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I discuss the microscopic nature of a block-substrate interface during sliding of an elastic block on a
substrate with a lubrication film of molecular thickness (boundary lubrication). Arguments are given
that the lubrication film at low sliding velocities has a granular structure, with pinned adsorbate domains
accompanied by elastic stress domains in the block and substrate. At zero temperature, the stress
domains form a “critical” state, with a continuous distribution P (o) of local surface stresses o extending
to the critical stress o, necessary for fluidization of the pinned adsorbate structure. During sliding ad-
sorbate domains will fluidize and refreeze. During the time period that an adsorbate domain remains in
a fluidized state, the local elastic stresses built-up in the elastic bodies during “sticking” will be released,
partly by emission of elastic wave pulses (sound waves) and partly by shearing the lubrication fluid. The
role of temperature-activated processes (relaxation and creep) is studied and correlated with experimen-
tal observations. In particular, the model explains in a natural manner the logarithmic time dependence
observed for various relaxation processes; this time dependence follows from the occurrence of a sharp
steplike cutoff at 0 =0, in the distribution P(o) of surface stresses. Finally, I suggest a simple experi-
ment to test directly the theoretical predictions: by registering the elastic wave pulses emitted from the
sliding junction, e.g., by a piezoelectric transducer attached to the elastic block, it should be possible to
prove whether, during uniform sliding at low velocities, rapid fluidization and refreezing of adsorbate
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domains occur at the interface.

I. INTRODUCTION

The study of sliding friction is one of the oldest prob-
lems in physics and certainly one of the most important
from a practical point of view. 2 In spite of this, the mi-
croscopic origin of sliding friction is still not well under-
stood.3 "¢

A common experimental observation is that the force
necessary to slide a block on a substrate is nearly velocity
independent at low sliding velocities. It was realized by
Tomlinson’ that this can be understood if, during sliding,
rapid processes occur somewhere in the system even if
the center of mass of the block moves arbitrarily slowly
relative to the substrate. A fundamental problem in slid-
ing friction is to understand the microscopic origin of
these rapid processes, and to relate them to the macro-
scopic motion of the block.

Very recently, sliding friction measurements have been
performed by Israelachvili and co-workers®!° and Gran-
ick and co-workers'!!1? using mica surfaces which can be
produced atomically smooth (e.g., without a single step)
over macroscopic areas. In these experiments a mica
block is slid on a mica substrate with an intervening lu-
brication fluid. A spring is connected to the mica block
and the free end of the spring is moved with a velocity v,
which typically is kept constant but sometimes is allowed
to change in time. The force in the spring is registered as
a function of time and is the basic quantity measured in
most of these friction studies. One remarkable result of
these studies is that smooth sliding typically occurs even
for spring velocities as low as v, ~1 pum/s, while stick-
and-slip motion is observed at lower spring velocities.
Computer simulations!>*~!® have shown, however, that a
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molecular thin fluid slab sheared between two solid sur-
faces is already unstable against freezing at high sliding
velocities, say v ~10 m/s. Why, then, is smooth sliding
observed at much lower sliding velocities?

One recent suggestion by Thompson and Robbins!? is
that the large mass of the block inhibits the freezing tran-
sition. Their argument is as follows: In order for the
block to stop, its kinetic energy must be converted into
potential energy in the film. The maximum potential en-
ergy that can be stored in the film is of the order of ~aF,
where a is a lattice constant of the block and F, the stat-
ic friction force. Equating this with the kinetic energy at
v =v, gives

v.~(aFy/M)V? |

where M is the mass of the block. However, I have
shown that this explanation for the occurrence of the
critical speed v, is incorrect, since the block as a whole
will never stop abruptly, but initially only the bottom sur-
face of the block stops and the inertia forces involved in
this are negligible.!” An elastic stopping wave will then
propagate toward the upper surface of the block, and
after the time period Az=d /c the whole block will be
standing still, where c is the transverse sound velocity of
the block and d the thickness of the block.

In a recent publication!” I suggested that even if the
motion of a macroscopic block is smooth for v, >v, ~1
um/s, the lubrication layer is not in a smooth fluid state,
but rather consists of pinned domains which fluidize and
refreeze during sliding. In this paper I study some impli-
cations of this idea, and show how several experimental
observations involving slow (thermally induced) relaxa-
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tion can be naturally explained based on this picture. I
also propose a simple experimental test of the theory.

II. EXPERIMENTAL BACKGROUND

In this section I review measurements which show that
slow relaxation processes are of fundamental importance
in sliding friction, and that they occur not only in practi-
cal sliding systems, but also in very well-defined model
systems.

Following pioneering experiments by Rabinowicz'® for
metals on metals, slow relaxation processes have been
studied in great detail by the rock-friction community!®
because of its importance for earthquakes. These studies,
together with a very detailed sliding friction study by
Heslot et al.?® for paper on paper, find the following.

(a) The static friction coefficient f; increases with the
duration 7 of stationary contact before sliding in a way
which is well described by

fs=a+bln(r/7y) ,

where, if 7;=1s, b/a~0.0405 in the study of Heslot
et al. for paper and b /a ~0.012 in the study of Dieterich
for quartz sandstone. Note that a depends on the refer-
ence time 7(; changing to the reference time 7, gives

fy=a'+bln(r/7),

where a’=a +b In(r, /7).

(b) At low pulling velocities (typically v <0.1 um/s)
there is evidence of slow relaxation processes. It is not
possible to speak of a truly motionless stick state, but
stress-induced creep occurs.

Let me now briefly review some of the remarkable ob-
servations by Yoshizawa and Israelachvili® and Reiter
et al.?! These studies involve the sliding of a mica block
on a mica substrate with a molecular thin lubrication lay-
er. A spring (spring constant k) is attached to the mica
block, and the free end of the spring is moved with a ve-
locity v, which may vary with time. The mica surfaces
are atomically smooth, e.g., without a single step, and the
thickness of the lubrication film can be varied by varying
the load on the block.?? The thickness of the lubrication
film is known to within =1 A by studying the optical
fringes from the system.

Yoshizawa and Israelachvili® found that for spring ve-
locities below a critical velocity v,, stick-and-slip motion
occurs. Now, if the motion of the spring is stopped at
some time ¢t =0 and then started again (with the same ve-
locity as before stop) after a time delay 7, the magnitude
of the first spike is generally Aigher than in the steady
sliding state. The longer the stopping period 7, the
greater the magnitude of the first spike, which is referred
to as the striction spike.

In measurements by Reiter et al.?! the response of the
sliding system to an oscillatory spring velocity
v, ~sin(wt) was studied. This method probes the visco-
elastic properties of the sliding junction. In Ref. 21 it
was found that after a return to the pinned state at a time
t =0, from having been in the sliding state for ¢ <0, the
elastic coefficient « of the pinned state increased mono-
tonically with increasing stopping time 7.
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III. THEORY

A. Background

We consider the sliding of a block on a substrate with a
molecular thick lubrication layer (boundary lubrication).
Let (x,y,2) be a coordinate system with the (x,y) plane at
the upper surface of the block and the z =d plane at the
interface between the block and the substrate. On the
surface z =d of the block acts as the tangential surface
stress —o(x,t). I first assume that no spatial fluctuations
of o(x,t) occur beyond the dimension of a lubrication
molecule, but later I will discuss the case when this as-
sumption no longer holds. In a mean-field type of treat-
ment I replace o(x,¢) with o(¢) obtained from the micro-
scopic stress o(x,t) by averaging over (or integrating out)
the rapid (in space and time) fluctuating part of the
motion of the lubrication molecules. Later, when consid-
ering the adsorbate structure under conditions where it
has a granular structure [pinned solid islands in a two-
dimensional (2D) fluid], the spatial fluctuations in o(x,?)
will be explicitly taken into account. If —o(z) is the
stress exerted by the lubrication molecules on the bottom
surface of the block, then, according to Newton’s law of
action and reaction, the block must exert the stress o (z)
on the layer of lubrication molecules. This will in general
lead to some drift motion of the lubrication layer. Note,
however, that the velocity v of the bottom surface of the
sliding block is not identical to the drift velocity of the
adsorbate layer. For example, if the block and substrate
are made from identical material, then the drift velocity
of the adsorbate layer will be half of the velocity of the
bottom surface of the block. This follows directly from
the symmetry: In a reference frame where the substrate
moves with the velocity —v /2 and the block with the ve-
locity v /2, the drift velocity of the adsorbate layer must,
by symmetry, vanish.

