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We study the eKects of impurity scattering on the low-energy edge-state dynamics for a broad
class of quantum Hall fluids at filling factor v = n/(np+ 1), for integer n and even integer p. When p
is positive all n of the edge modes are expected to move in the same direction, whereas for negative
p one mode moves in a direction opposite to the other n —1 modes. Using a chiral-Luttinger model
to describe the edge channels, we show that for an ideal edge when p is negative, a nonquantized
and nonuniversal Hall conductance is predicted. The nonquantized conductance is associated with
an absence of equilibration between the n edge channels. To explain the robust experimental Hall
quantization, it is thus necessary to incorporate impurity scattering into the model, to allow for
edge equilibration. A perturbative analysis reveals that edge impurity scattering is relevant and
will modify the low-energy edge dynamics. We describe a nonperturbative solution for the random
n-channel edge, which reveals the existence of a disorder-dominated phase, characterized by a stable
zero-temperature renormalization-group fixed point. The phase consists of a single propagating
charge mode, which gives a quantized Hall conductance, and n —1 neutral modes. The neutral modes
all propagate at the same speed, and manifest an exact SU(n) symmetry. At finite temperatures
the SU(n) symmetry is broken and the neutral modes decay with a finite rate which varies as T at
low temperatures. Various experimental predictions and implications which follow from the exact
solution are described in detail, focusing on tunneling experiments through point contacts.

I. INTRODUCTION

It was over a quarter of a century ago that pioneering
theoretical work on one-dimensional interacting electron
gases demonstrated the profound efFects that electron-
electron interactions can have in low-dimensional quan-
tum systems. Specifically, it was found that even weak
repulsive interactions destablize a Fermi-liquid descrip-
tion of a one-dimensional electron gas. Some years later,
Haldane coined the term "Luttinger liquid" to describe
the generic state of a one-dimensional interacting elec-
tron gas. Since then it has become possible to fabri-
cate one-dimensional electron gases in semiconductors, '

by clever lithography on semiconductor heterostructures.
Unfortunately, searches for non-Fermi-liquid properties
in such one-dimensional quantum wires has been im-
peded by spurious impurities, which tend to localize the
electrons. It has recently been emphasized, though,
that the quantum Hall effect might serve as an alter-
nate arena to study one-dimensional electron gases. In
the presence of a strong external magnetic field, a two-
dimensional electron gas forms an incompressible quan-
tum Hall Quid and the current that Bows is confined
to the edges. These current carrying edge states pro-
vide a unique laboratory for the study of "ideal" one-
dimensional systems.

Indeed, a key feature of quantum Hall edge states is
their resilience in the presence of disorder. For example,
electrons on the edge of a quantum Hall state at filling

factor v = 1, which corresponds to a full Landau level,
are completely insensitive to the presence of disorder on
the edge. This is because edge-state electrons propagate
in only one direction, and hence cannot be backscattered
by random impurities. There is no localization, and the
only efFect of disorder is to give the electrons an unim-
portant forward scattering phase shift. In fact, the very
quantization of the Hall conductance in the integer ef-
fect can be understood simply in the framework of the
Landauer-Buttiker theory, which relates the quantized
conductance to the perfect transmission of free-electron
edge states.

When there are multiple edge channels, such as for the
integer quantum Hall effect at n full Landau levels, v = n,
disorder plays a more important role by causing the scat-
tering of electrons between the different channels. How-
ever, in this case the channels all propagate in the same
direction, so that, as indicated in Fig. 1(a), the net cur-
rent is not altered by the scattering events. The total
transmission and resulting conductance is still quantized.
Nonetheless, it has been possible to probe such inter-
channel scattering by selectively "feeding" difFerent edge
modes from contacts at different chemical potentials, and
then examining the resulting equilibration.

In the fractional quantum Hall effect, the free-electron
edge-state theories can no longer be applied. Recently,
however, an alternative description has been proposed
by Wen in which the edge states in the fractional quan-
tum Hall effect are described by a chiral-Luttinger liquid
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(a)

FIG. 1. Schematic portrait of the edge of a quantum Hall
state with two channels. The presence of random impuri-
ties, denoted by the small circles, allows for momentum non-
conserving scattering between the difFerent channels. When
the channels move in the same direction (e.g. , v = 2), as
shown in (a), interchannel scattering does not efFect the net
transmission of the edge. However, when the channels move
in opposite directions, as in v = 2/3, depicted in (b), the
backscattering of charge plays a crucial role.

model. In particular, for the Laughlin states, such as
v = 1/3, the edge states consist of a single branch, and
are described by a single-channel chiral-Luttinger liquid.
As in the case of v = 1, edge disorder is expected to play
no role in these states. Recent experiments on tunneling
between edge states at a point contact in the v = 1/3
quantum Hall effect support the chiral-Luttinger liquid
model

For hierarchical quantum Hall states, there will be
many branches of edge excitations. In general, at the
nth level of the Haldane-Halperin hierarchy, the appro-
priate description is an n-channel chiral-Luttinger liquid.
In Wen's theory, the universal properties of the bulk Hall
fluid determine the direction of propagations of the edge
modes. In contrast to the integer quantum Hall effect,
there is a class of fractional Hall states for which the n
edge modes are not all moving in the same direction. '

Unfortunately, as we show in detail below, in these cases
the theory predicts a value of the conductance which is
not correctly quantized, depending on nonuniversal in-
teraction parameters at the edge.

In a recent paper with Polchinski, we argued that for
this class of &actional Hall states it is absolutely crucial
to include impurity scattering at the edge. Such scatter-
ing allows for charge transfer between channels moving
in opposite directions, as shown in Fig. 1(a), and can
modify the conductance. Specifically, we studied the ef-
fects of such interchannel impurity scattering at the edge
of a v = 2/3 quantum Hall state. o In the absence of
impurities, the simplest models i of a v = 2/3 edge con-
sists of two charged modes: one with conductance e /h
and another with conductance (1/3)e /h, which moves

in the opposite direction. We found that even weak in-
terchannel impurity scattering is relevant, and at low en-
ergies the edge is described by a new disorder dominated
phase. An exact solution in this phase revealed the pres-
ence of a single charged mode, which gave the correct
quantized conductance of 2/3(e /h), and a neutral mode
which propagates in the opposite direction. The neutral
mode was shown to possess an exact SU(2) symmetry.

In this article we elaborate significantly on the above
results and generalize them to &actional quantum Hall
states at higher levels of the hierarchy. Specifically,
we consider quantum Hall states at filling factors v =
n/(np+1), with p an even integer and n an arbitrary pos-
itive integer. Within 3ain's hierarchical construction,
these states can be achieved by attaching flux tubes with
p flux quanta to each electron, and putting the resulting
composite fermions in n full Landau levels. With this
convention, p can be a negative even integer, in which
case the filling factor is —v. For this broad class of
quantum Hall fluids, we find the presence of edge im-
purity scattering drives the edge modes to a new fixed
point in which the charge and neutral sectors decouple
at low energies. More specifically, the edge fixed point is
characterized by a single propagating charged mode with
conductance ~v~e /Ii and n —1 neutral modes. The n —1
neutral modes will be shown to have an exact SU(n) sym-
metry, implying that they all move at the same velocity.
The direction of propagations of the neutral modes with
respect to the charge mode is determined by the sign of
p, moving in a direction opposite to the charge mode for
p negative.

Since our initial Hamiltonian for the edge modes has
only one conserved U(1) charge, the physical electric
charge, the presence of the additional n —1 propagat-
ing neutral modes is quite surprising. However, the fixed
point to which the system scales at low energies has much
higher symmetry —an exact U(l) x SU(n) symmetry—
than the original Hamiltonian. Indeed, it is the presence
of the SU(n) symmetry at the attractive fixed point that
leads to the existence of the n —1 additional neutral
modes.

