated also
for the case of soft nonlinearity, i.e., for a negative quartic
term in the interaction potential. Specifically, surface
wave solutions have been found within the rotating wave
approximation in the limits of long and short penetra-
tion depths. In the case of nearest-neighbor interactions
only, these solutions have no linear limit. These earlier
investigations have been extended to penetration depths
of intermediate range, and the stability of such modes
has been analyzed.

II. ANHARMONIC MODELS

The lattice-dynamical models considered in this inves-
tigation can be characterized by a Hamiltonian of the
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form

(2 1)
T(U) = ) V" (0), , ]U~ "U.

n=1
(3.3)

with the potential energy

W((u(e))) = ) V(u(e)) + —) [u(e) —u(e')]
e

+ 3'[u(e) —u(e')] S(e, e')

+ )~Y) —~(~'))'
)4

(2.2)

A scalar degree of freedom u(e) is attributed to each site
Z of a semi-infinite simple cubic lattice in one, two, and
three dimensions. For simplicity, we call these degrees of
freedom displacements, although they may have difFerent
meanings depending on the physical system under con-
sideration. p(e) is the conjugate momentum of u(e) and
%g denotes the set of nearest neighbors of the site E on the
semi-infinite lattice. For the case of cubic anharmonicity,
we have introduced the symbol S(e, e') = 1 if the nonzero
component of the distance vector R(e) —R(e') between
sites e and e' is positive. Otherwise, S(e, e') = —1. Local-
ized nonlinear surface vibrations will be studied in mod-
els including a nonlinear on-site potential V(u), which is
taken to be an even function of u, as well as models with
translational invariance, i.e. , V = 0.

The displacement amplitudes Uq(e) are chosen to be real.
In the presence of cubic anharmonicity (more general, of
odd-order anharmonicity), the fundamental component
in the expansion (3.1) of the displacements can couple
to the static component Uo(e). While the interaction of
Ui with higher harmonics is neglected, this latter cou-
pling has to be accounted for in the presence of cubic
anharmonicity. This is accomplished by adding to the
right-hand sides of (3.2) the term

) (2z, [U, (e) —U, (e')][U.(e) —U, (e')]s(e, e')
E' eN

+3~ [U (e) —U (e')llU (e) —U (e')1') (3.4)

Cubic anharmonicity is considered here only in the case
of translational invariance, i.e., V = 0.

Equations (3.2) with (3.4) and (3.5) are of the general
form

and by supplementing (3.2) by the additional equation

o = ) (z, [U, (e) —U, (e')]+ z.(2IU, (e) —U, (e')
I

E'eNe

+[U (e) U (e')]')s(e, e') + K (6[U, (e) —U, (e')]'
+[Uo(e) —Uo(e')]') [U (e) —U (e")]) . (3.5)

III. SEARCH ALGORITHM
FOR NONLINEAR LOCALIZED MODES

~ U (e) =&~((U (e) Uo(e'))])

o = G~((U~(e') Us(e'))).

(3.6)

(3.7)

It is our aim to And time-periodic solutions of the equa-
tions of motion following from the Hamiltonian (2.1),
which are localized at the surface of the underlying semi-
in6nite lattice. To achieve this, we apply the rotating
wave approximation (RWA). The displacements u(e) are
expanded in a Fourier series

L

u(e, t) = ) U„(e)e (3.1)

(u2U, (e) = T(Ug(e)) + ) %2[Up(e) —Ug(e')]
E'eNe

+3~41»(~) —»)~') I*I»(~) —»(')) )
(3.2)

with an on-site force T(U(e)) which can be formally writ-
ten as

with U (e) = U (e), L ~ oo. This is inserted in the
equations of motion. In equating to zero the sum of all
terms proportional to exp( —iwt), we neglect the coupling
to higher harmonics and obtain, in the absence of cubic
anharmonicity,

U"'(e) = '(0)& ((U"'(e))) . (3.9)

The scaling factor n is chosen such that Ul~l(eo)
Ul l(eo). In this way, the displacement amplitude of the
site Ep is Axed to a given value. This procedure is iter-
ated until convergence is reached. It has been extended
to account for the static displacement amplitudes in the
presence of cubic anharmonicity. In this case, the static
displacements Uo(e) have been determined in each step
of the iteration by solving (3.7) for given Uq(e). All lo-
calized solutions presented in the following sections have

For the determination of solutions corresponding to local-
ized vibrations, the following iterative search algorithm
proved to be very eKcient. It is outlined here for the
case K3 ——0. To simplify the notation, the index 1 at
the variables Uq(e) is suppressed, if cubic anharmonicity
is absent.

