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Density-functional calculation of the bulk and surface geometry of beryllium
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The equilibrium lattice parameters and elastic consants of bulk Be and the optimized geometry of the
Be (0001) surface were studied using density-functional theory and mixed-basis pseudopotential tech-
niques. Results obtained with various forms of the exchange-correlation functional are compared, in-

cluding the local-density approximation (LDA) and the generalized-gradient approximation (GGA). For
the bulk Re, the GGA results are slightly closer to the experimental values than are the LDA results.
However, for the Be (0001) surface, neither the GGA nor LDA results explain the anomalously large ex-
pansion of the top layer observed in experimental low-energy electron-diffraction data.

I. INTRODUCTION

The simple metal, beryllium, having the hexagonal-
close-packed structure and the largest average valence
electron density, ' has been the subject of extensive
theoretical and experimental study. From the point of
view of theoretical solid-state physics, Be metal has the
role that He takes in theoretical atomic physics. Conse-
quently, there is a strong motivation to understand the
physical and/or numerical reasons for relatively small
discrepancies between theory and experiment.

In a recent paper, Davis and co-workers analyzed the
low-energy electron-difFraction (LEED) spectra for a Be
(0001) surface, finding that the equilibrium geometry of
the surface layer corresponds to a 5.8%%uo expansion rela-
tive to the bulk layer spacing. This is an unusually large
expansion in comparison with other known surfaces, in-
cluding that of the chemically and structurally related
material Mg (0001), which was recently found to have a
surface layer expansion of only 1.9%. Density functional
calculations of the anomalous surface layer expansion of
Be (0001) have been performed by Feibelman, using the
local-density approximation with the correlation func-
tional of Wigner. In the present work, we extend this
study to consider the effects of the form of the exchange-
correlation functional on the calculated surface layer ex-
pansion of Be (0001), including the use of the generalized
gradient approximation of Perdew and co-workers
(GGA or GGA-PW91). The GGA-PW91 has been
shown to improve the agreement between calculated and
experimental equilibrium properties of a number of ma-
terials.

The outline of this paper is as follows. In Sec. II, the
calculational methods are briefly detailed. In Sec. III, re-
sults for the bulk calculations are presented. In Sec. IV,
the surface relaxation results are presented. In Sec. V,
the results are summarized and discussed.

II. CALCULATIONAL METHODS

The calculational methods used in the present work are
very similar to those used by many other groups as re-
viewed by Pickett as detailed in a previous paper.
BrieAy, the calculations are based on density-functional

theory, ' within the frozen-core approximation, imple-
mented using norm-conserving pseudopotentials" and a
mixed-basis representation of the electronic wave func-
tions. ' The calculational parameters that determine the
calculational e%ciency and accuracy are as follows. The
pseudopotential matching radii ri were chosen to be 2.1

bohr for both l =0 and I =1. The reciprocal-lattice
range parameters were chosen to be Q,„=12 bohr ' the
converging Hamiltonian matrix elements, I qpw l

=12 bohr for representing the plane-wave component
of the wave functions, and ~q„c~oi =49 bohr for
representing the linear-combination-of-atomic-orbital
component of the wave functions. The convergence of
the density self-consistency was taken to be
b, —=QGip'"'(G) —p'"(G )

~

( 5 X 10 bohr /atom. The
number of inequivalent k points Brillouin-zone sampling
were taken to be 150 for the bulk calculations and 55 for
the surface calculations. The Gaussian smoothing pa-
rameter, 0 =0.2 eV, was used to approximate integrals
over the Brillouin zone. ' These parameters were chosen
to ensure that the calculations were very well converged.