Since the fixed point is a zero-temperature fixed point,
the SU(n) symmetry is broken at finite temperatures. It
follows that at T g 0 the neutral modes are not conserved
and will decay with a lifetime w, or equivalently a finite
decay length E = v 7, where v is the velocity of the
neutral modes. By analyzing the leading irrelevant oper-
ators, which control the flows into the zero-temperature
fixed point, we will show that the decay rate vanishes
algebraically at zero temperature:

1 2oc T

In contrast, the charge mode cannot decay, even at finite
temperature, since electric charge is always conserved.
However, due to irrelevant operators, which couple the
charge and neutral sectors, the charge mode can scatter
off the neutral modes. This leads to a charge mode that
propagates with a dispersion u = vzq+iDq, with a "dif-
fusion" constant D, which is temperature independent at
low-temperatures. This implies a diffusive spreading of a
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charge pulse as it propagates along an edge.
On length scales longer than 8, it is appropriate to

adopt a "hydrodynamic" description of the edge propa-
gation, in which there is only a single propagating mode
associated with the conserved electric charge. However,
this hydrodynamic picture leaves out important low-
temperature physics, which can be accessed via interedge
tunneling. We shall return to this point in Sec. IV.

The existence of an attractive zero-temperature fixed
point with higher symmetry than the underlying Hamil-
tonian is reminiscent of Fermi-liquid theory. The zero-
temperature Fermi-liquid fixed point has, in addition to
conserved electric charge, an infinity of conserved charges
[and hence an infinity of U(1) symmetriesj associated
with each point on the Fermi surface. This is the symme-
try responsible for the quasiparticle excitations. At finite
temperatures, this symmetry is broken, leading to a finite
scattering lifetime for the quasiparticles, proportional to
T . Since the total electric charge is conserved, there
remains a propagating zero sound mode in a Fermi liquid,
which does not decay. It is amusing that we find a scat-
tering rate for the neutral edge excitations, Eq. (1.1),
which vanishes with the same power of temperature
T —as the quasiparticles in a Fermi liquid.

At low temperatures, the restoration of the full SU(n)
symmetry at the edge of a random v = n/(np+ 1) Hall
state has important experimental consequences. When p
is negative, and the neutral modes travel in the opposite
direction to the charge mode, the very quantization of
the Hall conductance rests on this symmetry. As we show
explicitly below, in the absence of edge randomness which
equilibrates the edge modes, a nonuniversal value of the
Hall conductance is predicted for p ( 0.

The presence of the SU(n) edge symmetry also im-
plies universal values for the scaling dimensions of the
edge tunneling operators. These scaling dimensions are
experimentally accessible, by measuring the temperature
dependence of the tunneling conductance through a point
contact. ' ' Our central prediction is that when p is
negative, the conductance through a point contact in a
v = n/(np + 1) Hall Huid should vanish as

TABLE I. Tunneling exponent n for the tempera-
ture-dependent conductance (1.2) through a point contact
separating two quantum Hall Huids at 6lling factor v.

1/3 2/5 3/7 4/9

2/3 4/7 5/9

8/3 31/5

II. THE CLEAN EDGE

A. The model

The outline of our paper is as follows. In Sec. II, we
describe the model for an impurity free quantum Hall
edge at filling v = n(np + 1), which consists of an n
channel chiral-Luttinger liquid. We split the model into
two pieces, denoted So and Si, and show that the first
piece can be conveniently decoupled into a charge sector
and a neutral sector with n —1 modes. We then demon-
strate that So possesses an exact U(1) x SU(n) symmetry.
This symmetry is not respected by Si, however. In Sec.
III, we consider the addition of the most general random
impurity scattering terms. Although these random terms
break the U(1) xSU(n) symmetry of So, we show in Sec.
III A that provided Si is ignored the random model can
be solved exactly. In terms of new fields, the exact so-
lution reveals an exact U(1) xSU(n) symmetry. In Sec.
IIIB we show that the exact solution is perturbatively
stable in the presence of nonzero Sq. The effects of small
nonzero temperatures are considered in Sec. IIIC. In
Sec. IV, we use the exact solution of the random edge
to calculate the scaling dimension of edge tunneling op-
erators, which are relevant to experiments on tunneling
through a point contact. Section V is devoted to specific
experimental predictions, and a more general discussion
of our central results.

G(T) oc T (1.2)

where

For the p = —2 sequence, the predicted exponents are
displayed in Table I. The exponents approach o. = 4 as v
approaches 1/2. For non-negative p, an exponent n = 2p
is predicted.

A measurement of temperature exponents consistent
with these would give indirect evidence of the neutral
modes, since the electron that tunnels through the point
contact is "built" &om a superposition of the charge and
neutral edge modes. The neutral modes should be mea-
surable more directly, though, via time domain experi-
ments, which we discuss below. In this way, one might
be able to measure directly the temperature-dependent
decay rate of the neutral mode roughly analogous to a
direct measurement of a decaying Fermi-liquid quasipar-
ticle.

The topological order of a quantum Hall state in the
nth level of the hierarchy is characterized by a symmetric
n x n matrix K. The low-energy physics of a hierarchical
quantum Hall state may be described by n gauge fields
with an effective action,

2
Sbulk-

4vr

z 2G ~ij EpvgvG (2.1)

(2.2)

In this basis, the filling factor is given by

v=) K,, '. (2.3)

We use the "symmetric" basis in which the electron three-
current is given by
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For the quantum Hall states at filling v = n/(np + 1),
in both the Haldane-Halperin hierarchy and in the Jain
construction, the K matrix is given explicitly by

K,, =8;, +p. (2.4)

(2 5)

The K matrix characterizes the charge and statistics
of the bulk quasiparticle excitations. SpeciGcally, the
quasiparticles are labeled by a set of integers m~, with
j = 1, 2, . . . , n, and in the symmetric basis have a charge
(in units of the electron charge)

Sp —— dxd7. )—(0 P;)K,, (i,O P, )+ v. ) (0 P;)
U

(2.7)

and

sity fluctuations in the bulk is imposed: V' x a = 0, for
all i = 1, 2, ..., n. Here a vector refers to the two spa-
tial components. Scalar fields can then be introduced
to solve these constraints, a = V'P;, one for each gauge
Geld. The edge excitations are then described in terms
of these scalar fields. The appropriate efFective action at
the edge can then be written as S = Sp + S1 with

and statistics angle 1
Si —— dxd7. ) V~0 $0 p, ,4' (2.8)

—=) mK,—,'m, .
'v

(2.6)

In this approach, all of the universal properties of the
bulk quantum Hall state follow directly from the K ma-
trix.

It is worth emphasizing the implicit assumptions that
were needed to arrive at the simple form (2.1). These
can be perhaps most easily understood in terms of the
Ginzburg-Landau description of the Hall eKect. For
v = n/m with m odd, n electrons bind with m vor-
tices forming a "molecule" with bosonic statistics. At
the magic rational filling factor v = n/m, all of the
vortices induced by the magnetic Geld are accommo-
dated in this way. The electron/vortex composites can
then Bose condense, leading to the quantum Hall ef-
fect. The effective action (2.1) describes the long wave-
length density fluctuations of this condensed fluid. The
bulk quasiparticle excitations, referred to above, are es-
sentially excitations involving breaking apart the elec-
tron/vortex composites. Although the K matrix deter-
mines the charge and statistics of these quasiparticles,
the energy gap for their creation is not specified by the
effective action (2.1). Provided the temperature is well
below these energy gaps, the elfective action (2.1) pro-
vides an adequate description. However, at filling factors
away from v = n/m, there will be some residual vortices,
and the electron/vortex composites can only condense if
these residual vortices are pinned and localized by bulk
impurities. In this case, there will be many low energy,
but spatially localized, excitations involving rearranging
the positions of these vortices. The effective action (2.1)
can presumably still be used to extract transport prop-
erties, though, since at low temperatures the localized
vortices will not contribute signiGcantly to the transport.
(This is not the case for other physical properties such as
the electronic specific heat. ) Although the quasiparticle
excitations are not important at low T in the bulk, they
play a crucial role at the edge. At the edge, their gap
vanishes and they form the edge states, which we next
discuss.