The procedure starts with an initial guess for the dis-
placement amplitudes U~ l(e) of the localized mode. Let
Ep be the lattice site with the maximal displacement am-
plitude. From Eq. (3.6), the square of the initial fre-
quency tu(0) is determined:

(3 8)

In the next step, new displacement amplitudes Uz (e)
(1)

are found via
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u(I. , tp) = Up(l) + 2Ui(E) cos(cutp) (3.10)

p(E, tp) = 2U—i(E)(u sin((utp). (3.11)

In all cases reported in the following (except for the sit-
uation discussed in Sec. VI), these numerical simulations
confirmed the results obtained on the basis of the RWA.
In particular, the power spectra for the displacements
provided by the molecular-dynamics calculations show
that higher harmonics are smaller by orders of magni-
tude.

been found with the help of this algorithm with certain
modifications in some cases.

To verify the existence of the localized surface modes
found in the framework of the RWA, a symplectic
scheme has been implemented for the numerical inte-
gration of the Hamiltonian equations resulting from (2.1)
and (2.2). The initial conditions at time to have been
chosen as

(A —inip) A (/) = —) ) W, 4 (t"). (4.5)
m= —M

M

S(e, t) =."' ) ~„(~).'~"-"-l'+ .. (4.6)

It can be transformed into a non-Hermitian eigenvalue
problem by introducing the additional variables I' (l) =
AA„(E). If the RWA [Eq. (3.10)] is used for the displace-
ments u, (E) of the unperturbed mode, then W&&,

——0 for(") =
~n~ ) 2 and the sum on the right-hand side of (4.5) con-

tains only few terms. Furthermore, TVee, ——W&e, . If,
in addition, K3 ——0, then only H ee and W&e

——R'ee
can be nonzero.

The structure of (4.5) implies that if there is a solution
with eigenvalue A, there will be solutions with eigenvalues
—A and A', too. If A' and A" are real and imaginary
parts of an eigenvalue A, and (b, (l)) is an eigenvector
corresponding to this eigenvalue, then

IV. STABILITY ANALYSIS

To investigate the stability of nonlinear localized sur-
face modes with respect to small perturbations of the
displacements, we follow Sandusky et al. and Sandusky
et al. and perform a linear stability analysis. The dis-
placements u(t') are decomposed into the localized surface
mode solution, which we denote by u, (/), and a small de-
viation 8(E). Linearizing with respect to b(I) yields

8(E) = —) Wggi6(l ),
e

(4.1)

where

O'W((u(E) ))
Bu (E)Bu(E )

(4.2)

are periodic functions of time with period 2m/w.
The functions R'ee~ are expanded in a Fourier series

~ ~ ~(~) —inst
ee = g . ee e (4.3)

g(g t) ) - ~ (g) (x 'n~)t. —
(4.4)

with time-independent coeKcients. They are computed
from the representation (3.1) for the localized mode so-
lution u, (E), confining ourselves to L = 1, i.e. , to the
RWA, except for the one-dimensional case, where the re-
sult of the RWA has been improved by taking up to five
harmonics into account.

The Floquet theorem allows us to represent complex
solutions for b(E, t) in the form

is a real solution of (4.1).
The nonlinear mode with displacements u, (/) is unsta-

ble if an eigenvalue A occurs having a positive real part
A'. This real part of A is called the growth rate Ag of the
corresponding perturbation of the nonlinear mode.