As a background for what follows I briefly discuss the
nature of the relation o = f (v) between o and v, based on
numerical simulations and theoretical arguments.!4~1¢
The simulations considered a system of point particles,
interacting via Lennard-Jones pair potentials and moving
on a corrugated substrate. Owing to the adsorbate-
substrate coupling, each adsorbate experiences a friction
force —m,nf, proportional to its velocity t, and a fluc-
tuating force (arising from the irregular thermal motion
of the substrate atoms) related to the friction 77 and to the
substrate temperature 7" via the fluctuation-dissipation
theorem. The drift velocity v was obtained by averaging
over all the adsorbates and over time.

The relation o=f(v) can have two qualitatively
different forms. If the adsorbate layer is in a two-
dimensional (2D) fluid state, which is always the case in
some parts of the (6,T) (6 is the adsorbate coverage)
phase diagram, then the o= f(v) relation has the form
indicated in Fig. 1(a). In this case the drift velocity will
be nonzero for arbitrarily small o. This is, of course, ex-
actly what one expects for a fluid: an arbitrary weak
external force can shear a fluid. Furthermore, no hys-
teresis is observed, i.e., the relation between o and v does
not depend on whether o decreases from a high value or
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FIG. 1. The drift velocity (v) of an adsorbate layer as a
function of the external stress o. (a) The adsorbate layer is in a
fluid state when o=0. (b) The adsorbate layer is in a pinned
solid state when 0 =0. From Ref. 15.

increases from zero. Hence, if the lubrication layer in a
sliding friction experiment is in a 2D fluid state, smooth
sliding is expected (i.e., no stick-and-slip motion) for any
spring velocity v;. This is exactly what is observed exper-
imentally. For_ example, Yoshizawa and Israelachvili®
studied a 12-A-thick hexadecane film between two
smooth mica surfaces and found stick-and-slip motion
when the temperature T'=17°C, but smooth sliding for
T =25°C. As will be shown below, stick-and-slip motion
is observed when the adsorbate layer is in a pinned solid
state at stick. Hence the melting temperature of the hex-
adecane film is somewhere between 17 and 25°C.

Assume now instead that the system is in a part of the
(6,T) phase diagram where the adsorbate layer is in a
solid state which is commensurate or at least pinned by
the substrate. In this case the o =f (v) relation has the
qualitative form shown in Fig. 1(b). If the system is first
thermalized with o0 =0 and then o is increased, the
pinned solid structure will remain, and the drift velocity
is zero (v =0) until o reaches some critical stress o,. At
this point the adsorbate system fluidizes and the drift ve-
locity increases abruptly from v =0 to v,. If o increases
further, the drift velocity continues to increase as indicat-
ed in the figure. If o is reduced below o, the system does
not return to the pinned solid state at o =0, but contin-
ues to slide until o reaches some lower critical stress o,
where the system abruptly returns to the pinned state.

The hysteresis shown in Fig. 1(b) can have two origins.
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The first follows from the fact that the temperature in the
adsorbate systems during sliding is higher than that of
the substrate, and might be so high that the fluid
configuration rather than the solid pinned state is stable
for 0, <o <o,. However, a more general explanation is
the following. First, it has been found that the return to
the pinned solid state is a nucleation process. However, a
drag force will act on a pinned island, due to the sur-
rounding flowing 2D fluid.?* Assuming a circular pinned
island, and that the drag force is uniformly distributed on
the adsorbates in the island, the drag force is so large that
the island will fluidize if 0 >0, =0, /2.

Note that the o =f (v) relation has a wide almost hor-
izontal region for v, <v <v,, where o0 =~o .. The lubrica-
tion layer in this sliding state is likely to consist of a
granular fluid with pinned solid islands surrounded by
2D fluid. To see this, suppose we reduce the stress so
that pinned islands start to occur. Now, if the islands are
pinned by both of the sliding surfaces simultaneously,
then, since it will take time for an island to grow and
since the block and the substrate are in relative motion,
during the growth of an island there will be a force on the
island building up due to the local (at the island) elastic
deformations of the block and substrate. If the force on
the island becomes large enough, the island will fluidize.
On the other hand, if an island is initially pinned by only
one of the two sliding surfaces with different islands being
pinned by either of the two different surfaces, then col-
lisions between pinned islands would occur during the
sliding process which would result in fluidization of is-
lands. Both of these processes should result in a granular
sliding state for the adsorbate layer, where pinned islands
are continuously formed and fluidized. To what extent
these effects are important in practice will depend on the

2D fluid
A
B solid pinned
island
C

FIG. 2. Hypothetical structures of the adsorbate layer at
points A4, B, and C in Fig. 1 (schematically).
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nucleation and growth rate of the pinned islands and on
the sliding velocity v. At very low sliding velocity (creep)
one expects the lubrication layer to consist almost entire-
ly of pinned adsorbate domains and the associated stress
domains in the block and the substrate. Figure 2 shows
snapshot pictures of how the lubrication layer may look
at points 4, B, and C in Fig. 1(b).

The general form of the o = f (v) relation presented in
Fig. 1(b) is supported by results of sliding friction mea-
surements. Here I note only two facts: First, smooth
sliding (i.e., sliding without stick and slip) is observed (if
the damping is large enough that inertia effects can be
neglected) in a large velocity interval v, <v, <v, where
the friction force is almost velocity independent; this im-
plies that the o = f (v) curve has a large almost horizon-
tal region as indicated in Fig. 1(b). Second, direct sup-
port for a granular state with pinned regions and fluid re-
gions comes from the study of Reiter et al.,'? who
probed the response of a sliding junction to an oscillatory
external force. This study showed that although the dis-
sipative stress in the sliding state was almost independent
of sliding velocity (as long as it is not too large)
significant (although smaller) elastic stress also persisted,
which decreased with increasing deflection amplitude but
was almost independent of oscillation frequency. The
fact that elastic stresses occurred and that the elastic
component decreased with increasing oscillation ampli-
tude is a strong support for the existence of pinned is-
lands; a larger oscillation amplitude would then imply
stronger forces on the pinned islands and hence would
tend to fluidize a larger fraction of them than would an
oscillation of smaller amplitude; see Sec. III C.

B. Stress domains and critical sliding state
at zero temperature (7 =0 K)

The discussion above indicates that, at low sliding ve-
locities, the lubrication film consists of solid domains
which pins the relative position of the block and sub-
strate. Associated with each adsorbate domain is a local
stress domain in the elastic block and in the substrate; see
Fig. 3(a). During sliding, the surface stress at a stress
domain increases continuously until it reaches the critical
value o,. At this point the adsorbate layer locally fluid-
izes, followed by a rapid local slip, during which the local
stress in the block and substrate drops to a value close to
zero. The elastic energy originally stored in the stress
domain is partly radiated as elastic wave pulse into the
block and substrate, and is partly consummated in shear-
ing the lubrication fluid. After some short-time period
the lubrication film refreezes and the whole process re-
peats itself.

I now present a simple model which captures the essen-
tial physics of the scenario outlined above. Assume that
the width of a typical adsorbate domain (and accom-
panied stress domain) is D. The extent of the stress
domain into the solid is of order ~D. We replace the
original system [Fig. 3(a)] with a model system [Fig. 3(c)]
where each stress domain is replaced by a block (stress
block) of mass m =pD?3, where p is the mass density of
the original block. A stress block is connected to the
main (or big) block by a spring k; and to the other nearby
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FIG. 3. (a) During sliding at very low velocity the adsorbate
layer forms solid pinned domains. Associated with each domain
is a stress field in the substrate and block. The arrows indicate
the directions of thin cylindrical volume elements which would
be perpendicular to the sliding surfaces when the stress fields
vanish. (b) The same as (a) but for long-chain molecules (e.g.,
fatty acid molecules) bound to solid surfaces by one end. (c) A
mechanical model used to describe the sliding properties of the
interfaces in (a) and (b).

stress blocks with springs of magnitude k,. The magni-
tudes of k; and k, can be estimated as follows. Let us
first consider the block without the substrate. If a
tangential surface stress of magnitude o acts within the
surface area 8 4 =D XD it will induce a tangential dis-
placement of 64 by an amount u ~F /(pczD), where
F =0 D?. This relation follows directly from elastic con-
tinuum theory; see Appendix B in Ref. 17. In the elastic
continuum theory the elastic displacement field at dis-
tance D away from the center P of 8 4 is about one third
of the displacement of P. In the model system [Fig. 3(c)),
if a force F acts on block 0, the resulting displacements g;
of the blocks can be determined by force equilibrium

kigi+ky(29,—q; 1 —q;+1)=F8; .
It is easy to calculate the displacements g, and g :

- ¥
Do % 2k, (1—¢) °

9+1/90=§,
where
é‘z1-Hkl/kz)—[2(k1/kz)—i-(kl/kz)z]l/2 .