As shown by Wen, the edge excitations may be de-
scribed by eliminating the bulk degrees of freedom from
(2.1). Upon integration over a', a constraint on the den-

with P, V,; = 0. Here x is a one-dimensional spatial
coordinate, which runs along the edge, and w is imag-
inary time. In addition to the K term, whose form is
determined solely from the bulk physics, we also have
interaction terms of the form 0 Q, B P~. These interac-
tion strengths are nonuniversal, and depend on the form
of the edge confining potential and the details of the
electron-electron interactions (which we assume here to
be short ranged, screened by a ground plane). For later
convenience, we have split these interaction terms into a
constant velocity piece, v in Sp, and a traceless velocity
matrix V~ in S1.

It follows from Eq. (2.2) that the one-dimensional elec-
tron charge density along the edge is given by

(2.9)

f( )
iP". rn P (x) (2.10)

for arbitrary integers m~, creates an edge excitation at
x with charge Q given in (2.5). Note that the quantum
numbers describing the charged edge excitations corre-
spond precisely to the quantum numbers of the bulk
quasiparticles.

B. Absence of edge equilibration

The beautiful feature of the efFective action (2.7) and
(2.8) is it simplicity: It is quadratic in the boson fields,
and all physical quantities can thus be easily computed.
Unfortunately, when p is negative, the results are in seri-
ous conflict with experiment. The most worrisome con-
flict involves the Hall conductance itself, which we Gnd

Operators that create charge at the edge can be deduced
by noting that the momentum conjugate to the Gelds
is II; = (1/2m)K;~ Bi/iz. T. hus, an operator of the form
exp i/, (x), which can be expressed as a spatial integral
over the conjugate momenta, creates "instantons" in the
boson fields P~ at position x. These instantons carry
electron charge, as can be seen from (2.9). Specifically,
the general edge creation operator
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1
Iedge ——e—) 4 j,2r j=1

(2.11)

the edge current at a point x which flows in linear re-
sponse to V(x') may be computed directly. Specifically,

I,g~, (x) = f dx'D (T —T', w -+ 0)V(T'), (2.i2)

where the retarded response function is given by

0 e
D (x —x', (u) = —i dte * ')

(2jr)'5

([p;(*,0), (9 (i, (*',t) j) . (2.13)

is not given by the quantized value ~v~e2/6. 2s

The diKculty occurs when all of the edge modes do not
propagate in the same direction. As shown in Appendix
A, the sign of the eigenvalues of the K matrix determines
the direction of propagation of the eigenmodes. We show
in Sec. IIC below that for v = n/(np+ 1) the K matrix
has n —1 degenerate eigenvalues equal to one, and one
eigenvalue equal to (1 + np). Thus, when p is negative,
there is one mode that moves in a direction opposite to
the other n —1 modes.

To show that the conductance is nonuniversal for neg-
ative p and to gain a physical understanding for why this
is, it is useful to generalize the Landauer-Buettiker trans-
port theory to that of an interacting Luttinger liquid. To
this end, consider an edge state that flows between two
reservoirs, which are in equilibrium at different chemical
potentials (see Fig. 2). We model the reservoirs by con-
sidering an infinite edge, in which the "sample" resides
between xL, and x~. The left and right reservoirs are
then defined for x & xL, and x & x~, respectively. We
suppose that the system is driven from equilibrium by an
electrostatic potential eV(x), which couples to the edge
charge density p(x), and is a constant eVL, ~Ri in the left
(right) reservoir. The underlying physical assumption of
this approach is that the edge states that emanate from
a given reservoir are in equilibrium at the chemical po-
tential of that reservoir.

Since the edge current operator is linear in the boson
fields,

Consider first the simple case of a single channel edge,
such as v = 1/m, described by the action (2.7) with
K~q ——gm. Here g = +1 determines the direction of edge
propagation. Using (2.7), the response function (2.13)
may be readily computed by analytically continuing the
imaginary time response function

1 6
D(x —x', (u„)= ———) e'~~

mh (2.14)
q((7iw —vq)

to real &equencies, iu —+ ~+ ie. We then find

2

D (x —x, (u) = ——8()7(x —x ))R 1 e I

mh
ag(~+is) (m —x ) jv

'U
(2.15)

1 8
led e = VI.mI (2.16)

The two-terminal conductance of a Hall bar in the v =
1/m state follows if we consider, in addition, the oppo-
site edge, which emanates from the right reservoir and
contributes a current —1/m(e /6) VR. The net current is
thus I = G(VL, —VR), with an appropriately quantized
two-terminal conductance: G = (1/m)(e2/h).

This approach can easily be generalized to the hierar-
chical quantum Hall states, which have multiple channels.
However, the situation is more complicated if channels
on a given edge move in both directions. In Fig. 2, we
consider a two-channel example in which the top edge
contains two modes, which propagate in opposite direc-
tions. Clearly, the current on the top edge will depend
on the voltages in both reservoirs. In Appendix A, we
show that, in general, the edge current may be written

2

I,dg,
———(g+VI, —g VR) i (2.i7)

Note the presence of the 0 function, which shows that the
current at x depends only on the voltages at positions x'
that are "upstream" of x. This reflects the chiral nature
of the edge-state propagation. In the limit ~ —+ 0, the
integral in (2.12) will be dominated by values of x' that
are deep into the "upstream" reservoir. Thus, for g = +1,
that corresponds to an edge that propagates &om left to
right, the current is

where g+ (g ) is the total dimensionless conductance
from all right (left) moving channels. When all of the
channels move in the same direction either g+ or g will
be equal to zero. However, for p ( 0, when channels
move in both directions, they will both be positive.

The two-terminal conductance then follows by consid-
ering the other edge, which carries a current g VL, —
g+V~. Thus, we find

X L
X R e

G =
~ (g++g-). (2.1S)

FIG. 2. Schematic diagram of a two-terminal conductance
measurement for a quantum Hall state with two channels,
which move in opposite directions [i.e. , v = 2/(2p+ 1) with

p ( 0]. The shaded regions denote the reservoirs.

Notice that the conductances of each mode add in par-
allel, irrespective of their direction of propagation. In
Appendix A, we explicitly compute g+ and g using the
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efFective action (2.7) and (2.8), and show that they are
nonuniversal, depending on the interaction strengths V~
in (2.8). However, the combination g+ —g = v is shown
to be universal. Thus, we see that if all channels move
in the same direction, the two-terminal conductance has
the quantized value G = ~v~e /h. However, when there
are channels moving in both directions, the two-terminal
conductance will be nonuniversal, and will, in general, be
larger than ~v~e2/h.

It is straightforward to generalize the above approach,
based on the right and/or left conductances, g~, to com-
pute the conductance measured in a four-terminal geom-
etry. In particular, we find that the four-terminal Hall
conductance is given by

G + (2.19)
h g+ —g

Thus, it is only when all channels propagate in the same
direction that G~ is universal and equal to ve /h.

In Appendix A, we also show that the scaling dimen-
sions of tunneling operators are similarly universal only
when all channels move in the same direction. These
scaling dimensions enter into experimentally accessible
quantities, such as the temperature dependence of tun-
neling through a point contact. We will discuss this point
in more detail in Sec. IV.

We thus see that when p is negative, the Luttinger edge
model, (2.7) and (2.8), predicts a two-terminal and Hall
conductance that is not quantized, in glaring contradic-
tion with experiment. Clearly some important physics
must be absent &om the simple efFective action (2.7). A
clue can be seen from Fig. 2, where it is clear that in a
transport situation, right moving edge modes are in equi-
librium with the left reservoir, and left movers in equi-
librium with the right reservoir. Thus, in the presence of
a nonzero source-to-drain voltage, opposite moving edge
modes on a given edge will be out of equilibrium with
one another.

But since these modes are in close proximity, what
stops them &om equilibrating? In the efFective action
(2.7) and (2.8) there are simply no terms that transfer
charge between the difFerent edge modes, to allow for pos-
sible equilibration. But surely in real experimental sys-
tems there will be equilibration processes present. A con-
straint is that charge transfer between edge modes must
conserve momentum along the edge. However, difFerent
edge modes will have difFerent momenta —the gauge in-
variant momentum difFerence between two modes being
proportional to the magnetic Aux threading the space
between them. Since in equilibrium the difFerent edge
modes are at the same energy, processes which transfer
charge between two edge Inodes, with the emission of
phonons or photons to take up the momentum, will not
conserve overall energy. These processes are thus forbid-
den.