In the limit M -+ oo, the search for solutions of (4.5)
with nonzero real part of A would correspond to a full
Floquet stability analysis equivalent to the one carried
out by Sandusky et al. for extended zone boundary
modes in a nonlinear chain. In the absence of cubic an-
harmonicity, we confine ourselves here to M = 1. This
corresponds to the assumption that an instability of a
nonlinear mode of the form (3.1) sets in as a slowly grow-
ing perturbation of the amplitudes U~i(E). Our numer-
ical simulations confirm this picture. For surface modes
that are extended in the directions parallel to the sur-
face in two and three dimensions, this procedure has to
be mod. ified by applying the Bloch-Floquet theorem for
the spatial dependence of the eigenvectors parallel to the
surface. In the one-dimensional case and for anharmonic
modes localized in all spatial directions, the eigenvalue
problem (4.5) can be solved for a finite lattice, if the in-
stability eigenvectors are localized at the position of the
anharmonic mode and do not extend. too far into the sub-
strate. This was found to be the case for K3 ——0. The
boundary conditions imposed on the truncation points of
the lattice are then irrelevant if they are suKciently dis-
tant from the position of the localized mode. However,
in the presence of cubic anharmonicity and translational
invariance in the one-dimensional case, eigenvectors have
been found which extend far into the substrate. This
situation is dealt with in the following way.

We label the lattice sites of the semi-infinite chain suc-
cessively by 8 = 0, 1, 2, ... with E = 0 denoting the tip
site. I et 8 be a lattice site suKciently far away &om the
localized mode, such that u, (l, ) = 0. For E ) I., (4.5)
simplifies to

The coeflicients b, (E) have to satisfy the following set of
coupled equations:

(A —inn) A (t') = K2[E (E+ 1) + A (E —1) —2b, (/)],
(4.7)
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which can be solved by the ansatz E (E) = K (E,)Zt
Here, Z is the solution of 1.0-

(A —inur) = K2(Z„+ Z„—2) (4.8)
0.0

2

having modulus smaller than 1. This precludes expo-
nential growth of the eigenvector into the substrate. In
Eq. (4.5), the index E may now be restricted to run only
from 0 to E . The lattice sum on the right-hand side of
(4.5) runs over site E and its nearest neighbors with

—1.0

5 10 15
Lattice Site

20

(4.9)

FIG. 1. Nonlinear surface mode in a semi-infinite chain
with purely quartic interactions between neighboring sites.

In this way, the analysis is reduced to a finite lattice
with a modified boundary condition at E,. Solutions of
(4.5) with (4.9) have been determined numerically by a
modified version of the inverse iteration scheme.

When solving Eq. (4.5) without eliminating the quasi-
harmonic part of the eigenvector via (4.9), the results for
the growth rate were found to depend strongly on the
size of the lattice.

In all cases where instabilities have been found by the
above method, the predicted maximal growth rate has
been verified in a molecular-dynamics simulation by seed-
ing the displacement pattern associated with the corre-
sponding perturbation in the same way as done by San-
dusky et at. and Sandusky et at. In the case of an
instability with A" in the phonon frequency band, where
(4.9) applies, the simulations have also been carried out
for a finite lattice. However, damping has been intro-
duced on lattice sites far away from the surface to sup-
press reBected waves.

V. MODELS WITH HAB.D NONLINEARITY
AND TRANSLATIONAL INVARIANCE

In this section, nonlinear localized surface modes are
discussed in models without on-site potential V. If, in ad-
dition, the coefBcients K2 and K3 are zero, the frequency
of a time-periodic solution scales with the displacement
amplitudes. Applying this simple model to a semi-infinite
chain, a mode has been found that is located near the end
of the chain. However, the end atom is not the one with
the maximal vibrational amplitude. Therefore, we do not
regard it as a surface mode in the strict sense. The dis-
placement pattern shown in Fig. 1 reveals that this mode
is related to the antisymmetric bulk mode for the same
model in an infinite chain discovered by Page. As for
the corresponding bulk mode, linear stability analysis as
well as molecular dynamics show that this mode is sta-
ble. Including linear coupling (K2 g 0) while keeping the
maximal amplitude U „constant causes the displace-
ment pattern to be shifted further away from the end of
the chain. Such modes localized near the end of a linear
chain have also been reported earlier by ourselves and
also by Watanabe and Takeno and by challis et al.

