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Theory of the multiphoton photoelectric efFect: A stepwise excitation process
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A theory is presented for the multiphoton surface photoelectric effect based on an extension of
the Sommerfeld model of a metal that takes into account energy and momentum relaxation. It
is shown that the multiphoton photoelectric eKect is a stepwise process and not a direct one, as
has been assumed for the past 30 years. The theory predicts photoelectron current densities in
agreement with experimental results, which are orders of magnitude larger than those predicted by
previous theories.

The multiphoton surface photoelectric effect (MSPE)
has been the subject of numerous theoretical papers
in the past 30 years. Both perturbative ' and non-
perturbative theories have been developed, which are
based on the Sommerfeld model of a metal. Although,
in the case of the one-photon photoelectric e8'ect these
theories predict values for the photoelectron current den-
sity, which agree with the experimental ones, in the case
of the multiphoton eKect, they predict current densities,
which are several orders of magnitude smaller than the
experimental values. ' For example, in the case of four-
photon electron emission (A = 1.06 pm) from a gold sur-
face at 1 GW/cm of laser intensity, the theoretical val-
ues for the current density obtained using the results of
Refs. 2 and 3 are ten orders of magnitude smaller than
the experimental value. The disagreement gets worse
with increasing photon order and calls for a more re-
alistic model to describe the process. In all the previ-
ous theoretical treatments the MSPE is treated as a di-
rect multiphoton excitation process, and the effects of
electron-phonon interaction are ignored. In this paper,
we take into account the effect of electron-phonon cou-
pling phenomenologically through the electron-phonon
energy (inelastic collisions) and momentum (elastic and
inelastic collisions) relaxation rates, p 10 sec and
I'/2 10 sec, respectively. The rapid dephasing of
the bound electronic states makes the optical excitation
process incoherent and stepwise, and as we will see, far
more efBcient than a direct multiphoton process. Since
experiments with picosecond laser pulses show that, for
laser intesities above a few GW/cm, thermionic emission
becomes the dominant process, we limit ourselves to
lower laser intensities for which perturbation theory is
adequate. The revised theoretical model predicts photo-
electron current densities in qualitative agreement with
recent experiments.

We begin with the familiar one-dimensional step po-
tential, V(z) = —Vp, z ( 0, and V(z) = 0, z & 0 (outside
the metal), which is the standard model potential in the-
oretical studies of the MSPE (Refs. 1—6, and references
therein). The unperturbed energy eigenstates of an elec-
tron in this potential are '

1 [eik*z + re ik*z] z ( 0
(1 +.).' -

, ~ & 0,

where L, is a normalization length, and k„q, = (k, —
2mVp/5 ) ~ are the z components of the wave vector
for the electron inside and outside the metal, respec-
tively. The latter becomes purely imaginary (q = iq,")
for negative electron energies. The parameter r = (k, —
q )/(k, +q, ) is the reHection coefHcient. In the x-y plane,
the electron is a free particle and its tranverse momentum
cannot change from the interaction with the laser Geld.
The efFect of electron-phonon interaction is to broaden
each bound state in the continuum for negative electron
energies by hI' and, thus, causing mixing of the states
within this energy range. Therefore, we consider nor-
malized mixed states,

41(z) =

where tv; = (I'/2) /[Bur, + (1 /2) ] are Lorentzian
weights, with A~,. being the frequency separation of the
~i) state from the center frequency ~1, Aq = ~g(~1)I'/2
is the efFective number of states within a Lorentzian line
shape of width I, and g(u) = L,m/ n2h ,kthe one-
dimensional density of states for each spin state. The ex-
citation of an electron proceeds resonantly through such
mixed states, and the z component of the electric dipole
between two such states is

P» = K&(~1)g(~—~)I P',2

where P, . is the average dipole over the JV1JVJ pairs of
unmixed states.