For each assumed geometry, the self-consistent
cohesive energy E„h is calculated as the difference be-
tween the valence electron energy of the atom, E„, , and
that the solid, ' which is comprised of the ion-ion
(Ewald) energy EE„,&d, the one-electron energy E,„„the
electron-electron repulsion correction energy Ec,„i, and
the exchange-correlation energy term E„, (which includes
both the conventional exchange-correlation energy, as
well as the appropriate correction to E,„,):

Ecoh atom (EEwald +Eone +Ecoul +Exc )

In this work, several forms of the exchange-correlation
functional were used. Within the local-density approxi-
mation, we used the correlation functional based on the
Monte Carlo calculations for the free-electron gas by
Ceperley and Alder' as fit by Perdew and Wang' (LDA
or LDA-CA). In addition, gradient corrections were con-
sidered using the generalized gradient approximation
(GGA-PW91) designed by Perdew and co-workers. Fi-
nally, in order to compare with the work of Feibelman,
we also performed local-density approximation calcula-
tions using Wigner's interpolation formula.
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+(a —ap)(c —cp)—
Qac

By minimizing the g function for this fitting function
with the weight factor

1
W(a, c)=

(a —ap) +(c —cp) +e
(3)

the equilibrium lattice parameters Qp and cp and the cor-
responding energy derivatives

c) E„h(ap, cp)

BQ

8 E„h(ap, cp)

Bc

8 E~oh(ap, cp )

BQBc

In this work, since we are concerned with systems with
few degrees of freedom, it is convenient to perform the
calculation for a grid of possible geometries and to use
polynomial interpolation to estimate the optimal energy
and the elastic coefBcients. For the bulk lattice, the
cohesive energy is a function of the two lattice parame-
ters Q and c and can be conveniently fit to the quadratic
form

, ~'E..hE„h(a,c)=E„h(ap cp)+ —(a ap)
BQ

8 E„h+ —,'(c —cp )
Bc

can be determined accurately. In Eq. (3), e represents a
small positive parameter, which was introduced in order
to emphasize the calculational results near the equilibri-
um geometry without destabilizing the fitting pro-
cedure. ' Once these parameters are determined, the
elastic constants can be directly calculated using the rela-
tions:

Qp ~ Ecoh
C11 +C12

p BQ

C33
C BE, h

Vp Bc'

Qoco a E,.h2

2Vp BQ~c

Q p 2 +cp +2Qpcp
9Vp BQ2 BC2 BQBC

In the above expressions, Vo denotes the equilibrium
volume per atom.

For the surface calculations, a supercell geometry was
used, including nine layers of the Be lattice and three
empty layers (approximately 7 A) representing the vacu-
um. (Calculations using five empty layers to represent
the vacuum gave essentially the same results. ) Fixing the
intralayer lattice constant and the spacing between interi-
or layers to correspond to the optimal bulk values Qp and
cp, the cohesive energy was optimized with respect to the
spacing between the outer most layers. Both outer sur-

TABLE I. Comparison of structural and elastic properties of bulk beryllium.

Present calculations Previous calculations
GAGA LDA %igner Dovesi' Chou Blaha' Feibelman Exp.

a (A)
c (A)
c/a
E«h (eV/atom)
8'(10" Pa)
c»+c» (10" Pa)

c33 (10" Pa)

c» (10" Pa)

2.25
3.54
1.57
3.65
1.2
3.5

3.9

—0.03

2.23
3.51
1.58
4.08
1.4
3.9

4.2

0.1

2.26
3.56
1.57
3.82
]..2
3.5

3.9

0.03

2.32
3.64
1.57
1.73

2.25
3.57
1.59
3.60
1.4
4.0

3.8

0.2

2.24
3.54
1.58
3.9
1.3
3.5

4.4

0.03

2.27
3.59
1.58

1.2
3.4

3.7

0.07

2.29'
3.58'
1.57'
3.32g

11
3 lh

3.2'

3.S
3.6'

0 Sh

—0.01'

'Reference 21, using Hartree-Pock formalism (with no correlation contribution).
"Reference 17, using Hedin-Lundqvist correlation functional with pseudopotential formalism; elastic
constant parameters inferred from author's fit to functional form of Eq. (2).
'Reference 22, using Hedin-Lundqvist correlation functional with LAP& formalism; elastic constant
parameters inferred from author's fit to functional form of Eq. (2}.
Reference 4, using signer correlation functional; quoted energy results refit to weighted quadratic

form [Eqs. (2)—(7)].
'Reference 23.
Each calculated cohesive energy has been normalized per atom and has been corrected for the estimat-

ed (Ref. 17) zero-point energy of 0.14 eV/atom.
gReference 24.
"Reference 25.
'Reference 26.
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faces of the model film were relaxed at the same time, in
order to maintain the mirror symmetry of the supercell.
For each geometry, the surface energy per surface atom
was estimated from

E,„,f = —,
' (9E„h(bulk) —E„h(9-layer film) J .