However, if there are impurities near the edge, as there
will be in any real sample, the momentum of the edge
modes need not be conserved. Momentuxn can be trans-
ferred to the center of mass of the crystal sample, through
the impurities. Thus, a disordered edge with impurity
scattering will allow for possible equilibration between

the difFerent edge modes. In Sec. III, we study the efFect
of impurity edge scattering. Before doing so, it is useful
to first establish the existence of a special SU(n) symme-
try in the action So. This symmetry will be crucial in
arriving at a solution of the disordered edge.

C. SU(n) symmetry o& So

C'* = &v&~ (2.20)

where the matrix 0;~ is an orthogonal transformation,
0 0 = 1, given by

O,~
=D' (2.21)

It has been known for some time that the structure
of the K matrix at filling v = n/(np+ 1) implies that
Eq. (2.1) possesses a hidden SU(n) symmetry. 22 27 This
is most readily seen for the special case p = 0, which
corresponds to the integer quantum Hall effect with filling
v = n. However, additional nonuniversal terms should
be added to (2.1) (for example, terms with two or more
derivatives), and these terms will not respect the SU(n)
symmetry. So, in general, the SU(n) symmetry is not
expected to be manifest in the bulk. Again, this can be
seen clearly in the integer quantum Hall efFect (p = 0),
where the quasihole excitation energies in the n full levels
will not be the same.

The SU(n) symmetry implied by the form of the K
matrix is also manifest at the edge. For the integer Hall
efFect (p = 0) the SU(n) symmetry is apparent in the edge
action So, which corresponds to n identical channels of
chiral fermions. However, as in the bulk, this symmetry
will, in general, be broken by nonuniversal terms, for
example, the velocity matrix Vz in Si, which has no
special symmetry properties.

A random edge potential will introduce additional
terms, which also break the SU(n) symmetry. However,
the very presence of these random terms drives the edge
at low energies into a phase in which the SU(n) symme-
try is restored. This will also be the case for nonzero
P 0

We now show that the action So has an SU(n) sym-
metry even for nonzero p. This will be accomplished via
a transformation which decouples the charge degree of
freedom, described by Pz ——P, P, , from the remaining
neutral degrees of freedom. The neutral sector can then
be mapped onto the neutral sector of a v = n edge, which
is described by SU(n) chiral fermions. It is useful to first
introduce soine SU(n) notation. We denote the n —1
diagonal generators as D with m = 1, 2, ..., n —1. To
be specific, we take D to be n x n diagonal matrices
with m ones along the diagonal, starting from the upper
left, with the next diagonal element being —m, to make
the matrix traceless. The matrices are then divided by a
normalization factor gm2 + m to make tr(D D ) = l.
We denote the n(n —1) nondiagonal generators of SU(n)
as R'~, (i g j = 1, 2, ..., n), which have a single nonzero
matrix element, the (ij) element, equal to one.

The decoupling of the charge and neutral sectors may
be performed by defining new fields



51 IMPURITY SCATTERING AND TRANSPORT OF FRACTIONAL. . . 13 455

for i = 1, 2, ..., n —1 (no sum on j) and

(2.22)

1 1.
Sp = dxd7 —&7- p~ p + v ~ p47t. V

(2.23)

It can be readily checked that this transformation diago-
nalizes the matrix K, giving for K = OKO a diagonal
matrix of the form K,~

= b;~ (1+np8; ). Upon defining a
charge field P~ = ~nb = P,. P;, so that the total edge
density is given by p = 8 P~/2m, the action S0 is seen to
decouple into a charge and neutral sector, SD —Sp + S
with

1
dxd'r ) pi (z)8~Q~ (3.1)

where the p, are spatially dependent random potentials,
which couple to the density in each mode. These terms
are unimportant, however, since they can be eliminated
from the action via a transformation,

solved exactly.
In the presence of impurity scattering, there are many

different types of random edge operators, which can be
added to the pure action S0+ Si given in (2.7) and (2.8).
Here we focus on those that are most relevant. The sim-
plest random terms will take the form

1
n —1

S = dxdv. — 0 C, iO + vO C, .
'=1

(2.24)

Notice that when the even integer p is negative, v
n/(np + 1) is negative, and the charge mode moves in a
direction opposite to the (n —1) neutral modes.

In order to make the SU(n) symmetry more explicit,
we map S onto the neutral sector of SU(n) fermions.
To accomplish this, we introduce an additional auxiliary
Geld, 4, which has an action identical to each of the
neutral modes in S . Upon adding this action to it, one
has

(2.25)

where we have defined 4; = 4; for i = 1, 2, ..., n —1. It is
finally convenient to rotate back, via P, = O~;4~, which
leaves the form for S unchanged. The final step is to
fermionize the resulting boson 6elds

(2.26)

In this way the free action can finally be expressed as

Sp ——Sp + dxd~ 0~ —ivy~ ) (2.27)

where @ here denotes an n-component fermion field. The
SU(n) symmetry of the neutral sector is thus manifest.
The U(1) charge sector of the above chiral fermions is

precisely the auxiliary field 4, introduced above. This
field does not enter into any physical quantities, but al-
lows for the above convenient (fermion) representation of
the SU(n) symmetry in the neutral sector.

4;(z) -+ 4;(z) + f Ch') M,,p., (z'), (3.2)

where M, = vb;~ + V~.
More important are random terms that tunnel quasi-

particles between the n edge modes, allowing for equi-
libration. The most relevant operator, which tunnels
charge between channel i and j is given by exp'(P; —&P~).

A random impurity potential will give rise to terms in the
action of the form

Sranporn = dxd7 ij x t- ' + H.c.
i)j

where (,~ (x) are spatially random tunneling amplitudes
between edge modes i and j. These amplitudes are com-
plex because the different edge channels have different
momenta. Indeed, for a clean edge, the tunneling am-
plitude would oscillate, as expik, jx, where the gauge in-
variant momentum difference k,j is proportional to the
magnetic Aux per unit length enclosed between the two
channels. This would be ineffective at equilibrating; how-
ever, with impurity scattering present, momentum of the
edge modes is not conserved, and equilibration can take
place.

Since the operators entering into S, „g are nonlin-
ear in the boson 6elds, the full random model appears
rather intractable. One approach is to study the effects
of the random potential (,z(x) in perturbation theory
about the free theory, S0+ Si. This is problematic, how-
ever, because the perturbation theory is divergent at low
energies. One can, nevertheless, define a perturbative
renormalization-group transformation in powers of the
variance, W,~, defined via [(; (x)(;~(0)],„,= W,~b(x),
where the square brackets denote an ensemble average
over realizations of the disorder. The leading order
renormalization-group Bow equations take the form

III. THE RANDOM EDCE " = (3 —2A;, )W,~, (3.4)

Having established the inadequacies of the clean edge,
described by the effective action (2.7) and (2.8), we con-
sider now the effects of edge impurity scattering, which
allows for interchannel equilibration. With disorder
present we will show that the low-temperature physics
is described by a new random 6xed point, that can be

where 4;j is the scaling dimension of the operator O,j =
exp[i(P; —P~)] evaluated in the free theory, defined as
(Ot(w)O(w = 0)) 7 2+ These scaling .dimensions are
computed explicitly in Appendix A. At the SU(n) sym-
metric point, where Sq ——0, we find that L,j = 1 for all
of the tunneling operators. This fact is most easily seen
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by exploiting the fermionic representation described in
Sec. II. It follows that for S1 ——0 weak disorder is rel-
evant, and grows stronger under scaling to low energies,
for all v = n/(np+ 1). Moreover, as discussed in Sec. IV,
for non-negative p the scaling dimension does not depend
on the nonuniversal velocities which enter into the action
S». Thus, for all fillings v with non-negative p, weak dis-
order is relevant, and must be treated nonperturbatively.
For fillings with negative p, such as v = 2/3, the scaling
dimensions 4;j will vary with the nonuniversal velocities
entering in S». If these velocities are tuned so that 4
exceeds 3/2, then there will be an edge phase transition
into a phase in which disorder is irrelevant. For filling
v = 2/3, this phase transition was analyzed in Ref. 20.
In this paper, we will con6ne our attention to the phase
in which b„~( 3/2, where the disorder is relevant.