Consider a laser beam incident at a grazing angle
(8; 85') on a metallic surface with the electric Held,
E(t) = Ee' +c c , linearly .p.olarized on the plane of in-
cidence. The amplitude of the z component of the elec-
tric Held at the surface is f,p ——(1 + g) sin(6;)F 2Z,
where g 1 is the amplitude reQection coeKcient. Inside
the metal the z component of the electric Geld is E'

(w)epE, p exp(ir' z + K"z), where r, = r', —ir"z =
((u/c)[e((u)/ep —sin 8, ] ~ is the propagation constant,
and e(w) = ep[1 —w„/ur(w + i()] is the dielectric con
stant of a free-electron gas, with uz being the plasma
frequency and ( a damping constant. The equation of
motion for the slowly varying part, ol I+i(t), of the off-
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diagonal density .natrix element pI 1~1(t) = aI I+1(t)e'
ls11

E) state. Applying first order perturbation to one such
E) state, it can be shown that

+ I aI, I+1 — ~I,I+1 [~I+1,1+1 aII j I (4)

where ops = Py is the fractional population of the elec-
trons that have absorbed I photons, and on the right
hand side, we have neglected higher order terms asso-
ciated with coupling to other mixed states. The quan-
tity OI I+1 ——2h pI I+18,0 is the Rabi (interaction)
frequency. In the rate approximation the time derivative
in the equation above can be neglected, and we obtain
aI I+1 ——iAI I+1(PI+1 —PI)/2I'. Using this relation, we
obtain the following rate equations for the populations
Py, I = 0, 1, . . . , % —1, in the case of the N-photon pho-
toelectric effect:

d
P0 R01(P1 P0) + f(P1 + P2 + ' ' ' + PN 1)I—df

ik~ r~
ee(r-, t) = ) -' y, (z)"N-'~-'

I Iy
x Z,*0ref 2~8(~f —%~), (10)

J(k;, 8;) = PN —1 47r Ih jeff,*og(~f)l
11+r I'

m V

x[k1 + q, fzj
uf —Nco

where the sum is over the 6.nal states in the continuum of
positive energy states, L~, L„are normalization lengths

in the x-y plane, and k~ is the electron wave vector in
that plane. Averaging Eq. (9) over an optical period
the last term drops out, and the photoelectron current
density evaluated at z ~ ao becomes

PI = R—I 1 I(PI 1— PI) +—RI,I+1(PI+1 PI) —"fPI I

0&I&K —1, (6)

where k, , Oi are the initial electron wave number and
angle from the z axis, respectively, and V the normaliza-
tion volume. The total N-photon photoelectron current
density is found by integrating the magnitude of J(k, , 0, )
over the Fermi sphere,

dt
N 1 = RN 2,N 1(PN 2—P—N 1) —(P + Pph)PN dO j(k, , 8,)PFD (k;)k, dk;, (12)

where RI I+1 ——lAI I+1l /2I' is the rate for the lI)
lI + 1) transition and p~h the one-photon photoemis-
sion rate from the last bound state in the excitation
ladder, which is smaller than the electron-phonon en-
ergy relaxation p. For simplicity, we have assumed that
the excited populations decay to the initial state with
the same rate p. The rate equations above provide a
strong Beld description of the dynamics of the electron
populations in the excited states. In the weak Beld case
(P» P». . . , PN, « P, = 1) and in the steady state ap-
proximation, the population of the lN —1) bound mixed
state is given by

2I'p 2I'p 2I'p

Note that, for weak fields, the population depends only
on the ratio I'/p of the relaxation rates, and not on their
absolute values. The photoelectron current density in the
presence of a radiation field is given by

2eh 226).pe @e&+I @e&@e+ + &I@el2m

(9)

where the sum is over the unmixed states that compose
the state lN —1), pe = PN 110e/JUN 1 is the probability
for an electron to be in one of these states, A is the
vector potential, and 4g the final state wave function
in the continuum for positive electron energies (above
threshold) resulting after one-photon absoption from an

where PFD is the Fermi-Dirac distribution and the two
spin states are taken into account.

Calculations have been carried out for the cases of one-,
two-, and four-photon photoelectric effect on a gold sur-
face at wavelengths A = 248, 496, and 992 nm, respec-
tively, chosen so that the photoelectrons have the same
energy in the three cases. The parameters which have
been used for gold are Fermi energy = 5.51 eV, Vo ——

10.19 eV (work function = 4.68 eV), ' ur„= 1.37 x 10
rad/sec, and ( = 5.5 x 101s sec . The value for ( was
determined by matching the dielectric constant for a free-
electron gas with damping to the experimental value for
the complex index of refraction of gold, n = 1.22+i1.49,
at A = 248 nm. For the electron-phonon energy relax-
ation rate in gold, we have used the experimental value