In this expression, the two terms in the brackets
represent the cohesive energy of the nine-layer film sub-
tracted from that of an equal number of bulk atoms. The
difference is divided by two, because the supercell has
two equivalent surfaces. In general, the surface energy is
positive, indicating the greater stability of the bulk crys-
tal than that of the surface. Several authors' ' have
pointed out that E,„,f calculated in this way is sensitive to
the film thickness. However, in this work, we focus on
studying E,„,f as a function of relaxation for fixed film
thickness.

III. RESULTS FOR BULK BERYLLIUM

The properties of bulk Be have been very well studied
both theoretically and experimentally. For example,
theoretical studies have been carried out within Hartree-
Fock theory by Dovesi and co-workers ' and within
density-functional LDA theory by Chou and co-
workers, ' using pseudopotential techniques and by
Blaha and Schwarz using full potential linearized-
augmented-plane-wave (LAPW) techniques. The results
of these studies are in very good agreement with experi-
mental data, including structural and elastic pararne-
ters, as well as x-ray-diffraction data. In prepara-
tion for our surface studies, we have recalculated the
structural and elastic properties of bulk Be. The results
are summarized in Table I in comparison with previous
calculations and experimental measurements. This table

shows that the results are more sensitive to the form of
the exchange-correlation formalism than to the calcula-
tional techniques. In general, the LDA calculations, in-
cluding the present work using the Ceperley-Alder-
Perdew-Wang' correlation functional and the earlier
work of Chou and co-workers' and of Blah a and
Schwarz, using the Hedin-Lundqvist correlation forrnu-
la, underestimate the bulk lattice constants, while
overestimating the cohesive energy and elastic
coefticients. The GGA-PW91 calculation results are
generally closer to the experimental values as are those
obtained using the Wigner interpolation formula, both in
the present work and in that of Feibelman. " The pure
Hartree-Fock results of Dovesi and co-workers ' overes-
timate the bulk lattice constants and substantially un-
derestimate the cohesive energy, indicating that correla-
tion effects are substantial.

The self-consistent valence pseudodensity p(r) of crys-
talline Be is a by product of these calculations. This is
most conveniently represented in terms of the deforma-
tion density b,p(r), which can be calculated from the
difference between p(r) and the superposed valence pseu-
dodensity of Be atoms. This is shown in Fig. 1, compar-
ing the GGA-PW91 and LDA-CA results in two perpen-
dicular planes. Because these contour plots represent the
deformation pseudodensity, the integral but not the shape
of the charge density is correctly given in the core region
of each atomic site; while both the integral and the shape
of the charge density is accurately represented in the
bonding and interstitial regions of the solid. From these
plots, it is apparent that the GGA-PW91 and LDA-CA
densities are very similar for bulk Be. The contours of
the deformation density show a charge excess in the
tetrahedral sites near each Be atom and a charge deficit

4Pgr A 4PLDA

—0.0 I

.0.02

+0 01
-00I ( ~

I

—0.02

—0.07
I —0 02

FIG. 1. Contour plots of the valence charge density of bulk Be plotted in two perpendicular planes. The lower panels, indicated
with an arrow pointing in the a direction, plot the density in the a hexagonal layer plane. The upper panels, indicated with an arrow
pointing in the c direction, plot the density in an intersecting plane containing the c axis. The atomic positions are indicated with