At 6nite temperatures, some information can be
obtained using perturbation theory in the impurity
strength. This will be discussed in Sec. IIIC, and in
more detail in Appendix B. However, it is clear that the
low-temperature physics lies outside of the perturbative
regime. As we now show, however, it is possible to use the
fermionic representation of the SU(n) symmetric model
(with Si ——0) to obtain an exact solution for arbitrary
disorder strength. In Sec. IIIB we go on to show that
the resulting random 6xed point is stable to weak pertur-
bations (nonzero Si), so that this soluble model provides
a description of the low-temperature physics in the entire
disorder dominated phase.

A. Exact solution: The random fixed point

Consider then the addition of random edge scattering
terms (3.3) to the SU(n) invariant action Sp ——S~ + S
in (2.27). While such terms naively break the SU(n)
symmetry, the solution below reveals the presence of a
hidden but still exact SU(n) symmetry in this random
problem. It is useful to first reexpress S, „g in (3.3)
in terms of the fermion fields appearing in Sp in (2.27).
Under the transformations described in Sec. IIC, P;—
P~ -+ P, —Pz, so we may identify

e~(4 —4~) ~ qt~~j q (3 5)

S, „g —— dxdv. ~M x (3 6)

where M(2:) is a random n x n matrix,

M(*) = ).X' (*)&*'+&,*,(*)&"]. (3 7)

Here B'~ is the off-diagonal SU(n) generator defined in
Sec. II. This allows us to rewrite S, „g in terms of
fermion fields as

nated &om the action by de6ning a new set of fermion
fields, g, which are related to the original fermions via a
suitable spatially dependent SU(n) rotation. Specifically,
upon de6ning a new fermion field,

@(&) = U(*)@(&)

with a unitary SU(n) rotation

(3.8)

U(x) = T exp
V

dx'M(x') (3.9)

with T an x-ordering operator, the action becomes sim-
ply

Sp+ S, „g = Sp+ dxd7$ (8 —i,vB )@. (3.10)

B. Stability of random Axed point

Having established that the action So+ S, „~ decou-
ples into independent charge and neutral sectors, we must
now take into account the nondiagonal interaction matrix
in S», which we have ignored above. Being nonrandom,
these terms couple the charge and neutral sectors and
break the SU(n) symmetry even after ensemble averag-
ing over the disorder. However, as we now show, these
terms are irrelevant at the random fixed point described
by (3.10). The randomness is crucial to guarantee the ir-
relevance of these operators. As we shall see, without the
inclusion of randomness, which is "hidden" in the repre-
sentation (3.10), the symmetry breaking perturbations in
S» are not driven to zero.

It is convenient to reexpress S» in terms of the fields
appearing in (3.10), namely, the charge field P~, and neu-

tral fermion fields g. Upon performing the orthogonal
transformation described in Sec. II C, it is apparent that
Si in (2.8) can be reexpressed as a sum of three types of
terms:

The action is quadratic in terms of these new rotated
fermion 6elds, with the neutral sector still possessing a
full SU(n) symmetry. We have successfully eliminated all
random terms by exploiting the SU(n) symmetry present
in the pure action So. Since the transformed action is
quadratic and the disorder does not occur explicitly, we
can define a simple renormalization-group (RG) transfor-
mation on P~ and the rotated fermions, @, which leaves
the action invariant. Our exact solution thus describes a
fixed point, with a U(1) charge symmetry and an SU(n)
symmetry in the neutral sector. However, it must be
borne in mind that we are actually describing a ran-
doxn 6xed point, with correlation functions of the original
6elds depending on the randomness via the above random
SU(n) rotation.

Notice that the charge sector S~ is completely unaf-
fected by the random tunneling. In addition, the neutral
sector, S + S, „g is purely bilinear in the Fermi fields,
but with a spatially random coefficient, M(x). These
random terms act as SU(n) symmetry breaking fields on
the quadratic action S . However, they can be elimi-

S»~ = dxd7 v~ B~ p

n —1

S»g —— dxd~ vq~0 4;8 C~,
i j=»

(3.11)

(3.12)
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n —1

Slc dx d'T v Ox pgm4 i ~

i=1
(3.»)

The coefFicients v~ (with p = a, b, c) can be expressed in
terms of the velocity matrix V~. The first term, involving
v, is innocuous and can be absorbed into S~, giving a
shift in the velocity of the charge mode. To analyze the
other terms, it is useful to reexpress the boson fields 4
in terms of the fermion fields

1—0 4 m gtD g m QtM (x)Q, (3.14)

where M (x) are n x n matrices given by

M (x) = U(x)D Ut(x), (3.i5)

with U(x) defined in (3.9). The unitary matrix U(x)
is a random x-dependent SU(n) rotation, which is un-
correlated on scales long compared to a mean free path
for interchannel scattering, I. v /W. Thus, M (x)
will similarly be random n x n matrices. Treating vb as
small, we can now show that the SU(n) fixed point de-
scribed by (3.10) is stable to this perturbation. Note first
that the operator in Sib involves four fermion fields, stan,

and so has a scaling dimension of b = 2, at the SU(n)
fixed point described by (3.10). Since the coefficient of
this operator is spatially random, we consider the linear
RG Qow equation for its mean square average, R'p oc v&,
which is of the form,

BWg = (3 —2h)Wb (3.i6)

The perturbation is clearly irrelevant. It should be em-
phasized. that in the absence of randomness, the dimen-
sion 2 operators in S1g are marginal and do not renormal-
ize to zero. Thus, disorder is seen to be absolutely critical
in the stability of the SU(n) Fixed point (3.10). The rea-
son why the random perturbation is irrelevant, while the
uniform perturbation is marginal, can be understood as
follows. The mean square average of the random pertur-
bation over a length scale L )) /, is an average over L/I
uncorrelated regions, and will hence decay as I . This
accounts for the renormalization-group eigenvalue of —1
in (3.16).

The above argument can also be used for the pertur-
bation Si, in (3.13), which mixes the charge and neutral
sectors. This operator also has a scaling dimension of
b = 2, and will have a spatially random coefficient v (x).
The variance W, of v, (x) obeys a linear RG flow equation
identical to (3.16) and will likewise scale to zero under a
RG transformation.

We thus see that the disorder has played a crucial
role in both driving the charge/neutral coupling to zero,
and driving the SU(n) symmetry breaking interactions in
the neutral sector to zero. The final fixed point theory,
described by (3.10), has a full U(1) xSU(n) symmetry,
a much higher symmetry than the underlying random
Hamiltonian.

C. Finite temperatures: The hydrodynamic regime

bS = dxd~8'~ x 8 p
tB'~ + c.c. , (3.17)

where v,'~(z) is a random coefficient which depends, as
in (3.15), on the random SU(n) rotation. Breaking the
SU(n) symmetry, this term explicitly violates the conser-
vation of the neutral modes.

It is convenient at this stage to rebosonize the "ro-
tated" fermion fields. We thus "undo" the steps that lead
us from Eqs. (2.24) to (2.27), writing g; = exp(iy;), and

y, = O~;y~. [In the absence of disorder we would thus
have y; = 4, in (2.24).] In terms of these new bosonic
fields, the fixed point action in (3.10) now takes the form

1
n —1

Sp+ S, „g ——Sp+ dxd~ — 0 y; iO + vB
4a i=1

(3.18)

where we have omitted the auxiliary "charge" mode, y

The exact solution (3.10) of the random edge that de-
scribes a stable zero-temperature fixed point can also be
used to extract physical properties of the edge at low but
nonzero temperatures. These properties will be deter-
mined by the structure of the fixed point itself, and the
leading irrelevant operators, such as those proportional
to v„above. At low but nonzero temperatures, these
operators have not had "time" to fully renorrnalize to
zero, and can then have an important effect on physical
observables. Although one can show that the irrelevant
operators do not modify the quantized Hall conductance
itself, they do dramatically effect the propagation of the
neutral modes at finite temperature.