If cubic anharmonicity is added, a pronounced static
displacement is superimposed on the vibrations (see
Fig. 2). The generation of static strains by cubic an-

harmonicity is well known for acoustic surface modes in
the continuum limit ' as well as for intrinsically lo-
calized lattice modes. ' The Fourier spectrum for the
displacement of the atom with maximal amplitude, as
recorded in the molecular-dynamics simulation, is shown
in Fig. 3 for the parameters K2 ——K3 ——K4 ——1. As
mentioned earlier, the contribution of higher harmonics,
especially of even harmonics, is very small.

Another interesting feature in the Fourier spectrum is
a small peak in the phonon band. It corresponds to an
instability of the intrinsically localized mode that has de-
veloped out of numerical noise or inaccuracy of the ini-
tial conditions. This instability has also been found in
the stability analysis outlined in Sec. IV, making use of
(4.7)—(4.9). The imaginary part A" of the eigenvalue A

is the frequency at which the small peak in the Fourier
spectrum occurs. There are also pronounced side bands
at frequencies w 6 A" and 3u + A" as expected from the
stability analysis. Since the value of A" lies in the band
of linear phonon modes and the Ao(E) are nonzero, this
instability generates radiation of energy into the bulk of
the chain. At sufBciently large distances from the local-
ized mode, the perturbation b is of the approximate form

g(g t) A (t ta/v) i(~ta A—
"—)t + —

(5 1)

where V is the group velocity and r. the wave number
of linear lattice waves with frequency A" and a is the
equilibrium lattice spacing. To obtain (5.1), use has been
made of the fact that Ag (( A".

In order to confirm that this type of instability is not

1.0—

0.0

5 10 15
Lattice Site

FIG. 2. Nonlinear surface mode in a semi-infinite chain
with K2 ——K3 ——K4 ——1.
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3
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0 5 10 15
Frequency u

FIG. 3. Power spectrum for the displacement of the second
lattice site of the mode shown in Fig. 2. The squares show the
intensities for the Fourier components obtained by solving the
equations of motion with L = 5. The dashed lines indicate the
frequencies of the instability found by the stability analysis
for the semi-infinite chain.

at given frequency, we conclude that nonlinear surface
modes with maximal displacements do not exist for the
model with K2 ——K3 ——0 in one dimension. The sit-
uation is completely diferent in two dimensions, where
several modes with maximal displacernents at the surface
have been found. The displacement amplitudes of two
modes (Sl, S2) with symmetric and two modes (Al, A2)
with antisymmetric character are given in Table II for the
case K2 ——K3 ——0. Modes S2 and A2 do not have their
maximum amplitude at the surface. While the symmet-
ric modes are stable, the antisymmetric modes are found
to be unstable. However, the instability does not de-
stroy these modes but causes them to oscillate between
neighboring sites. This has been observed in molecular
dynamics.

As harmonic coupling is included (K2 g 0), the
mode pattern shifts into the bulk of the lattice and be-
comes comparable to nonlinear bulk modes discovered
by Fischer in a two-dimensional lattice with K2 ——0.
For K4U „/K2 ——1/4, two modes were found with dis-

an artifact of the RWA, we have increased the number of
harmonics I in the determination of the localized mode
and M in the stability analysis. The results for the mode
frequency and growth rate are shown in Table I. They
suggest that harmonics beyond the third are irrelevant
for this instability.

It was shown by Sandusky et al. that a traveling non-
linear localized bulk mode in a chain with K3 ——0 can
be created by superimposing on the displacements of the
(even) Takeno-Sievers mode a small perturbation having
odd symmetry. In this way, we let a nonlinear localized
bulk mode travel from the interior of a semi-infinite chain
to its end. It is found that the traveling mode is com-
pletely rejected and no trapping at the surface has been
observed.