3 x 10 sec, while the ratio I'/p was taken equal to
3 x 10 . The temperature in the Fermi-Dirac distribution
was set equal to 300 K. Figure 1 shows the theoretical
dependence of the total current density on the laser in-
tensity I, in the range between 10 and 4 x 10 W/cm .
For these and lower laser intensities, this dependence is
a power law, Jq ac I, as expected from perturbation
theory. The theoretical result from these calculations is
that for laser intensities around a few GW/cm, the pho-
toelectron current densities for the MSPE become com-
parable to that for the one-photon effect and of the or-
der of 1 kA/cm, in agreement with recent experiments
on the one- and four-photon effects. Comparing Fig.
1 with Fig. 2 of Ref. 10, we see that there is qualita-
tive agreement between theory and experiment. For the
one-photon effect at A = 248 nm, the theoretical value
is a factor of 3 larger than the experimental one. This
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can be explained by the fact that after excitation the
electrons must travel to the surface, and because of col-
lisions, not all of them escape. The present as well as
previous theories of the MSPE do not account for this
decrease in the current density. At 1 GW/cm, the cur-
rent density for the four-photon efFect is lower than that
for the one-photon effect by one order of magnitude ac-
cording to the experiment, by two orders according to
our theory, and by ten orders of magnitude according
to previous theories. The much weaker cross section
for the MSPE predicted by previous theories is due to
the destructive interference between the different chan-
nels in the assumed coherent excitation process. How-
ever, the excitation process cannot possibly be coherent
in the presence of electron-phonon collisions with mo-
mentum relaxation rates of the order of 10 sec . The
present theoretical model can be improved by taking into
account numerically the potential of the image charge,
which changes the total potential outside the metal from
an abrupt step to a rounded step. Since the electronic
wave functions for bound states will extend further out-
side the metal surface, the effect of the image potential
will be to increase the dipole matrix elements for bound-

FIG. 1. Photoelectron current density versus laser intensity
for the one-photon (solid line), two-photon (dot-dash line),
and four-photon (dashed line) photoelectric effect on a gold
surface.

bound transitions and, hence, to enhance the multipho-
ton photoelectric current density. For example, in the
case of the four-photon photoelectric efFect, an assumed
30% increase in the bound-bound dipole matrix elements,
owing to the image potential, will enhance the current
density by about a factor of 1.3 5. The exact efFect of
the potential of the image charge and also of nonabrupt
potential models for the surface potential on the MSPE
will be investigated numerically in future work.

It should be pointed out that for laser intensities of a
few GW/cm, there is no evidence of breakdown of per-
turbation theory, neither from the rate equations (5)—(7)
nor the experiments 8—xo The rate equations predict pop-
ulations for the excited states that are still smaller than
that of the ground state. The slope of the experimental
log-log curves for the current vs laser intensity is that
predicted by perturbation theory. Note that the larger
than unity slope of the experimental log-log curve for the
one-photon current density with 500 fs laser pulses, seen
in Fig. 2 of Ref. 10 at the highest laser intesity, is due
to temperature effects arising from one-photon absorp-
tion by electrons as deep as ~ below the Fermi energy,
which do not exceed the threshold for one-photon elec-
tron emission. The point is that even for grazing angles of
incidence of the laser beam (minimum absorption) tem-
perature effects set in before purely high intensity effects,
such as above threshold electron emission, become im-
portant. At higher laser intensities, when the mutipho-
ton photoelectron current densities become equal and
larger than the one-photon current density, saturation of
the bound-bound continuum-continuum transitions takes
place. However, this effect will be masked by the ex-
pansion of the interaction area on the metal surface (for
realistic laser beams with radially dependent intensity)
and especially by thermionic emission, which becomes
the dominant process at these intensities.

The study of dissipative optical processes such as
one-, two-, and three-photon absoption from bound-
bound transitions, which are responsible for the heating
up of the metal, as well as of coherent optical processes
such as harmonic generation will be presented elsewhere.
T+e Sommerfeld model of a metal extended to account
for energy and momentum relaxation will prove to be
as useful in the study of laser-surface interaction as the
two-level model of an atom has been in the study of such
fundamental optical processes as resonance fluorescence,
self-induced transparency, and photon echoes.

Useful discussions with P. Lambropoulos, Gy. Farkas,
C. Fotakis, S.D. Moustaizis, and G.C. Psaltakis are grate-
fully acknowledged.
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