To see why, we first note that the existence of the
propagating neutral modes is tied intimately to the exact
SU(n) symmetry in the neutral sector at the fixed point.
But at finite temperatures, this symmetry is no longer ex-
act, due to the presence of irrelevant operators, so that
the neutral modes should no longer be strictly conserved.
Thus, one expects that at finite temperatures the neutral
modes should decay away at a nonvanishing rate, 1/r
Equivalently, one expects a finite decay length, or "in-
elastic scattering length, " E = e 7 . On scales L much
larger than E, the neutral modes should not propagate.
Since the fixed point is approached as T ~ 0, however,
the decay length should diverge in this limit.

At wavelengths long compared to S, we thus expect
a hydrodynamic regime, in which the only propagating
modes are those required by conservation laws. Since the
only conserved quantity in this regime is the total elec-
tric charge, we expect a single propagating "zero sound"
mode.

In order to establish the existence of the hydrodynamic
regime and to compute the temperature dependence of
the neutral mode decay rate, we evaluate the self-energy
of the neutral mode perturbatively about the random
fixed point (3.10). The dominant contributions come
from the interactions vb and v, in Eqs. (3.12) and (3.13).
Notice that (3.13) contains terms of the form
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In this representation, we can now evaluate the self-
energy for y; perturbatively in v. For simplicity, we con-
sider here only contributions from the term v 2 in (3.17)
for which the corresponding operator has a particularly
nice bosonized representation,

Note that to leading order in W (or / ) (3.24) reduces
to (3.23). However, higher order terms in the expansion
are singular in the q —+ 0 limit and must be accounted
for in the correct long wavelength theory.

Using (3.24), we may then write the retarded neutral
boson Green's function as

where

BQQR Q=BQ (3.19) 1 —i(qE)
GRi(q, ~) = 2vr

q(ur —v q+ ij7. )
' (3.25)

~.xi = ~*(xi —x2) = PD'0.
2

* (3.20) which exhibits a neutral mode decaying at a rate

Since the perturbation ni2 only involves yi, its eKects
will be contained in the retarded Greens function

=v /E ocWT.
Tg

(3.26)

G, (,t) = ([,(,t), , (0, 0)I)0(t) (3.21)

When evaluated at the fixed point (3.18) it takes the
simple form

OR 27l

q((u + ie —vq)
(3.22)

exhibiting a pole at the neutral mode frequency, w = vq.
For simplicity, we take the random coeKcient 8 to be

b correlated in space, with variance TV . The self-energy
may then be evaluated perturbatively in R' . To lowest
order, the self-energy involves the diagrams shown in Fig.
3. These are evaluated in Appendix B, where we show

that at low frequencies,

Z(q, (u) = (3.23)

with 8 oc R',T . Unfortunately, this lowest order ap-
proximation to the self-energy leads to an incorrect de-

scription of the long wavelength limit, inconsistent with
the hydrodynamic regime. In Appendix B we show that
the correct self-energy, obtained by summing a class of
diagrams, is given by

,"( )=«* ) (oo» ()
which at the fixed point (3.10) is given by

(3.27)

27r
Gp q, cu

q((u + ie —vpq)
(3.28)

The contribution to the self-energy due to the interaction
(3.13) may be computed along the same lines as above,
and we find

Z~(q, w ) oc iraq W, . (3.29)

This leads to a correction to the charge mode propagator,
which becomes

An analogous calculation leads to a similar result for the
interactions given by vb in Eq. (3.12). At nonzero tem-
peratures, the neutral mode decays away, just as for a
quasiparticle in a Fermi liquid.

The efFects of the irrelevant operators on the charge
mode may be evaluated in a similar manner. However,
due to charge conservation we do not expect the charge
mode to decay. Indeed, it can be seen explicitly that
the interaction terms in (3.11)—(3.13) commute with the
total charge. Consider the Greens function for the charge
mode

the 1

2 I, 1 — (qE )-i (3.24) 27t
Gp q, (u

q(~ —vpq+ iDq2)
(3.3o)

Qi3

G'Q
x,O

FIG. 3. Diagrams for the self-energy of the Greens function
in (3.21). The solid circles represent the interaction (3.19).
The solid lines represents the bare propagator for yq, Gz, and
a sum over all possible combinations of these lines is implied.
The wavy line represents the bare propagator for Q~.

This form implies that a localized charge pulse will
spread diKusively as it propagates down the edge with
a temperature-independent diffusion constant D cx TV .
As expected, though, due to charge conservation the de-
cay rate vanishes at q = 0, in contrast to the neutral
modes.

By working perturbatively about the random fixed
point (3.10), we have thus shown that at finite temper-
atures, on length scales long compared to Z oc T
there exists a hydrodynamic regime characterized by a
single propagating charge mode. It is also instructive to
recover this hydrodynamic regime by working perturba-
tively about the fixed line in the absence of randomness,
described by (2.7) and (2.8). This will be valid at high
temperatures when weak disorder has not had "time" to
Aow out of the perturbative regime. Like the random
fixed point, the clean fixed line also has higher symme-
try because each of the n propagating modes are inde-
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pendently conserved. As explained in Sec. IIB, this im-
plies a conductance which is not quantized when channels
move in opposite directions. However, even weak inter-
channel scattering destroys the independent conservation
laws, leaving total charge as the only conserved quan-
tity. We thus expect a long wavelength hydrodynamic
regime with only a single propagating charge mode. In
Appendix B, we analyze the efFects of randomness per-
turbatively and establish this hydrodynamic regime on
length scales longer than the mean free path E for inter-
channel scattering, given by

g
—1 ~T2&—2 (3.31)

where W' is the rms strength of the randomness and L is
the scaling dimension of the tunneling operator. More-
over, we find that in this hydrodynamic regime the quan-
tization of the conductance is restored, giving G = ve2/h
even when p ( 0.

IV. TUNNELING AT THE EDGE

We now apply the theory described above to compute
the scaling dimension of general edge tunneling opera-
tors. These scaling dimensions determine the tempera-
ture exponents for tunneling through a point contact
between two Hall Buids.

The most general edge tunneling operator can be writ-
ten

where the expectation value is taken with respect to the
action So + Si in (2.7) and (2.8). Each eigenmode of
the quadratic action contributes one term to the prod-
uct in (4.5). The scaling dimension of T is then given
by 2A = P, h;. There is a constraint on the b;, though,
due to the statistics of the quasiparticle. The opera-
tor T creates an edge quasiparticle that must have the
same statistics as a bulk quasiparticle. The statistics of
the edge quasiparticle can be defined as the phase accu-
mulated upon rotating x, v to —x, —w clockwise in the
Euclidean plane, since for w = 0 this electively inter-
changes two quasiparticles. In Appendix A, we verify by
explicit calculation that the "edge" statistics angle de-
fined in this way indeed equals the bulk statistics angle
given in (2.6). Since for p & 0 all of the velocities v; have
the same sign, under this exchange P ~ P exp iO, with
a statistics angle 8/vr = P,. b;. Generally, the statistics
angle is a topological property of the bulk quantum Hall
state, is universal and independent of the edge interaction
matrix V~. But for non-negative p, the scaling dimen-
sion of the edge tunneling operator equals the statistics
angle, 2A = 8/ir and is, therefore, also universal.

To describe tunneling at a point contact, the relevant
quantity is the local scaling dimension of the edge tun-
neling operator, defined via P(x = 0, 7) w . This
average is independent of the spatially random SU(n)
rotation of Sec. III. Thus, for p & 0, the local scaling
dimension is still given by the (bulk) quasiparticle statis-
tics, even in the presence of disorder. We thus have from

(2.6),

z ( )
i p".