It has already been pointed out that the mode dis-
cussed above does not have its maximal displacement at
the surface. From a numerical search in which the dis-
placement amplitudes Ui (/) are calculated in an iterative
way from a given displacement amplitude at the surface

0.0000
0.0049

-0.3251
1.0000

-0.3251
0.0049
0.0000

Mode Sl, u)

0.0000
0.0000
0.0149

-0.3984
0.0149
0.0000
0.0000

= 2.35/K4U
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0092 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000

-0.0044
0.2514

-0.0044
0.0000
0.0000

Mode S2, u
0.0000

-0.0022
0.2577

-1.0000
0.2577

-0.0022
0.0000

= 2.44+K4U
0.0000 0.0000
0.0000 0.0000

-0.0045 0.0000
0.2577 -0.0022

-0.0045 0.0000
0.0000 0.0000
0.0000 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

TABLE II ~ Displacement pattern and frequencies of sur-
face localized modes. K2 ——K3 ——0. The first column cor-
responds to the surface layer, the second column to the 6rst
sublayer, etc.

TABLE I. Dependence of the fundamental frequency on
the number L of harmonics included in the calculation of the
anharmonic surface mode with Kq ——K3 ——K4. The maxi-
mum of ~Ui(l) —Ui(I. + 1)

~

is fixed. The dependence on M and
L of real part (A') and imaginary part (A") of the eigenvalue
A of the instability visible in the Fourier spectrum Fig. 3 is
also shown.

0.0002
-0.1338
1.0000

-1.0000
0.1338

-0.0002
0.0000

Mode Al, ~
0.0000
0.0005

-0.1368
0.1368

-0.0005
0.0000
0.0000

= 2.862+K4U
0.0000 0.0000
0.0000 0.0000
0.0002 0.0000

-0.0002 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

I
1
1

2
3
4

3.141

3.141
3.180
3.180
3.180

M
1
3
5
2
3

5

A'/cu

0.0026
0.0024
0.0024
0.0025
0.0027
0.0027
0.0027

A" /(u
0.1012
0.0932
0.0932
0.1013
0.1077
0.1077
0 ~ 1077

0.0000
-0.0002
0.1152

-0.1152
0.0002
0.0000
0.0000

Mode A2, ~
-0.0001
0.1141

-1.0000
1.0000

-0.1141
0.0001
0.0000

= 3.020~K4U
0.0000 0.0000

-0.0003 0.0000
0.1154 -0.0001

-0.1154 0.0001
0.0003 0.0000
0.0000 0.0000
0.0000 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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TABLE III. Frequencies w and maximal relative growth rates Ag/m of symmetric (S) and anti-
symmetric (A) bulk and surface modes for K2 = Ks ——0 (~ in units of QK4U~~~).

Dimension
2.3
2.44
2.68 &0.01

Bulk (S)
Ag/~

0 0.15

Bulk (A)
ld Ag /td

2.68
3.02 0.19
3.29 0.25

Surface (S)
Ag /&d

2.35
2.55

Surface (A)
Ag /(d

2.68
2.86 0.11
3.16 0.23

placement patterns similar to S2 and A2. They are
both unstable with growth rates Ag/w = 0.0029 and
Ag/tu = 0.1287, respectively. Modes of the type Sl and
A 1 have not been found with our search algorithm.

In the presence of cubic anharmonicity, static strains
occur as is demonstrated in Fig. 4 for a nonlinear local-
ized surface mode near a corner of the two-dimensional
lattice.

At the surface of a three-dimensional simple cubic lat-
tice, a number of nonlinear localized modes have been
found in the pure quartic model (i.e. , K2 ——K3 —0),
including two unstable modes with symmetric displace-
ment pattern and two stable modes with antisymmetric
pattern. The displacement amplitudes of two modes in
the erst and second layer of the semi-infinite lattice are
shown in Fig. 5. The displacements in the third layer
are so small that they cannot be detected on the scale of
the 6gure.

The second mode has the additional interesting fea-
ture that the bonds intersected by the dashed line are
not involved in the dynamics. Hence it is possible to cut
the lattice along these dashed lines to obtain a nonlin-
ear mode localized at the corner of a three-dimensional
lattice.