0
filled circles. Contour levels are drawn at multiples of 0.01 electrons/A . The left panel, labeled pG&A, represents the contours calcu-
lated using the GGA-PW91 exchange-correlation functional; the middle and right panels, labeled 4p«& and bp&D&, represent the
deformation density for bulk Be comparing the results for the GGA-PW91 and LDA-CA functions, respectively. Positive contours
are drawn with a solid line, negative contours are drawn with a dotted line, and the zero contour is drawn with a dashed line.
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in the octahedral holes. This directional bonding was
characterized by Yang and Coppens in terms of sp hy-
brid orbitals forming trigonal bonds in each Be layer and
sp hybrid orbits forming bonds between the layers. The
trigonal structure of the deformation density within the
hexagonal layer, characteristic of sp hybridization, and
the excess charge between the layers, characteristic of sp
hybridization, are consistent with these deformation den-
sity plots. The fact that there is interlayer bonding,
characterized by significant excess charge between the
layers, is consistent with the fact that the c/a ratio for
Be, 1.57, is significantly smaller than the ideal c/a ratio
of 1.63. These qualitative features of the deformation
density are consistent with experimental data ' and
previous calculations. " '

0.60

0.58—

E
0.56

)
~ 0.54
g

0.52—

ae (OOO&)

LDA

GG

Wig ner

IV. SURFACE RELAXATIQN STUDIES

In studying the surface relaxation of Be (0001), we fo-
cused on the relaxation of the outer most layer; since, ac-
cording to the work of Feibelman and Stumpf and
Feibelman, ' the relaxation of the inner layers contrib-
utes a very small percentage of the total relaxation energy
(roughly 0.002 eV/surface atom). The geometry optimi-
zation results are summarized in Fig. 2 and Table II. In
Fig. 2, the surface energy per surface atom [Eq. (8)] is
plotted, with respect to the fractional change in the outer
most layer spacing hd, 2/d, z'", where d, 2'" =—co/2 is the
bulk layer spacing. The three curves represent the
present work, using the LDA-CA, GGA-PW91, and
Wigner correlation functionals, respectively. In addition
to quantifying the surface relaxation in terms of the frac-
tional change in the layer separation, b,d, 2/d, z'", another
way of describing the same quantity is in terms of the
effective c /a ratio of the surface layer: (c /a ),„,&
=2d&2/ao. These are listed in Table II along with the
corresponding values of the fractional change in the layer
separation.

The results of the present work shows that the relaxa-
tion of the surface layer of Be (0001) varies between 2.1%
and 2.5% depending upon the exchange-correlation func-
tional. This is considerably smaller than the relaxation

0.50
—4 -2 0 2

~d~2/di2"'" (%)
6 8

calculated in the earlier work of Feibelman and oth-
ers, ' as well as smaller than the relaxation determined
from LEED measurements. As quoted in Table II, re-
cent calculations by Stumpf and Feibelman, ' using the
LDA with the Ceperley-Alder correlation functional'
and with better Brillouin zone sampling than the earlier
work of Feibelman, are consistent with our results. For
a multilayer optimization, Stumpf and Feibelman ' find
&d)2/4 t2'"=2. 7%%uo'', while, if only the outer layer is re-
laxed, bd, 2/d, z'" =2%. These first-principles results are
di6'erent from the empirical potential results of Antonelli
and co-workers and of Chen, indicating that electron-
ic excitation eA'ects may be important.

FIG. 2. Plot of E,„,z as defined in Eq. (8) versus fractional
change in layer spacing for nine-layer Be thin films calculated in
the present work using LDA-CA (0}, GGA-PW91 (), and
Wigner (4l forms of the exchange-correlation functional. Calcu-
lated values correspond to relaxation of surface layer only and
are indicated with solid symbols connected with least-squares
fitted polynomial functions.

TABLE II. Comparison of results for relaxation of the Be (0001) surface.

Present work: GGA-PW91
Present work: LDA-CA
Present work: Wigner
Stumpf and Feibelman'
Feibelman
Many-body effective potential

from LDA cluster calculations'
Local volume empirical

potential'
Experiment'

'Reference 31 (LDA-CA).
Reference 4 (Wigner).