~ vnipi(x} (4.1) 2a=) m, K,—,. 'm, . (4 6)

for arbitrary integers m~. This operator creates an edge
quasiparticle excitation at position x, with charge Q
given by

For bulk filling v = n/(np + 1), this can be written as

(4.2) +) (m,' —m').
i=1

(4 7)

= vm, (4.3)

with the definition

(4.4)

For non-negative p, the charge and neutral modes
propagate in the same direction. In this case, we prove
in Appendix A that even in the absence of randomness,
the scaling dimension of the tunneling operator is inde-
pendent of the (nonuniversal) velocity matrix in Si (2.8).
This can be understood by considering the form of the
correlation function computed in the absence of random-
ness,

P(x, ~) = (T(x, ~)tT(0, 0)) oc . q, (4 5)
i=i

This is the same value as the bulk quasiparticle charge
(2.5). For filling factor v = n/(np+ 1), the inverse of the
K matrix is, K, = 8,~ —p/(np+ 1), which gives for the
charge

imPp
~ ~

i=1
(( ' — ) (4.8)

Being interested only in the local scaling dimension, we

When p is negative, the charge mode propagates in the
direction opposite to the neutral modes, so that the ve-

locities in (4.5) are no longer all of the same sign. The
constraint imposed by the bulk quasiparticle statistics,
therefore, becomes 0/m = g, sgn(v;)h;, and no longer
determines the scaling dimension of the edge tunneling
operator, 2A = g,. b;. Thus, in the absence of random

tunneling terms, S, „g ——0, the scaling dimension of T
is nonuniversal depending on the velocity matrix V~ in
Sl. However, with randomness present, the system Aows

to the fixed point (3.10), which has an exact U(1) x SU(n)
symmetry. The local scaling dimension of the edge tun-
neling operators T then follow &om the universal prop-
erties of this fixed point.

To evaluate them it is useful to reexpress the tunneling
operator in terms of the charge and neutral fields. We
find
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can replace @ by @ in the above. Then upon evaluating
the average in (4.5) using the quadratic axed point action
(3.10) gives

2 n

+) (m,
' —m') .

j=1
(4.9)

The first term comes from the charge mode, and the sec-
ond contribution from the neutral sector. Notice that
this form is the same as that for p & 0, except with a
modulus of v.

We note here that the irrelevant operators discussed in
Sec. III C, which lead to a finite lifetime for the neutral
mode at finite temperatures, do not acct our results for
the tunneling exponents. The finite lifetime introduces a
1/7 oc T cutoff into the logarithmically divergent inte-
gral, which occurs in the exponent when the correlation
function (T(r)T(0)) is computed. But this divergence is
already cut ofI' by the temperature T so at low tempera-
tures the finite lifetime has no effect. Thus, even though
the neutral mode is not conserved at finite temperature,
it has a crucial effect on the asymptotic temperature de-
pendence of the tunneling exponents.

With our final expressions for the local scaling dimen-
sions of the most general edge tunneling operators, we are
in position to make quantitative predictions for a number
of interesting experiments.

regime, the temperature dependence of the conductance
through the constriction will be dominated by the quasi-
particle, which can tunnel most easily from top to bottom
edge. The amplitude for such tunneling, though, will in
general be temperature dependent, and at low temper-
atures will be dominated by the quasiparticle with the
smallest scaling dimension. To leading order the conduc-
tance will take the form

2

G(T) = ivy
——v T l -'" 'i+0(v ),
h.

(5.1)

where v is the amplitude for the tunneling of this quasi-
particle.

A charge q = v quasiparticle with scaling dimension
2A =

~
v~ can be obtained from (4.1) by taking m~ = 1 for

all j. On the other hand, a single mj = 1 with the rest
equal to zero creates an n-fold degenerate excitation with
charge v/n and scaling dimension 2A = 1 —1/n —~v~/n .
For the integer quantum Hall effect, v = n (p = 0), the
latter corresponds to a quasiparticle with the smallest
dimension, 2A;„=1. Physically, it corresponds to tun-
neling an electron into one of the n edge channels. As
expected, the backscattering which reduces the conduc-
tance in (5.1), is independent of temperature in this case.

For all fractional quantum Hall states (p g 0) except
v = 2/3 (n = 2,p = —2), the charge v quasiparticle has
the smallest dimension, so that

V. EXPERIMENTAL IMPLICATIONS
2A;„=[vf. (5 2)

The simplest experiment that is sensitive to the edge
dynamics involves making a constriction or point con-
tact in a quantum Hall fIuid. At the constriction, the
top and bottom edges of the Hall bar are close together,
as shown in Fig. 4, facilitating tunneling processes be-
tween the two edges. Any charge that tunnels between
the edges is effectively backscattered, and will reduce the
source to drain conductance. The local scaling dimen-
sion of the edge tunneling operators will then feed into
the temperature dependence of the conductance through
the constriction.

Consider first the limit of a very slight constriction,
which will give a small amount of backscattering. In this

D

~sd

FIG. 4. Schematic portrait of a point contact, in which the
top and bottom edges are brought together by an electro-
statically controlled gate, allowing for the tunneling of charge
between the two edges.

Notice that with ~v~ ( 1 the backscattering corrections
grow at low temperatures. The above form (5.1) is only
valid down to temperatures where the corrections to the
quantized conductance remain small.

By varying parameters, such as a gate voltage, it
should be possible to tune the amplitude of the lead-
ing relevant backscattering to zero. This will appear as
a resonance in the conductance. The robustness of the
resonances at low temperatures, that is the temperature
dependence of the resonance peak, will be determined
by the backscattering of the quasiparticle with the next
smallest scaling dimension. If this scaling dimension is
larger than 1/2, then the conductance on resonance will
be perfect, and the resonance robust. In this case, one ex-
pects that the resonance line shape should be universal,
as predicted for v = 1/3. If less than 1/2, the resonance
peak will diminish in amplitude upon cooling and even-
tually vanish completely in the zero-temperature limit.
In either case, there should be a regime in temperature
where the width of the resonance narrows upon cooling,
varying as T~

For the special case v = 2/3 it turns out that
the quasiparticle tunneling operators with (mq, m2)
(1,0), (0, 1), and (1, 1) all have the same dimension. The
dimension is still given by (5.2), but now the most rel-
evant operator is not unique, but threefold degenerate.
This suggests that resonances for v = 2/3 will tend to be
less robust than for the other fractions.

Away from resonances, in the fractional Hall effect

(p g 0), the conductance through the constriction drops
with decreasing temperature, eventually invalidating the
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perturbative result (5.1). In this regime, we can consider
the opposite limit of large backscattering, where the dom-
inant process is physical electrons tunneling through the
point contact from one side to the other. In this limit,
the conductance will be dominated by the charge Q = 1
tunneling operator, which has the smallest scaling dimen-
sion, varying with temperature as

G(T) ~ t2T2[2&rnin{@=1)—ll (5 3)

Here t is the amplitude for the dominant electron tunnel-
ing process. The scaling dimension A;„for Q = 1 can
be obtained by taking mz ——p+ b~I, for k = 1, ..., n, in
(4.1), which gives

2A;„(Q= 1) = —+ 1 ——.1 1

/vf n
(5.4)

This tunneling operator is not unique, but n-fold degen-
erate.

For non-negative p, when all the edge channels are
moving in the same direction, t;he above two expressions
can be combined to give

G(T) =t T". (5.5)

For the integer quantum Hall effect, this gives the ex-
pected temperature-independent result. For the domi-
nant p = 2 sequence, v = 1/3, 2/5, 3/7, 4/9, ..., this pre-
dicts a T temperature dependence.

When p is negative, and the neutral modes are moving
in a direction opposite to the charge modes, the conduc-
tance can be expressed using (5.3) and (5.4) as

G(T) —t2T21» I
—{4i ) (5.6)

For the p = —2 sequence, v = 2/3, 3/5, 4/7, 5/9, ...,
the predicted power laws are 2, 8/3, 3, 31/5, ..., which ap-
proach a T as v approaches 1/2. It is worth emphasiz-
ing that in this case the particular powers are determined
by the structure of the disorder dominated fixed point,
at which the neutral and charge sectors decouple. Even
though it is electron tunneling that dominates in this
regime, the neutral modes are essential. Since an elec-
tron is built from a superposit;ion of the charge mode and
neutral modes, upon tunneling through the point contact
into the edge, the electron excites both the charge and
neutral modes.