In Table III, frequencies and maximal growth rates of
bulk and surface modes in one, two, and three dimensions
are compared with each other for the following choice of
parameters: K2 ——Ks ——0, K4 ——1, and U „=1/2.

The efFects of linear coupling on the modes in a 3D
lattice are similar to those in a 2D lattice. In general, the
displacement pattern is more localized with increasing
number of nearest neighbors.

(a)

jst

d lag'

gz-d

jst I&ye&

O.5- 9f' d

O. O
Ql
(D

O.5 (b)

y. O

FIG. 4. Nonlinear surface mode in a two-dimensional lat-
tice with K2 ——K3 ——K4 ——1.

FIG. 5. Displacement patterns of two nonlinear surface
modes (a) and (b) in a three-dimensional lattice with purely
quartic interaction between nearest neighbors. The Brst three
layers of the semi-infinite lattice are shown. The amplitudes
u(l) are visualized as out-of-plane displacements. Note that
one can cut the lattice along the symmetry planes of the mode
pattern (b) parallel to the crystal axes to obtain anharmonic
corner modes.
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VI. MODELS WITH SOFT NONLINEARITY
AND TRANSLATIONAL INVARIANCE

A scalar model with harmonic and quartic anhar-
monic interactions between up to third neighbors in a
semi-infinite simple cubic lattice has been considered
by Kivshar and Syrkin, who derived nonlinear surface
modes within the RWA. Restricting the model to nearest-
neighbor interactions only, its Hamiltonian becomes (2.1)
with V = 0 and K3 ——0. In this case, the nonlinear
surface modes found by Kivshar and Syrkin have no lin-
ear limit. We confine ourselves here to this case. These
surface modes are extended along the surface. Their dis-
placement pattern is of the form

ing a combination of the old and the new displacernents.
In this way solutions of the discrete system have been
found which compare well with the continuum results by
Kivshar and Syrkin. As had to be expected, they devi-
ate from the continuum solutions for higher amplitudes
and smaller penetration depths. In Fig. 6, the relations
between frequency and amplitude for the continuum and
discrete solutions are compared.

We examined the stability of the modes for q~ at the
boundary of the first Brillouin zone with respect to long-
wavelength perturbations. The following ansatz has been
made for the perturbation of the nonlinear mode solution:

b(I., t) = exp(i[qiRi(E) —cut]}F(E,t) + c.c., (6.5)

U (g) y (R (g) )eiqx Ri (r) eiq2 R2 (/) (6.1) where F(I., t) is of the form

~h cosh[Q(z —zo)]
(6.2)

where h = —6,~ [3 —4cos(qua) + cos(2qia)] is a posi-
tive quantity. (a is the equilibrium nearest-neighbor dis-
tance. ) The parameters Q and zo are related to each
other via a boundary condition at the surface. Defining
p, = Qzo, one obtains

where R(E) is the position vector of the lattice site f and
q~ and q2 are the components of a two-dimensional wave
vector parallel to the surface. In the following, we set
q2

——0 and disregard any dependence of the displace-
ments on R2(/) to arrive at an effectively two-dimensional
problem.

Two types of nonlinear surface modes of the form (6.1)
have been found by Kivshar and Syrkin: those with very
short penetration depth of only one lattice constant and
those which penetrate deeply into the lattice. For both
types, the case of soft nonlinearity, i.e. , K4 ( 0, has
been considered. The first type of mode is found to be
highly unstable in the molecular-dynamics simulations
due to the fact that the RWA is carried to the limit of its
validity in this extreme case. The second type of mode
has been found in the framework of continuum theory.
More precisely, the profile function f is regarded as a
continuous function of the argument z = R3. Kivshar
and Syrkin found the following expression for the profile
function:

F(E, t) = ) P(Rs(E), t~k) exp (ikR](l))
A:)0

+ Q*(Rs(E), t~k) exp ( —ikRi(E)). (6.6)

2.0

Assuming exponential growth (P(Rs(E), t~k),
Q(Rs(E), t~k) e" ) an eigenvalue problem for A is ob-
tained.