We now require that the displacement g, and the ratio
q0/9+; agree with the elastic continuum model, where



13572

these quantities equals ~F /(pc2D) and ~ 3, respectively.
This gives k; ~k, ~pc?D. Now note the following: sup-
pose first that the surface area 8 4 is displaced by the dis-
tance u by an applied force F. At time ¢ =0 the force Fis
abruptly removed. This result in an elastic wave pulse
emitted into the elastic media, while u decays toward
zero. We can include this damping mechanism in the
model system [Fig. 3(c)] by introducing a damping force
—my(g;—x) in the equation of motion of the stress
blocks (x is the velocity of the surface of the big block
connecting the stress blocks to the big block). The damp-
ing ¥ can be estimated from the formula given in Ref. 24,
y~k?/(mpc3). Using k,~pc?D and m ~pD?, this
gives ¥ ~c/D. Note that this damping is of a magnitude
similar to the resonance frequency wo,=(k,/m)!"?~c/D.
The strong damping is, of course, expected—any elastic
displacement field set up at time ¢ =0 within some
volume ~ D3 somewhere in the surface region of the big
block and then set free will rapidly spread into the bulk
of the big block: It has left the volume D? after the time
period T it takes for an elastic wave to propagate the dis-
tance D, ie., 7~D/c, so that the damping
¥ ~1/7~c/D. See also Ref. 25.

I have performed computer simulations based on the
model shown in Fig. 3(c). I assume that the adsorbate
domain related to stress block g; is in a pinned solid state
(so that ¢; =0) until the elastic force

F=k(x —¢q;)+k,(q;+1tq;—1—2g;)

from the springs connected to block g; reaches the criti-
cal force F,=8Ao, necessary for fluidization of the
pinned adsorbate structure. After fluidization the motion
of g; satisfies the Newton equation

mi;=—my(q,—x)—m,7¢; +k,(x —q;)
tko(giv1+9;-1—2q;) . ()

The friction force —m,7q; results from the drag force
from the layer of adsorbed molecules. In the calculations
below I assume that the adsorbate layer returns to the
pinned state when ¢; =0 at the end of the rapid local slip
process. Alternatively, one may assume that the fluidized
state exists for some average time 7 before returning to
the pinned solid state. Since the time it takes for the lo-
cal surface stress to decay to zero at the fluidized island is
very short (of order 1071% s), it is very likely that at the
return to the pinned state the local surface stress at the
island is essentially zero. However, this condition is like-
ly to give a very similar result to the condition that the
return to the pinned state occurs when ¢ =0, since with a
physically reasonable damping y the surface stress is
quite small (on the scale of o,) when ¢ reaches zero and
the local motion stops.

In the application below we focus mainly on the creep
region where X is very small and we can neglect this term
in (1). Hence the damping term in (1) is
(my+m,7)q; =m7¥q;, which defines the effective damp-
ing coeflicient 7. From now on, I measure time in units
of (m /k{)'/2, 7 in units of (k; /m)!/2, distance in units of
F, /k,, velocity in units of F,(mk,)~!/2, force in units of
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F,, and spring constants in units of k;. In these units (1)
becomes

G;=—7q;+(x —q;)+kylq; 11 +g,_1—2g;) .

Note that from the estimates presented above k, ~1 and
7 ~1. I have solved the equation of motion (1) numeri-
cally by discretizing time in units Az =0.005. In all cal-
culations presented in this paper I have chosen ¥ =1 and
k,=1. I have also performed calculations with other pa-
rameter values, but the qualitative picture is the same as
that presented below. The model presented above is simi-
lar to a model studied by Burridge and Knopoff*® and
Carlson and Langer.?” However, the friction law I use
differs from theirs and the physical picture behind the
models differs. The stress blocks in our model have a
finite size determined by the diameter of a pinned adsor-
bate island, while Carlson and Langer were interested in
the continuum limit where the size of a block vanishes.
Furthermore, the main aim of this paper is to study the
influence of thermal processes on the sliding and relaxa-
tion dynamics, and, as far as I know, this topic has not
been studied before within the present model.

In Fig. 4(a) I show the friction force (per stress block)

e
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FIG. 4. (a) The friction force as a function of time. Initially
the stress blocks are distributed very regularly on the surface,
and many stick-and-slip periods occur before the system reaches
a steady state. (b) The function 4 (¢) is the fraction of the blocks
which are moving at time t. (c) The distribution of surface
stresses in the steady state. In the calculation k,=k,=¥y=1,
v, =0.005 and n = 10000 stress blocks.
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as a function of time when the sliding velocity v, =0.005.
In the calculation I used n =10000 stress blocks which
initially (z =0) were distributed very regularly on the sur-
face (the initial coordinates was taken as g, =0.01Xr,,
where r; is a random number between 0 and 1) and many
stick-and-slip periods occur before the system reaches a
steady state. The function 4 (¢) shown in Fig. 4(b) is the
fraction of the blocks which move at time ¢. Note that
during the first slip period all stress blocks move (.e.,
h =1), while during the second slip period only ~70% of
the blocks moves. The first few slip periods are separated
by time intervals where no blocks move. However, for
t > 1000 some blocks always move and, in particular,
when the steady state has been reached (¢ > 1800) about
~10% of the blocks move at any time. This does not, of
course, mean that the same blocks are moving the whole
time, but that each individual block performs a stick-
and-slip type of motion, and that avalanches of varying
sizes occur (see Sec. III D) in such a manner that about
10% of the blocks move at any given time. Finally, Fig.
4(c) shows the distribution of surface stresses in the
steady state. Note that the distribution P (o) is critical,
i.e., that a continuous distribution of local surface
stresses o occurs, which extend to the critical stress o,
necessary for fluidization of the pinned adsorbate struc-
ture. This implies that thermal processes will be very im-
portant at low sliding velocities (see Sec. IIIC). Note
that the surface stress o is negative for about 5% of the
blocks; this effect results from inertia and corresponds to
stress blocks which during sliding picked up enough
kinetic energy to overshoot, so that when returning to the
stick state the sum of the spring forces acting on such a
block is negative. The sharp peak close to o0 =0 in Fig.
4(c) corresponds to a small fraction of blocks which slide
with a velocity close to the driving velocity v, =0.005 so
that a kinetic friction force of magnitude 7¢ ~0.005 acts
on these blocks. In contrast, most of the blocks perform
a very rapid motion during slip, where velocities of order
1 occur. At sliding velocities lower than 0.005, the sharp
peak in Fig. 4(c) disappears and the distribution P (o)
converges towards velocity-independent distribution
which looks virtually identical to the one in Fig. 4(c); i.e.,
v, =0.005 is small enough to be practically in the asymp-
totic small-v; regime. This velocity region will be our
main concern below.

Figure 5 shows the same quantities as in Fig. 4 but for
a higher sliding velocity v, =0.03. Note the sharp peak
in Fig. 5(c) which carries about 50% of the blocks, i.e.,
about half of the blocks, now performs a slow drift
motion ¢~v, where the surface stress equals
o ~7v,=0.03. However, some of the blocks still per-
form rapid slip motion, giving rise to the broad distribu-
tion in P (o) extending from o =—0.40, to o,. For slid-
ing velocities above v, =0.05 all stress blocks slide with
the speed v, and the stress distribution P(o) equals a
Dirac 6 function centered at o, =7v,.