'Reference 32; bulk c/a = 1.63.
Reference 33; bulk c/a = 1.63.

'Reference 2.

(c /a), „,&
1.62
1.61
1.61
1.61
1.65
1.73

1.70

1.66

12 /d bulk

+2.5%
+2.1%
+2.3%
+2.7%
+3.9%%uo

+5.9%

+4.1%

+5.8%

/d bulk

+ 1.2%
+2.2%%uo

+0.9%

+0.5%

—0.2%

hd 34 /d, 4'"

+0.6%

+0.0%

+0.3%%uo

+0.2%%uo
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For our LDA-CA and GGA-PW91 results, we find a
minimum surface energy of 0.573 eV/atom and 0.559
eV/atom, corresponding to a surface relaxation of 2. 1%%uo

and 2.5% and an effective surface c/a ratio of 1.61 and
1.62, respectively. Both of these calculations indicate that
the surface layer c/a ratio of Be expands from its con-
tracted bulk value of 1.57 to nearly the ideal value of 1.63
at the surface layer. The calculations give the same trend
as the experimental results, but predict a much smaller
magnitude of the effect. This trend can be described in
terms of a change in the bond hybridization near the sur-
face layer, or as described by Feibelman, a decrease in
the p-like character of the states near the surface.

In order to visualize these effects, it is helpful to see the
charge contours of the valence electrons. In Fig. 3, the
contours for the GGA-PW91 valence pseudocharge are
presented, comparing contours for the unrelaxed lattice
with those for the Ad, 2/d &z'" =2% lattice. The contours
for the two surface geometries are very similar to each
other and also similar to the corresponding results
presented by Feibelman, for the Wigner correlation
functional. In these plots, it is apparent that the charge
density achieves nearly planar contours in the vicinity of
the surface. In the last panel of Fig. 3, the difference be-
tween the charge density of the relaxed and unrelaxed
surfaces is presented. The magnitude of the difference is
less than 3% of the valence density and is localized near
the surface. Not surprisingly, it generally corresponds to
charge Aowing out of the surface as the surface expands.

~P Surf Surf PBulk

—0.01

. ~

+0

However, in the immediate vicinity of each surface atom,
the charge Aows in the opposite direction.

Further surface effects are seen more clearly in Fig. 4,
which shows a plot of the deformation density and a plot
of the difference between the surface density and the bulk
density for the unrelaxed GGA-PW91 calculation. The
deformation density plot shows that at the surface plane,
a charge builds up in mostly at the sites corresponding to
the bulk tetrahedral holes, but also at the sites corre-
sponding to the bulk octahedral holes. Qualitatively
similar results were seen in the Hartree-Fock results for a
four-layer unrelaxed Be film by Angonoa, Koutecky, and
Pisani. The surface effects are seen more clearly in the
plot of the difference between the surface density and that
of the bulk lattice. There is a region of positive contours
at the surface site corresponding to the bulk octahedral
holes and negative contours having the shape of sp hybrid
density below each surface atom. This difference density
is essentially zero below the third layer.

0%

0.01-

2%

-O.01—

2% —0%

+0.001—

—0.009

I

I

I

I

I

/ +0

—0.005

—0.005

—0.001

FIG. 3. Contour plots of the GGA-PW91 valence charge
density for Be (0001) plotted in the plane containing the c axis,
in the first two panels comparing the results of the unrelaxed
(0%) surface with that of hd»/d»'" =2%%uo, with contour levels

0 3
drawn at multiples of 0.01 electrons/A . The right panel shows
the contours of the difference between the density of the ex-
panded lattice minus that of the reference lattice, with contour

0 3
levels drawn at odd multiples of 0.001 electrons/A . Positive
contours are drawn with a solid line, negative contours are
drawn with a dotted line. The atomic positions are indicted
with filled circles.