We found that the modes of both sets A and B are
unstable. In Fig. 7, the maximal real part of the eigen-
values A is plotted as a function of the maximum ampli-
tude of the nonlinear mode and the wave number k of
the perturbation. For the modes A, the growth rate is
increasing with decreasing wavelength 2vr/k of the per-
turbation. For the modes B there is a wavelength with
maximal growth rate. By molecular dynamics, we con-
firmed our analysis and monitored the growth rate of the
modes of set B. We were not able to confirm the growth
rates of modes of set A, which may be due to the fact
that the above stability analysis is valid only for long-
wavelength perturbations. We observed the dynamics of
the modes with seeded instability over a long time. It
turns out that the mode patterns of both sets A and B
are destroyed by the instability.

1 tanh(p)
a 1 —2/ cosh(p)

1.5—
0

1.0—

and the nonlinear dispersion relation 0.5—

= K2[2 —2 cos(qua) —a Q ]. (6.4)
0.0

o.o o.5
Amplitude at Surface

1.0

These deeply penetrating modes can again be divided
in two sets, one with maximum amplitude at the sur-
face (set A) and one with maximum amplitude inside the
bulk (set R). The iterative search procedure described
in Sec. III has been extended by serial updating and tak-

FIG. 6. Relation between frequency and amplitude of non-
linear extended surface modes in the model discussed in
Sec. VI. Solid lines represent the continuum theory (Ref. 12).
Triangles represent the lattice-dynamical calculation.
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VII. ON-SITE NONLINEAR, ITY

Scalar lattice models with nonlinear on-site poten-
tials have been considered by several authors. Lee and
Nasu have studied a model with Hamiltonian of the
form (2.1) and (2.2), where Ks ——K4 ——0 and V(u) =
2 equ + 4 ~4u . Applying the search routine described
in Sec. III to a semi-infinite chain with this Hamiltonian,

the en
surface rno es are obtained with maximum ampl't d tiu ea

e end of the chain, in contradistinction to the model
with translational invariance, where such modes have not
been found.

Pouget et al. considered a sine-Gordon model with
harmonic interaction between neighboring sites on a two-
dimensional lattice. Here, the variables u(l) have the
physical meaning of orientational degrees of freedom.
The intersite couplings were allowed to be anisotro
In the isotropic limit, the corresponding Hamiltonian
is given by (2.1) and (2.2) with Ks ——0 and V(u)

Frenkel-Kontorova model. ) Pouget et al. demonstrated

p.40-

FIG. 8. Nonlinear localized surface mode of the
sine-Gordon model with ~o ——0.09, K2 ——1.

by numerical simulation how a spatially homogeneous
nonlinear solution of the model decays into localized
pulses as a consequence of modulational instability. Ap-
plying our search routine to this model (with K4 ——0),
solutions have been found which are localized at a free
surface of the two-dimensional lattice (Fig. 8). The
character of these surface modes is very different from
corresponding solutions in models with translational in-
variance since in the latter, the scalar variable u(l) of
neighboring sites has opposite signs, i.e., the modes are
of optic character, whereas the mode shown in Fig. 8 for
the model with on-site nonlinearity is clearly of acoustic
character.

VIII. CONCLUSIONS

p ppl

p. jO

p.pp

ht has been shown for a scalar model by numerical
search that various nonlinear localized modes exist at
surfaces of simple cubic lattices in one, two, and three
dimensions. The stability properties of these modes have
been investigated, and different types of behavior have
been found. Some modes proved to be stable, others
are unstable, but the dynamics induced by the insta-

i ity preserves the localization of the energy. In other
cases, the instability leads to a complete destruction of
the mode pattern.

The results reported in this paper all refer to a scalar
model with one degree of freedom per lattice site. Nonlin-
ear self-localized surface modes have also been found at
the surface of a two-dimensional simple cubic lattice with
the lattice particles having two-dimensional displacement
vectors. These modes will be discussed in a forthcoming
paper.
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