The dashed lines in Figs. 6(a) and 6(b) show, in the
steady-state sliding regime, the dependence of the friction
force and the fraction of sliding blocks on the natural log-
arithm of the sliding velocity. These curves have been
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FIG. 5. The same as Fig. 4, but with v, =0.03.

constructed from many computer simulations of the type
shown in Figs. 4 and 5. Note the following: (a) For
In(v,) < —5, i.e., v, <0.006, the friction force is velocity
independent. As discussed above, in this velocity region
the stress distribution P (o) is velocity independent and
the number of stress blocks moving at any given time is
proportional to the sliding velocity (not shown). Hence, a
velocity-independent sliding friction force is indeed ex-
pected. For Inv, = —3 or v, >0.05 all stress blocks move
with velocity v, and the friction force is given by 7jv,. As
a function of In(v,) this gives the rapidly increasing fric-
tion force shown in Fig. 6(a) for In(v,)= —3. In this case
P(o) is a Dirac 8 function centered at 7v,. Finally, in
the transit region —5<In(v;)< —3, the friction force
varies smoothly from its small-v; asymptotic value to the
high velocity behavior where all blocks slide with the ve-
locity v,. In this transit region P(w) has both a broad
continuum extending from ~ —0.40, to o, as well as a
Dirac 8-function contribution centered at a stress close to
the frictional stress experienced by a block which slides
at the speed v;.

C. Relaxation and creep (7 >0 K)

The calculations presented in Sec. III B were for zero
temperature, where no thermal excitations can occur.
We have seen that during sliding at low velocity v the dis-
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05~

In(v)

FIG. 6. (a) The friction force in the steady state as a function
of the natural logarithm of the sliding velocity. (b) The fraction
of sliding blocks as a function of the natural logarithm of the
sliding velocity. The solid lines include thermally activated pro-
cesses (v=0.1 and B=40), while the dashed lines are for zero
temperature.

tribution P (o) is critical, i.e., the distribution P (o) of lo-
cal surface stresses has a sharp steplike cutoff at o =o0;
see Fig. 4(c). This implies that thermally activated pro-
cesses will be very important at low sliding velocities,
since those stress blocks which have surface stresses in
the vicinity of o =0, may be thermally exited over the
small elastic energy barrier which separate them from the
sliding state. In fact, if v is small enough this channel of
going over the barrier will occur before a stress block
would be driven over the barrier by the motion x =x (¢).
Similarly, thermal processes are crucial during stop: if no
thermal excitations occur (i.e., zero temperature) the dis-
tribution P (o) at stop would be time independent and of
the form shown in Fig. 4(c) with some stress blocks with
o just below o,. At nonzero temperature, an arbitrary
small thermal fluctuation can kick these blocks over the
barrier to the sliding state. In this section I introduce
thermal excitations in a realistic manner and study their
influence on the sliding dynamics.

We assume that during sliding a stress block satisfies
the same equation of motion (1) as in Sec. III B. This is
certainly a good approximation, since during local sliding
large velocities occurs and small thermal fluctuations
should be of no importance. Now consider a pinned
stress block. In Sec. IIIB it was assumed that the block
remains pinned until the force on the block from the
springs connected to it reaches the critical value F,. At
this point the adsorbate layer fluidizes and local slip
motion occurs. I now generalize this assumption in order
to allow the stress blocks to be thermally excited over the
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barrier toward motion. Let us consider a stress block i
with a coordinate g;. The potential energy stored in the
springs connected to this block is

U=1k(x —q;?+1ky(q;4+1—q;,) +1ky(q,_1—gq;), ()
and the force on block i is
F=k\(x —g;)+ky(g;+,+tq;—1—2q;),

which must be below F, in order for the block to be
pinned. Now, considered U =U(g;) as a function of g;
(i.e., 9,4+ fixed). U(g;) has the form indicated in Fig. 7.
If we define the critical displacement g° by

Fo=k(x _qi0)+k2(qi+l+qi—1_2qi0) >
i.e.,
kix +ky(g; 1 +q, 1) —F,

0:
9 k,+2k, . 3)

Then the elastic barrier AE =U(g?)—Ul(g;) must be
overcome by thermal excitation in order to initiate slid-
ing; see Fig. 7. According to statistical mechanics, the
probability rate w for thermal excitation over a barrier of
height AE can be written (see Appendix A)

w =ve BAE

When studying the time evolution of the system, time is
discretized in steps of length Az. The probability that the
stress block jumps over the barrier during the time At is
wAt. Since the actual excitation over the barrier occurs
in a stochastic manner as a function of time, we use ran-
dom numbers to determine when the jump occurs. That
is, if r is a random number between O and 1 then if
r <wAt the jump is assumed to have occurred during the
time period Atz while the stress block remains in the
pinned state if » >wAtz. In all calculations below I have

onset of slip
-—->

FIG. 7. The elastic potential energy as a function of the coor-
dinate g; of block i (g;+, are fixed). At the critical displacement
the q; =q/ slip starts.
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used v=0.1 and f=40. I have also performed calcula-
tions for other parameter values, but the same qualitative
picture results.

Figure 8 is obtained with the same model parameters
as in Fig. 4 except that thermal excitation is included as
discussed above. Note that when thermal excitation is in-
cluded, the onset of the first slip occurs at a lower static
friction force; F,,, is reduced from 0.98F, in Fig. 4(a) to
0.70F, in Fig. 8(a). Furthermore, the number of stick-
and-slip oscillations before the steady-state sliding regime
is reached is reduced. Even more dramatic is the change
in the fraction of blocks which moves at time ¢, compare
Figs. 4(b) and 8(b). While without thermal excitation all
the stress blocks move during the first slip period, only
~30% move when thermal excitation is included. The
stress distribution P(o) in the steady-state region [see
Fig. 8(c)] is qualitatively similar to that without relaxa-
tion [see Fig. 4(c)].

The solid line in Fig. 6(a) shows the friction force in the
steady-state sliding regime, as a function of the natural
logarithm of the sliding velocity, as obtained from many
computer simulations of the type shown in Fig. 8. This
result differs most importantly from the zero-temperature
results (dashed line) by the linear increase of the friction
force with increasing In(v), F/F,=0.44+0.026 In(v) for
In(v) < —5.5. Note that in this velocity region, when
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FIG. 8. The same as Fig. 4, except that thermally activated

processes are included as discussed in the text. v=0.1 and
B=40.
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thermal excitation is taken into account, a smaliler exter-
nal force generates the same sliding velocity as a larger
force in the absence of thermal processes. This creep
motion results from thermal excitation of stress blocks
from close to o =0, over the barrier to the sliding state.
Hence a given block does not need to be pulled over the
barrier by the motion v, but can jump over the barrier by
thermal excitation. Figure 6(b) shows the fraction of slid-
ing blocks as a function of the natural logarithm of the
sliding velocity. The solid line includes thermal process-
es, while the dashed lines are the zero-temperature result.

Figure 9 illustrates the slow relaxation which occurs if
the sliding velocity is abruptly reduced from a nonzero
value to zero. The time variation of the friction force is
shown in Fig. 9(a), and that of the fraction of moving
blocks in Fig. 9(b). For r <1000 the sliding velocity
v, =0.005. At ¢t =1000 the sliding velocity is set equal to
zero (v;=0). The decay of F and A with increasing time
for ¢t > 1000 is due to thermal excitation (relaxation).
Figure 10(a) shows the friction force [from Fig. 9(a)] dur-
ing the relaxation-time period, as a function of the natu-
ral logarithm of the stopping time 7=¢ —1000. Note
that except for very short and very long times, F decays
proportional to the logarithm of the stopping time 7; the
dashed line is given by F(7)/F,=0.38—0.0441In(7). Fi-
nally, Fig. 10(b) shows the stress distribution at the end
of the relaxation process in Fig. 12(a), i.e., for t =3000.
Note that the distribution is no longer critical; i.e., all the
stress blocks which occurred close to o0 =0, have been
removed by thermal excitation. As 7— o the distribu-
tion P (o) narrows and F—0, but it is not possible to ob-

(a)
n = 6000
0.4 v = 0.005
L‘—U
o
0.2+
\\-
0
h (b)
0.25
01+
0 T T
0 1000 2000

time

FIG. 9. The time variation of (a) the friction force and (b) the
fraction of moving blocks. For ¢ <1000 the sliding velocity
v, =0.005. At ¢ =1000 the sliding velocity is set equal to zero
(v, =0), and the observed time variations of F and & for ¢t > 1000
are due to thermally excited processes (relaxation). In the calcu-
lation, v=0.1 and B=40.
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FIG. 10. (a) The friction force [from Fig. 9(a)] during the
relaxation-time period, as a function of the natural logarithm of
the stopping time 7=t —1000. The dashed line is given by
F(1)/F,=0.38—0.044 In(v). (b) The stress distribution at the
end of the relaxation process in Fig. 9(a), i.e., for ¢ =3000.
v=0.1 and 8=40.

tain this fully relaxed state in a computer simulation be-
cause of the long stopping time 7 necessary.