FIG. 4. Contour plots of the GGA-PW91 valence charge
density for unrelaxed Be (0001) plotted in the plane containing
the c axis, comparing the deformation density (left Danel with

a 3
contour levels drawn at multiples of 0.01 electrons/A ) and the
difference between the self-consistent surface density and that of
the bulk crystal (right panel with contour levels drawn at inter-

'@ 3 0 3
vals of 0.01 electrons/A, shifted by 0.005 electrons/A ). Posi-
tive contours are drawn with a solid line, negative contours are
drawn with a dotted line, and zero contour is drawn with a
dashed line. The atomic positions are indicated with filled cir-
cles.
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We also studied the surface band dispersion for this
system. The surface bands of Be (0001) have been care-
fully mapped by Ray, Pan, and Plummer and reviewed
by Plummer and Hannon. We find the surface band
structure to be very insensitive to the relaxation and to be
in good agreement with experiment ' and previous cal-
culations. ' In particular, there is an occupied surface
band a few eV below the Fermi level within most of the
surface band gap of Be (0001). Near the M point and
along the M-E direction, there are two surface bands;
the lower band having a peak density in the third layer
and being barely distinguishable in our nine-layer slab
calculation.

V. DISCUSSION AND SUMMARY

We have shown that density-functional calculations,
using pseudopotential techniques, are able to reproduce
the experimentally observed expansion of the surface
layer of Be (0001) crystals qualitatively, but not quantita-
tively. The results are sensitive to the form of the
exchange-correlation functional; however, the GGA-
PW91 functional produces only small changes relative to
the LDA-CA functional, and is not able to account for
the discrepancy with experiment. There are a number of
possible reasons for this discrepancy. One possibility, is
the contribution of core-electron effects. In the pseudopo-
tential formulation, the core electrons are assumed to be
frozen at the atomic densities. In LAPW studies of bulk
Be, Blaha and Schwarz found the core density expan-
sion to be about 0.1 —0.3%. Recent high-resolution pho-
toemission studies of the Be (0001) surface have

identified four distinct Be 1s peaks identified with the
three nearest surface layers and the bulk. Early theoreti-
cal calculations were able to approximately reproduce
these experimental results without considering structural
relaxation and more recent calculations have shown
that surface relaxations have a very small effect on the
core-level shifts. However, it is still possible that the
small changes in the core density exhibited by these sur-
face core-level shifts can affect the energy and the
structural relaxation of this system. As shown in Fig. 2,
the energy minimum is very shallow and can be easily
shifted by small contributions. Another possibility is im-
age potential" effects. This classical effect is notoriously
not included in the LDA and is very poorly included in
the GGA. Although a detailed description of this effect
in the vicinity of the surface is not available, its qualita-
tive features are well known. In particular, the image po-
tential tends to lower the potential near the surface bar-
rier. This would enable the electrons to extend further
toward the vacuum and thus to stabilize the layer expan-
sion. Both of these effects should be studied in future
work.

ACKNOWLEDGMENTS

This work was supported by NSF Grant No. DMR-
8918712 and the North Carolina Supercomputer Center
and benefited from conversions with Professor M. -Y.
Chou, Professor E. W. Plummer, Dr. H. Davis, Dr. P.
Feibelman, and Dr. R. Stumpf. We would also like to
thank J. Perdew for sending us a copy of his GGA sub-
routines.

N. W. Ashcroft and N. David Mermin, SolEd State Physics
(Saunders College, Philadelphia, 1976).

2H. L. Davis, J. B. Hannon, K.B. Kay, and E. W. Plummer,
Phys. Rev. Lett. 68, 2632 (1992).

3P. T. Sprunger, K. Pohl, H. L. Davis, and E. W. Plummer,
Surf. Sci. 297, L48 (1993).

4P. J. Feibelman, Phys. Rev. 8 46, 2532 (1992).
5E. Wigner, Phys. Rev. 46, 1002 (1934).
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.

Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. 8 46, 6671
(1992).