Figure 11 shows another manifestation of relaxation in
a computer simulation of stop and start. For ¢t <600 the
sliding velocity v, =0.01. For 600 <t <2600 the sliding
velocity vanishes (v, =0). For ¢t > 2600 the sliding veloci-
ty v,=0.01. In Fig. 11(a) the friction force is shown as a
function of time. Note the striction spike of height AF.
The fraction of blocks moving at time ¢ is shown in Fig.
11(b). The stress distribution at the end of the sliding
process (z =3000) is shown in Fig. 11(c). The circles in
Fig. 12 show the height AF of the striction spikes as a
function of the stopping time 7 from several computer ex-
periments of the type shown in Fig. 11. The solid line is
determined by AF/F,= —0.19+0.05 In(7).

It is possible, with a simple model calculation, to un-
derstand why the relaxation processes studied above have
the asymptotic time dependences ~In(7) and why the
creep motion depends on velocity as ~In(v). Let us first
consider how the force acting on the big block decreases
with time after the sliding motion has abruptly been
stopped at time ¢t =0 [see Fig. 9(a)]. I will use a mean-
field-type approximation in estimating the elastic barrier
AE which a pinned stress block must overcome by
thermal excitation before sliding. The exact elastic bar-
rier for block i in Fig. 3(c) was calculated in Sec. III B,
and depends on the positions of blocks i+1:

AE=U(g))—Ulg,) .
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FIG. 11. A computer simulation of stop and start. For
t <600 the sliding velocity v,=0.01. For 600 <t <2600 the
sliding velocity vanishes (v;=0). For ¢ > 2600 the sliding veloc-
ity v;,=0.01. (a) The friction force as a function of time. Note
the striction spike of height AF. (b) The fraction of blocks mov-
ing at time . (c) The stress distribution at the end of the sliding
process (¢ =3000).

In the expression for U we replace g;; by their average
values g. Using (2) and (3) this gives

FZ_F2
. a
AE= 2k, +2ky)

n = 6000

02

0 1000 2000

T

FIG. 12. Circles represent the height AF of the striction
spikes as a function of the stopping time 7 from computer ex-
periments of the type shown in Fig. 11. The solid line is deter-
mined by AF =—0.19+0.05 In(7).
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where F =k(x —q;)+2k,(q —gq;) is the mean-field force
acting on block i. In terms of the surface stress
o=F/5A4, we have

AE=¢[1—(0/0,)*], 4)
where
(8Acra)2 Fa2
€ = (5)

T2k, 2ky) 2k 42k

Assume that no slip has occurred at time ¢ =0. The
probability that the block has not jumped over the bar-
rier AE at time ¢t >0 is

P(t)=e™™, (6)
where the rate coefficient w has the form
w =ve PAE | v

where v is a prefactor and 1/8=kyzT. Now, assume that
at the interface between the big block and the substrate
occur Ny >>1 stress blocks. The total number of stress
blocks which, at time ¢ >0, remain in their original
(t =0) positions, is given by
N()=3P(1)=Se
1 1

it

(8)

Let P(o) be the distribution of surface stresses at time
t =0. Let us first assume that P (o) is uniform, i.e., that
P(o)=1/0, for 0<o <o, and zero otherwise. The ac-
tual distribution may not be uniform but the only
relevant result for the present study is that there is a
sharp steplike cutoff in the distribution P(o) at o =0,,.
In this case, using (4) and (6)—(8), we obtain

oa —viex - - g 2
N(O=N, [ “do P(a)e” "M TPUTT )

where Ny=N (0) is the total number of stress blocks. If
we introduce o =0 ,(1—¢§), and approximate
ol —ol=20%f,

and assume P(o)=1/0,, from (9) we obtain

N(t)~N0f01d§e—vtexp(—mfé') R
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Now, if Be>>1 and vt >>1, we can accurately approxi-
mate (10) with

N v
N@~=—=['" i7L=No

Pe J B2 n 1

(11)

__In(ve)
Be ’

The asymptotic result Ny—N(1)=AN(¢)~In(vt) is
valid whenever the probability distribution P(o) has a
steplike cutoff. On the other hand, if P (o) goes continu-
ously to zero at o =0, then this asymptotic time depen-
dence no longer holds. For example, if

P(o)~(o,—0a)

as 0 —o, from below, while P =0 for o0 >0, then it is
easy to show that

AN ~[ In(vt)]" .

In particular, if P(o) has the triangular form
P=2o0,—0)/c2 if 0<o <0,, and zero otherwise, one
obtains

AN(t)/No=[ In(vt)1*/(B2€)* .

Formula (11) explains the In(z) dependence found in
the simulations above, and is in good quantitative agree-
ment with the simulations. For example, consider the re-
sults in Fig. 9(a) for F(t)/F,. To apply (11) to this case,
let us note that when a stress block jumps over the elastic
barrier, the force on the big block changes by roughly
0,84. Hence F(0)—F(t)=8A0,AN(t), and since
Fy=Nyb Ao, we obtain [F(0)—F(t)]/Fy,=AN/N, or,
using (11),

F(t) Fi 1

FO z-ﬁ'g—ﬁln(vt) s (12)

where F(0)=F, =F,/2 is the kinetic friction force in the
present model. Let us compare the mean-field results (12)
with the results in Fig. 9(a). The dashed line in Fig. 10(a)
is given by

F/F,=0.38—0.0441n(z) ,

which we can write as F(t)/F,=F, /F,— B In(bt), where
F, /Fy,=0.3, B=0.044, and b =0.15. In the simulations
B=40, and since e=1 the values for B and b in the
mean-field model equal 1/28€=0.075 and b =v=0.1, in
remarkably good agreement with the results of the simu-

If we set lation.
et The analysis presented above assumed that the motion
n=e ’ of the block is abruptly stopped at time ¢ =0, i.e.,
then x (¢t)=const for t >0. More complex sliding and relaxa-
tion problems can be studied based on an equation of
N(t)~& 1 ﬂe*vw (10) motion for the distribution function P(o,?). In Appen-
B2e Y e~ q ' dix B it is shown that
J

o _ K0P _ b ey go) Jdo'vPa,ne oy K1 (13)

ot 84 oo ’ 54 @ )
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The first term on the right-hand side of this equation
describes the rate of change of P(o,t) due to the motion
of the big block [velocity v =x(z)]. The second term de-
scribes the probability rate for a stress block to be
thermally excited over the barrier AE(o) =U(o,)
— U (o). Finally, the last term, which is nonzero only if
o =0, describes the increase in the number of stress
blocks with zero surface stress which results from all the
stress blocks which have been thermally excited over the
barrier AE(0)=U(o,)— U(0o) or driven over the barrier
by the motion x (¢); we assume that after fluidization of
the adsorbate layer a block rapidly relaxes down to the
state where the surface stress equals zero, after which the
adsorbate layer refreezes and the block returns to the
pinned state.

Note that (13) conserves probability: integrating (13)
over o from —o, to o, and using P(—o,,t)=0 (we as-
sume sliding along the positive x direction) gives

d % _
i _oadch(U,t) 0.

Hence, if the normalization condition
Oa
[ . doP(o,00=1 (14)

is satisfied at time ¢ =0, it will be automatically satisfied
for all other times.

Let us study steady sliding. In this case dP /3t =0 and
(13) reduces to an ordinary differential equation for
P(o,t)=P(0), with the solution (see Appendix B)

o
—(8.4v/k,v) [ odo’ exp[ —BAE ("))

P(o)=Ce (15)

if 00 <o0,, and zero otherwise. C is determined by the
normalization condition (14). The force F which gives
rise to the sliding velocity v is determined by the equation

[%, do AoP(o)
F=—-— . (16)
f_”aada P(o)

Let us first consider the large-v limit. Assume that
a<<1 where a=F,v/(2k,vBe). In this case, (15) and
(16), to leading order in @ ~1/v (see Appendix B), give
kT |

2e

Next, let us consider sliding at small velocities, which
we will refer to as creep motion. Assume that ¢ >>1 but
aexp(—2Pe) << 1. In this case (15) and (16) give (see Ap-
pendix B)

F 1, 1
+—1
F, 2 4Be "

2Bek v
F,v

a

F 1
=—t 4
F, 4fBe n

2Bek v
F,v

—_——~

(17

Let us compare the prediction of this formula with Fig. 6.
In the creep region, In(v) < —5 in Fig. 6, F varies linearly
with In(v) in accordance with (17). The creep region in
Fig. 6 is well described by
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F/Fy=0.44+0.026In(v) ,

which we can write as F/F,=F, /Fy+B In(bv), where
F, /F;=0.32, B=0.026, and b =118. The correspond-
ing values for B and b in our mean-field model [Eq. (17)]
are 0.037 and 133, in remarkably good agreement with
the simulations.

Finally, in the extreme low-v limit, where
a exp(—2Be)>>1, Egs. (15) and (16) give (see Appendix
B)

F~(Fy/2aBe)ePe=Ny(k v /v)ePe . (18)

Note that F <<F,, and that the friction force is propor-
tional to the sliding velocity v. Formula (18) is of very
limited practical use, however, since extremely low slid-
ing velocities v are necessary for (18) to be valid.

Let me, in the light of the model results obtained
above, discuss the experiments of Reiter et al.?! They
studied the elastic (and dissipative) behavior of a confined
lubricant Jayer using oscillatory shear. The lubrication
fluid (a 712 A-thick layer of 3-methy-undecane, an al-
kane 11 CH, units long with one methyl side group) was
localized between two atomically smooth mica crystals.
The shear amplitude (i.e., the relative interfacial displace-
ment amplitude) d was measured as a function of the am-
plitude of the applied oscillatory shear stress. Further-
more, the elastic stiffness « (the ratio between the in-
phase component of the responding stress and the
deflection amplitude) was measured as a function of d.
Measurements were performed at two different oscillation
frequencies, 1 and 100 Hz, but the results were almost
identical.

For a small enough applied shear force the lubrication
layer behaved as an elastic solid and k=const. However,
as the onset of sliding was approached, the stiffness « de-
creased and extrapolated to zero at a certain value
d =d_.. This results can be easily understood based on
the assumption that the lubrication layer in the pinned
state consists of solid adsorbate domains and associated
stress domains where the distribution of tangential sur-
face stresses extend up to the stress o, necessary to fluid-
ize a solid adsorbate layer. In this model, an external ap-
plied oscillatory stress will, roughly speaking, fluidize all
adsorbate domains where the surface stresses occur in the
interval 0, —0 <0 <o,, where o, is the amplitude of
the oscillatory stress (induced by the external stress)
which acts on a pinned solid adsorbate domain. Note
that o is a function of d, o0,=0,(d). Now if, as a result
of the oscillatory external shear stress, a fluidized adsor-
bate domain does not refreeze, then one expects « to de-
crease monotonically as the shear amplitude d increases,
until d reaches some critical value d, where all solid ad-
sorbate domains have fluidized [note that o,(d.)=0,].

It is interesting to note that for d below a few A,
k=const, i.e., is independent of d. But this is exactly
what is expected from the model presented above when
thermal processes are taken into account, since the stress
blocks which would occur close to 0 =0, if no thermal
excitations occur have jumped over the barriers and
occur at o0 =0. Hence, roughly speaking, no stress blocks
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occur for 0, —Ao <0 <0, (where Ao increases with the
time of contact prior to probing k), and x will remain
constant as long as 0,(d) <Ao.

D. Discussion

What type of local slip events occur during sliding at
low velocities? The fact that, in the steady state, the
function A (¢) is very smooth (i.e., very weak noise) in
Figs. 4 and 8, implies that the largest slip events
(avalanches) must be very small compared with the total
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number of blocks used in the simulations (10000 and
6000, respectively). To study the distribution of sizes of
slip events, I consider a system consisting of only » =100
blocks and a very low sliding velocity v, =0.0002. In this
case the individual slip events can be resolved in time.
Figures 13(a) and 13(b) show the time variation of the
friction force and of the fraction of moving blocks at zero
temperature. Note that at a given time at most two
blocks are sliding. However, most of the time no block
or one block is sliding. In fact, when two blocks slide
these are not necessarily two nearby blocks but could be
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FIG. 13. (a), (c), (), and (g) show the time variation of the friction force, and (b), (d), (f), and (h) the fraction of moving blocks. (a)
and (b) are at zero temperature and (c) and (d) at a finite temperature (v=0.1 and B=40) and for k, =k, =7 =1. (e) and (f) and (g)
and (h) are the same as (a) and (b) and (c) and (d), respectively, but now for k, =50. In the calculations the number of blocks n =100
and the sliding velocity v, =0.0002.
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separated by other nonsliding blocks. Hence we conclude
that only very localized slip events occur in the present
model. When thermal processes are included, the same
qualitative picture occur; see Figs. 13(c) and 13(d), where
v=0.1 and =40.

These results differ from those of Carlson and Langer,
who found a wide distribution of the sizes of slip events
in their model calculations. However, Carlson and
Langer only considered systems where the ratio
k,/k{>>1. In fact, they argued that in the context of
earthquakes the limit k,/k;— o is relevant. In Figs.
13(e) and 13(f) I show the time variation of the friction
force and of the fraction of moving blocks at zero tem-
perature when k; =1 and k, =50 (all earlier calculations
were with k,=1). Note that in this case the sliding force
F exhibits stick-and-slip oscillations, and the fraction of
moving blocks 4 (¢) shows a very wide distribution of
sizes of the slip events. The largest slip event involves
about 50% of the blocks, while the smallest involves a
single block. These results are similar to those of Carlson
and Langer. It is easy to understand why large slip
events can occur when k, >>k,. It is clear that if kK, = oo
all blocks must slide together, while in the opposite limit,
k,=0, the blocks are completely independent of each
other and only slip events involving a single block can
occur.

It is interesting to study the influence of thermal pro-
cesses on the sliding dynamics in Figs. 13(e) and 13(f). In
Figs. 13(g) and 13(h) I show the time variation of the
friction force and of the fraction of moving blocks at a
finite temperature (=40 and v=0.1) but with all other
parameters the same as in Figs. 13(e) and 13(f). Note that
in this case smooth sliding occurs (i.e., no stick-and-slip
oscillations) while about 8% of the blocks move at any
time. This is consistent with the general observation'
that stick-and-slip motion is favored in hard materials
such as siliceous rocks, especially those containing
quartz, while it is inhibited by the presence of soft, duc-
tile minerals like calcite, serpentine, and clay which may
more easily undergo creep motion when exposed to a
tangential stress. Similarly, an increase in the tempera-
ture may bring about a transition from stick-and-slip
motion to smooth sliding. This has been suggested to
determine the depth limit of tectonic earthquakes. !’

E. On the origin of stick-and-slip motion

Stick-and-slip motion can have several different ori-
gins.!” Some are related to inertia effects while other
mechanisms are independent of inertia. Here we focus on
experiments by Yoshizawa and Israelachvili.® They have
shown that when sliding a mica crystal on a mica sub-
strate with an intervening lubrication film of molecular
thickness, a critical velocity v, ~1 um/s exists such that
for spring velocities v, > v, smooth sliding occurs, while
stick-and-slip motion occurs for v, <v,.

Let us first note the following. Suppose that the big
block slides with the velocity v as the bottom surface of
the block suddenly stops moving. As discussed else-
where, 7 this will generate a stopping wave which propa-
gates with the transverse sound velocity toward the upper
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surface of the block. Only after the time At =d /c is the
whole block stationary. When the motion of the bottom
surface of the block stops, the tangential surface stress in-
creases with Ao =pcv, where p is the mass density and ¢
the transverse sound velocity in the block (see Ref. 17).
In a typical case p~ 3000 kg/m3, ¢ ~3000 m/s, and v, ~1
um/s, so that Ao ~ 10 N/m? which is an extremely small
increase in the tangential surface stress compared with
the magnitude of the shear stress o itself which is typical-
ly equal to o ~ 107 N/m? during sliding. Hence it is like-
ly that thermal or mechanical fluctuations in the system
can generate the initial pinning of the surfaces. The fun-
damental question now is if this initial pinning will sur-
vive or if it will immediately be removed as a result of the
increase in the spring force with increasing time.