7N. A. W. Holzwarth and Y. Zeng, Phys. Rev. 49, 2351 (1994).
8Changyol Lee, David Vanderbilt, Kari Laasonen, R. Car, and

M. Parrinello, Phys. Rev. 8 47, 4863 (1993).
W. E. Pickett, Comput. Phys. Rep. 9, 115 (1989).
P. Hohenberg and W. Kohn, Phys. Rev. 136, 8864 (1964); W.
Kohn and L. J. Sham, ibid. 140, A1133 (1965).
G. P. Kerker, J. Phys. C 13, L189 (1980); N. Troullier and J.
L. Martins, Phys. Rev. 8 43, 1993 (1991).
S. G. Louie, K.-M. Ho, and M. L. Cohen, Phys. Rev. 8 19,
1774 (1992).

C.-L. Fu and K.-M. Ho, Phys. Rev. 8 28, 5480 (1983).
J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409
(1979); 13, 3095 (1980); J. Ihm, Rep. Prog. Phys. 51, 105
(1988).

i~D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980).

i6J. P. Perdew and Y. Wang, Phys. Rev. 8 45, 13 244 (1992).

M. Y. Chou, P. K. Lam, and M. L. Cohen, Solid State Com-
rnun. 42, 861 (1982); Phys. Rev. 8 28, 4179 (1983); 28, 1696
(1983).

The fit was assumed to be stable when the calculated
coefticients were the garne for @=10 ' bohr and 10 bohr .

9P. J. Feibelman and D. R. Hamann, Phys. Rev. 8 29, 6463
(1984).

J. C. Boettger, Phys. Rev. 8 49, 16798 (1994).
IR. Dovesi, C. Pisani, F. Ricca, and C. Roetti, Phys. Rev. 8 25,

3731 (1982); Z. Phys. 8 47, 19 (1982).
P. Blaha and K. Schwarz, J. Phys. F 27, 899 (1987).

23R. Ferro, in Beryllium: Physico chemical P-roperties of Its
Compounds and Alloys, edited by O. Kubaschewski, Special
Issue of At. Energy Rev. 4, 63 (1973).

24Charles Kittel, Introduction to Solid State Physics, 6th ed. (Wi-
ley, New York, 1986).

25W. D. Rowland and J. S. White, J. Phys. F 2, 231 (1972).
D. J. Silversmith and B. L. Averbach, Phys. Rev. 8 1, 567
(1970)~

N. K. Hansen, J. R. Schneider, and F. K. Larsen, Phys. Rev.
8 29, 917 (1984); F. K. Larsen and N. K. Hansen, Acta Crys-
tallogr. Sect. 8 40, 169 (1984).

8L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).
Y. W. Yang and P. Coppens, Acta Crystallogr. Sect. A 34, 61
(1978).
L. Massa, M. Goldberg, C. Frishberg, R. F. Boehme, and S. J.
La Placa, Phys. Rev. Lett. 55, 622 (1985).
R. Stumpf and P. Feibelman (to be published).



51 DENSITY-FUNCTIONAL CALCULATION OF THE BULK AND. . . 13 659

A. Antonelli, S. N. Khanna, and P. Jena, Surf. Sci. 289, L614
(1993).

~~S. P. Chen, Surf. Sci. 264, L162 (1992).
~46. Angonoa, J. Koutecky, and C. Pisani, Surf. Sci. 122, 355

(1982).
K. B. Ray, X. Pan, and E. W. Plummer, Surf. Sci. 285, 66
(1993).
E. W. Plummer and J. B. Hannon, Prog. Surf. Sci. 46, 149
(1994).

E. V. Chulkov, V. M. Silkin, and E. N. Shirykalov, Surf. Sci.
188, 287 (1987).
L. I. Johansson, H. I. P. Johansson, J. N. Andersen, E.
Lundgren, and R. Nyholm, Phys. Rev. Lett. 71, 2453 (1993);
M. Alden, H. L. Skriver, and B. Johansson, ibid. 71, 2457
(1993).
P. J. Feibelman and R. Stumpf, Phys. Rev. B 50, 17 480 (1994).
D. Straub and F. J. Himpsel, Phys. Rev. B 33, 2256 (1986).