To discuss this question, let us assume that after the re-
turn to the pinned state the static friction force depends
only on the time of stationary contact 7, Fy=Fy(1). We
assume that F,(0)=F, and that Fy(7) increases mono-
tonically with the contact time 7. I will now show that,
in order to be consistent with the experimental data of
Yoshizawa and Israelachvili, Fy(7) must have the general
form shown by the solid line in Fig. 14. The dashed lines
in Fig. 14 shows the increase in the spring force, kv 7, as
a function of the contact time for three different cases
(1)=(3). In case (1) the spring force increases faster with 7
than the initial linear increase of the static friction force;
hence the motion of the block will not stop and no stick
and slip motion will occur. If the spring velocity v, is
lower than the critical velocity v, [cases (2) and (3)] deter-
mined by the initial slope of the Fy(7r) curve
[k,v.=dF,/dT (7=0)], the spring force will be smaller
than the static friction force F,(7) until 7 reaches the
values 7, [case (2)] or 73 [case (3)], at which time slip
starts. In these cases stick-and-slip motion will occur.
The discussion in this section is a mathematical formula-
tion of an idea already proposed by Yoshizawa and Israe-
lachvili.®

There are a number of observations which require
Fy(7) to have the qualitative form shown in Fig. 14. For
example, it has been found that when v, is reduced from
above v, to below v, the amplitude AF of the stick-and-
slip oscillations increases abruptly from zero to a finite

R(7)-F(0)

T2 73

FIG. 14. Solid lines are the variation of the static friction
force with stopping time. Dashed lines are the variation of the
spring force for three different (1)-(3) sliding velocities, v; > v,
but v, >v, >v;.
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value, which increases only very slowly as v, is decreased
further toward zero. The fact that AF increases abruptly
rather than gradually at v, implies that the Fy(7) curve
must increase linearly with 7 for small 7, followed by an
intermediate time period where F,(r) increases faster
than linear, and finally an asymptotic time region where
F,(7) increases very slowly [e.g., as Fy~a +b In(7/7y)]
with increasing 7.

In real systems perpendicular relaxation processes also
occur (not accounted for in the model studied in Secs.
IIIB and IIIC), which may result in stick-and-slip
motion in some parts of the (k,,v;) kinetic phase dia-
gram. One such mechanism is related to the increase in
the contact area with contact time, and will be discussed
further below. In the measurements by Yoshizawa and
Israelachvili the contact area is kept constant, and there
must be a different explanation for the observed stick-
and-slip motion. One possibility is the following: At low
sliding velocities the lubrication film has a granular state
with pinned adsorbate domains. Now, assume that in the
sliding state a solid adsorbate domain is pinned by only
one of the two solid surfaces as discussed in Sec. IIT A.
When the sliding motion stops, slow rearrangement pro-
cesses occur in the lubrication layer which finally result
in islands being pinned by both of the solid surfaces. This
leads to an increase in the static friction force with in-
creasing contact time 7, and Fy(7) may take the form in-
dicated in Fig. 14.

Finally, I give some remarks on practical sliding sys-
tems where many contact areas (junctions) usually occur
between the sliding surfaces. I focus on the friction study
of Heslot et al.?° for the sliding of paper on paper. They
studied the transition from smooth to stick-and-slip
motions, and mapped out a dynamic phase diagram, i.e.,
the regions in the (k,,v,) plane where smooth and stick-
and-slip motions occur was determined.

The sliding friction study of Heslot et al. differs in a
fundamental way from those of Israelachvili et al. and
Reiter et al. In the latter studies a single contact area
(junction) occurs where the normal pressure is well below
that necessary for plastic or brittle deformation of the
block and substrate—the deformations are purely elastic.
However, in the study by Heslot et al. the normal pres-
sure at a junction is essentially determined by the yield
strength of the material. When a block is placed on a
substrate, plastic deformation occurs at the contact
points, and the local stresses equal the plastic yield stress.
Now plastic deformation can be considered as resulting
from fluidization and refreezing of small volume elements
(cubes); a cube fluidizes when the elastic stresses it is ex-
posed to by the surrounding cubes satisfy some yield cri-
teria (e.g., the von Mises yield condition), and when the
cube refreezes the elastic stresses in the cube are strongly
reduced. [For metals, the diameter of a cube may be tak-
en to be of the order of the average distance between two
nearby dislocations. Fluidization of a cube occurs when
the local elastic stresses from the nearby cubes pull the
dislocation over its pinning potential barrier, resulting in
rapid slip. When the dislocation returns to a pinned state
(the freezing transition) the local elastic shear stresses in
the cube have a much lower value than before the slip.]
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This model of plastic deformation is very similar to the
model studied in Secs. III B and III C, and one therefore
expects that immediately after the rapid plastic deforma-
tions which occur when the block is put on the substrate,
the cubes in the vicinity of the contact area will be in a
critical state with a distribution of local stresses such that
some cubes are almost ready to undergo plastic deforma-
tion. Just as in the discussion in Sec. III C, this implies
that thermal processes will be of crucial importance; slow
relaxation (creep) will occur and the contact area will in-
crease slowly with time. Following the discussion in Sec.
III C, one can argue that the contact area between the
two solids increases with the contact time 7 according to
the formula

84=A,[1+gIn(r/7)],

as is indeed observed experimentally.'® This process will
influence the kinetic friction force during creep motion
since it will take some time 7=1[/v before a contact area
is broken, where [/ is of the order of the diameter of the
contact area. Hence during smooth sliding the friction
force

F, 2Bek v
F=[1l—gn(vry/D] |Fy+—1In |————
[1=g In(wro/D] | Fy 4Be n F,v
~ + > Fy |1
~ t — —
cons Be gF, | Inv

to first order in In(v).

F. Experimental implications and discussion

In this section I discuss how the results obtained above
may be tested experimentally. In principle there are two
different ways to probe experimentally the nature of the
lubrication layer during sliding. One way is to use neu-
tron or x-ray scattering to obtain information about the
orientation of the lubrication molecules at the interface. 8
Using this method it may be possible to probe whether
lubrication molecules during smooth sliding occur in a
2D fluid state or if a granular state occurs with solid
domains. Another interesting method would be to study
the sound waves generated at the sliding interface. If the
lubrication layer during sliding is in a 2D fluid state, then
a very wide (in frequency), uniform (in time) distribution
of sound waves is emitted from the sliding interface.
However, if the lubrication layer has a granular struc-
ture, consisting of pinned solid islands, the sound wave
emitted from the interface consists of a sequence of wave
pulses. The rate of emission of wave pulses from the in-
terface equals the rate of fluidization of pinned islands,
which in turn depends on the sliding velocity, assuming
smooth sliding. If the individual wave pulses could be
studied experimentally, information about the detailed
fluidization process of a single island could be gained.
Let us estimate how many islands are fluidized per unit
time. Assume that the contact area has a radius R =35
pm. If an average pinned island has a diameter D = 1000
A, then N ~10° island would occur at the interface. Now
an island will exist for a time 7 before the surface stress
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reaches the critical value o, necessary for fluidization.
At the time of fluidization the local elastic displacement
of the solids at the island equals Al~D?g,/k,~1 A.
Hence we must have v7=Al or 7=10"*s if v =1 um/s.
Hence the rate of wave pulses emitted from the sliding in-
terface will be of order 10° per second. The duration of
each wave pulse is of the order of D /¢ ~107!! 5. These
estimates are very rough, but indicate that it may be pos-
sible to resolve the individual wave pulses.

IV. SUMMARY AND CONCLUSIONS

During sliding of a block on a lubricated substrate, the
friction force at low sliding velocities is usually found to
be velocity independent. This indicates that rapid pro-
cesses occur at the sliding interface, even if the center of
mass of the block moves arbitrary slowly relative to the
substrate. In this paper I have suggested that, in bound-
ary lubrication, the lubrication layer has a granular state
with solid pinned adsorbate islands which fluidize and re-
form during the sliding process. During the time period
that an adsorbate domain remains in a fluidized state, the
local elastic stresses built up in the elastic bodies during
sticking will be released, partly by emission of elastic
wave pulses (sound waves) and partly by shearing the lu-
brication fluid. :

At low sliding velocity stress domains occur in the
block and the substrate. In the absence of thermal excita-
tions (i.e., zero temperature), the stress domains form a
critical state, with a continuous distribution P (o) of local
surface stresses o extending to the critical stress o,
necessary for fluidization of the pinned adsorbate struc-
ture. The role of temperature-activated processes (relaxa-
tion and creep) has been studied and correlated with ex-
perimental observations. In particular, the model ex-
plains in a natural manner the logarithmic time depen-
dence observed for various relaxation processes; this time
dependence follows from the occurrence of a sharp step-
like cutoff at 0 =0, in the distribution P (o) of surface
stresses. Finally, I have suggested a simple experiment to
test directly the theoretical predictions: by registering
the elastic wave pulses emitted from the sliding junction,
e.g., by a piezoelectric transducer attached to the elastic
block, it should be possible to prove whether, during uni-

J

N(o,t +At)=N(o—Ac,t)—N(o,t)Atve PRE +§

The first term on the right-hand side of this equation
describes the number of stress blocks which at time ¢ had
the stress in the region o — Ao to o; at time 7 + Atz these
stress blocks occur in the stress region o to o+ Ao be-
cause of the motion x =vt. The second term describes
the number of stress blocks which have been thermally
excited out of the same stress region. Note that
AE(0)=U(o,)—U(o) is the elastic barrier which must
be overcome by thermal excitation before the block will
be removed from the stress interval o to o +Ac. Finally,
the last term, which is nonzero only if ¢ =0, describes the

B. N. J. PERSSON s1

form sliding at low velocities, rapid fluidization and re-
freezing of adsorbate domains occur at the interface.

The theory presented in this paper may have implica-
tions for other sliding friction problems, e.g., the sliding
of charge-density waves. %’

APPENDIX A

I estimate the prefactor v in expression (7) for the
probability rate for a stress domain to jump over the bar-
rier to the sliding state. We can visualize this process to
occur by a bulk phonon wave packet arriving to the stress
block and locally increase the stress to the level necessary
for the block to start to slide. Since the motion of a stress
block is overdamped, we use Kramers’ formula in the
overdamped limit to obtain

v=od/2my) ,

where (see Sec. IIIB) w3=k,/m ~c?/D? and ¥ ~c/D.
Hence

v~c/(2wD) .
Assuming ¢ ~2000 m/s and D ~300 A gives v~ 1005~ !,

APPENDIX B

Let us first derive an equation of motion for the distri-
bution function P(o,t), which we assume is normalized
so that

ﬂ-ﬂ

[ doPo,n=1. (B1)
Let N (o,t) be the number of stress blocks having surface
stress between o and o+Ao. We have N(o,t)
=NyP(0o,t)Ao, where N, is the total number of stress
blocks. Assume that x =wt, i.e., that the big block moves
with velocity v. Let us consider the short-time interval
At it takes for the surface stress o of a pinned block to in-
crease with the amount Ao, i.e., k,vAt =84 Ao. Let us
now write down an equation for the number of stress
blocks which, at time ¢ + At, have surface stresses be-
tween o and 0 +Ao. We have

S N(o',t)Atve PAEC) L N (o 1)

’

o

[
increase in the number of stress blocks with zero surface
stress which results from all the stress blocks which have
been thermally excited over the barrier
AE(0)=U(o,)—U(o) or driven over the barrier by the
motion x (¢); we assume that after fluidization of the ad-
sorbate layer a block rapidly relaxes down to the state
where the surface stress equals zero, after which the ad-
sorbate layer refreezes and the block returns to the
pinned state. Now, expanding in the small quantities At
and Ao, using Ao /At =k v /8 A4, gives
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AN kv gN —BAE(e) —pagon . N(ogt)
—t—n=— + "t ot —
Y + 54 30 vNe 8,0 §VN(0 Je AL
Going to the continuous limit by replacing
8503 —80) [do,
o
8,.0/At —(kv/8A4)8(0)
gives
0P KWW OP __ pp @)t 5(0) | [dovp(ohne PEC+ X pig | (B2)
ot 8A do ? 5A a»

Note that this equation conserves probability: integrat-
ing (B2) over o from —o, to o,, using P(—o,,t)=0 (we
assume sliding along the positive-x direction) gives

d %
” fﬁaadoP(o,t)——O ,

1

r

so that if the normalization condition (B1) is satisfied at
time ¢ =0 it will be automatically satisfied for all other
times.

Let us study steady sliding. In this case dP /3t =0 and
(B2) reduces to an ordinary differential equation for
P(o,t)=P(o):

kv
- ar _ —BAE(0) ' , —BAE(0") !
vPe +6(o) fdoP(U,t)e -+ 54 P(aa,t)] s

with the solution

o
—(SAv/klv)fodo’exp[—~BAE(a')]

P(o)=CO(0o)e , (B3)

where C is determined by the normalization condition
(B1). The force F which give rise to the sliding velocity v
is determined by the equation

fi“o do AoP(o)
F= 2 . (B4)

f i“oad o Pl(o)
Let us first consider the large-v limit. Assume that

a << 1, where a=F,v/(2k vBe). In this case, to leading
order in a~1/v, Eq. (B3) gives

P(o)~C l—zgﬁifgdo’e_ﬁ’w("')
o, Yo

o
7, ~2ape/a,) [ do’ expl ~Bel1— (0" /o, ]}
oe

J=["d(o /0,0 /0,
0

4 ’ 2
~(2aBe/a,) [ odo’ exp{ —Bel1— (0" /5 ,)*}

Substituting this into (B4) gives, to leading order in 1 /v,

_Fo

F== [1—zaﬁef0‘d§<§—§2)e TBaE (ko) ]

’ (BS)

where Fy=o0,A is the static friction force after an
infinitely long contact time. Using AE =¢[1— (o /0, 2]
the integral in (B5) can be evaluated to give

kpT |

2e

2

F,v
kv

F
F~-2 1%
2 2Be

. (B6)

Next let us consider small sliding velocities. Assume
that a >>1 but a exp(—2B€) <<1. In this case the sliding
force can be evaluated as follows. Let us consider the in-
tegral I which occur in the nominator of (B4):

=ci(1,2+J),

—1).
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Now it is easy to see that the main contribution to J F=ldco 14+2J
comes from when o =0, and o' =0o,. Hence let us intro- 2 2 1+J
duce

Fopyp=Bo iy Ly, | 2Pk (B7)
o=0,(1—£), 2 2 28¢ V| F,v
o'=0,1-8), In the extreme low-v limit, where aexp(—2fB¢€)>>1,

only the o =0 region in the integral in the exponent of

expand relevant terms to linear order in £ and ¢, and per- (B3) will contribute, and we can approximate

form the & integral. This gives, after a few
simplifications, Po)~CO(c)e  BAYe/k1vIexp —BAEQ)]

Substituting this into (B4) gives
F~(Fy/2aBe)eP=Ny(k v /v)ePe .

Note that F <<F,, and that the friction force is propor-

1 —
J:fodg(e—aexp( ZBeg)_l) )

Let us set p=exp( —2Bef) so that

J= f ! jﬂ_(e —an_1qy tional to the sliding velocity v: this is the creep region.

e 2 2Ben Next let me show how result (12) obtained above by

Since we have assumed a >>1 the leading contribution to ~ elementary arguments can be obtained from Eq. (B2).

J for small v will be Consider the time variation of the stress distribution

P(ot) after an abrupt stop of the sliding motion at time

Je— [' 41 __ 1 In(a) . t =0, i.e., v =0 for ¢ >0. In this case, for ¢ >0, Eq. (B2)
1/a 2f3en 2Be reduces to the ordinary differential equation

The denominator in (B4) can be evaluated in a manner ar _ —yPe _BAE(”)+8(0)de'vP(0' t)e BAE(0)
similar to the nominator, and equals o,(1+J). Hence, to dt ’

leading order the sliding friction is given by This equation gives

P(O’,I):CG — vt exp[—BAE(a)]+8(o. ) fotdtlvfogada'lce —wvt'exp[ —BAE(0')]—BAE(o') . (B8)
[
We assume that AE =¢€[1— (0 /0, )2], and substitute re- Fy 1 4 In
sult (B8) into (B4) to obtain = Ble e—me_q;L 1+ /3—22_ e Vi
F= f"ada Alo /o )e~vtexp{—[3’e[1—(0/0a)2]]
a .
0 - ;206 1_/;;_‘_1__7]_ 1+ ,_1:;;2 A
Introducing ¢ K
To first order in 1/f3€ this equation gives
o=0,1-§), . 1 lnwt
r)«’::e —2Beg 0 2 526 ’
gives and hence AF /F,~(B2¢)” ' Invt in agreement with (12).
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