Another central feature of the random U(l) x SU(n)
fixed point is that the n —1 neutral modes are all pre-
dicted to move at the same velocity. So, for example,
at the edge of an integer quantum Hall state with fill-

ing v = 3, the three edge modes, which will in general
have different velocities in the absence of edge random-
ness, are predicted to decouple with randomness into a
charge mode, moving at one velocity, and two neutral
modes moving at the same velocity as one another. This
decoupling will take place on length scales longer than an
edge mean &ee path. The mean free path depends on the
strength of the edge impurity scattering and the spatial
separation between the various edge modes, and will thus
clearly be a sample specific length. For v = 2, one has a

rather nice example of "spin-charge" separation, with the
edge channel index playing the role of the electron spin
8 . The disorder decouples the charge mode from the
SU(2) invariant neutral mode, the analog of the "spin
mode, " and the two modes separate, moving at different
velocities.

The edge neutral modes might be directly measurable
via suitable low-temperature time domain transport ex-
periments, similar to Ashoori et a/. In Ashoori et al. ,
the edge states of a quantum Hall sample were excited
by sending a short pulse into a capacitor placed near the
edge. Another capacitor was used to detect the prop-
agating edge modes, on the other side of the sample.
For filling v = 2/3, only one propagating mode was ob-
served. Our theory predicts the existence of only one
charge mode, the other being neutral and presumably
coupling very weakly to the capacitors. This could ex-
plain naturally the observed absence of a second propa-
gating mode. A suitable generalization of Ashoori et al. ,
which would allow for detection of the neutral modes,
would be to replace the capacitors with tunnel junctions.
Sending a short pulse of electrons into the edge of a quan-
tum Hall sample, would excite both the charge and neu-
tral modes at the edge. Provided the temperature was
low enough that the decay length l exceeds the sam-
ple dimensions, the neutral modes could be detected at
the far side of the sample with another tunnel junction.
The neutral modes, upon passing by the second tunnel
junction, would excite electrons to tunnel into the leads,
and should be detectable as a time domain current pulse.
By varying the temperature, it might also be possible to
extract the temperature dependence of the neutral mode
decay rate, to test t,he predicted T dependence. This
would be the analog of a direct real-time measurement
of a decaying Fermi-liquid quasiparticle.

In this article, we have established the existence of
a random edge fixed point for states at filling v
n/(np + 1) [with U(1) xSU(n) symmetryj, and demon-
strated that it is locally stable. It should be emphasized,
however, that we have not argued for the absence of other
edge phases, at the same bulk filling. It is conceivable
that for a given filling v, there exist other edge phases,
separated from the phase we have analyzed by an edge
phase transition. In fact, for the special case of v = 2/3
we know this to be the case. In our earlier paper with
Polchinski we found another (locally) stable edge fixed
point for v = 2/3, at which weak random edge tunneling
was irrelevant and the charge and neutral sectors did not
decouple. In this phase, the two-terminal conductance
at T = 0 is nonuniversal. However, at finite temper-
atures the quantization of the conductance is restored,
provided the sample is larger than the mean free path
for interchannel tunneling (which diverges as T ~ 0).
Moreover, in this disorder-&ee phase the tunneling ex-
ponents were predicted to be nonuniversal. There was
a Kosterlitz-Thouless-like zero-temperature phase tran-
sition separating the two phases. However, for filling v
with non-negative p, the disorder-&ee edge phase is al-
ways perturbatively unstable to disorder. Thus, if other
edge phases exist for these fillings, they will presumably
also be described by random fixed points. Ultimately
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though, the actual phase for the edge of a given real
sample will have to be determined by comparing with
the predicted behavior.

It is also worth pointing out that the special SU(n)
symmetry at the edge has only been established for the
class of Hall states at 611ing v = n/(np+1), with n integer
and p an even integer. For other filling fractions not of
this form, such as v = 4/5, there may not be such high
symmetry at the edge. The low-energy edge structure at
these fillings will be the subject of future work.

In brief summary, we have shown that disorder at the
edge of a quantum Hall fm.uid plays an essential role in
determining the structure of the low-energy edge excita-
tions. In particular, for &actional quantum Hall states at
filling v = n/(np+1), we have shown that the disordered
edge actually has a higher symmetry than a perfectly
clean edge would have. The charge is carried in a single
mode, and the remaining n —1 neutral modes all propa-
gate at the same speed and possess an SU(n) symmetry.
An exact solution for the random SU(n) fixed point has
been presented. , which allows for numerous quantitative
experimental predictions.
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APPENDIX A: GENERAL TREATMENT
OF MULTICHANNEL CLEAN EDGE

In this appendix, we consider a clean multichannel edge
described by the general action

I —) (AiA2A3) 'jysj/27r
U

(A4)

in response to the applied potential V(2:), which couples
to the total charge density

p(x) = ) ( AiA2As);, 8 Ps, /27' (A5)

e2
I,gs, ———) (M,+VI, —M, VR),

If diferent channels move in opposite directions, then the
current will depend on the voltages in both the left and
right reservoirs, VL, and VR. We find

Kj LO +Vj01
4m

U

where

M+ A A A
'+ IATATAT

2
We wish to compute the conductance as well as the scal-
ing dimension and statistics angle of tunneling opera-
tors. We show that these quantities are universal if all
of the channels propagate in the same direction. In gen-
eral, however, the conductance and scaling dimensions
are nonuniversal. The following analysis is valid for an
arbitrary K matrix, and is not limited to quantum Hall
edge states at filling factors v = n/(np+ 1).

In order to proceed, it is convenient to transform the
problem into a representation in which both K;j and v;j
are diagonal. This can be accomplished in three steps.
First, we diagonalize the matrix K via an orthogonal
transformation P, = Ai;~Pi ~, where (Ai Ai);z ——b,~ and
(Ai AAi);~ = A;8;~. For v = n/(np+ 1), this transfor-
mation was performed explicitly in Sec. II: Ai,j ——0;j
defined in (2.21) and (2.22), and A; = 1 + nph; . We

We may thus write

e2

I.as. =
~ (g+VL —g-Vii) (A8)

with g~ being dimensionless right/left conductances:

g~=) M,+. (AO)

Noting that A3gA ——g, it is straightforward to show
that

(A10)

which is universal and independent of the velocities v;j.
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It then follows from Eqs. (A9) and (2.3) that

g+ —g = P. (A11)
Tq o ——expi) n4;, (AI9)

When all of the channels move in the same direction, say
g = 1, then M is equal to zero. In this case, M+ + M
(and hence g+ + g ) is also universal. However, when
there are channels moving in opposite directions, no such
simple relation exists for M++ M . For v = n/(np+ 1),
it is possible to use the explicit form of Ai and A2 to
write

2A;, = ) "
n;(AsAs );,n~ . (A20)

where C', is defined in (2.20). The scaling dimension of
this operator may then be shown to be

g+ + g—= v(AsAs )nn (A12)
APPENDIX B: EDGE DYNAMICS

AT FINITE TEMPERATURES
In general, A3 will depend on the nonuniversal param-
eters v;~. It should be noted, however, that when v;~
is diagonal, as is the case at the SU(n) symmetric fixed
point, then v,~ is also diagonal, so that A3 ——1. In this
case g+ + g = v even when there are channels moving
in opposite directions.

The scaling dimension of a general tunneling operator

ig, m;y; (A13)

may be deduced &om the correlation function

P(z, ~) = (T(z, ~)T(0, 0)) . (A14)

Using the transformations defined above, this may be
simply computed and at zero temperature has the form

1
P(z, r) oc ."- (gx, vx,7. + iz)~» '

A:

where the exponent

hx„. = ) m;(AxA2As);1, (As A2 Ax )x,~m, . (A16)

The scaling dimension is then determined by

2b. = ) 8x, = ) m;(M++ M, )m~.
Ic 22

(A17)

The "edge" statistics angle, as discussed in Sec. IV, is
given by

(A18)

where we have used (A10). Thus, we see that O,~s, /m
is universal and is equal to the bulk quasiparticle statis-
tics angle (2.6). However, the scaling dixnension 2A is
only universal when all of the channels move in the same
direction. Otherwise, it is nonuniversal and depends on
~ij.

The neutral tunneling operators, which correspond to
the tunneling of charge between channels on a given edge,
are a special case of the general tunneling operator de-
scribed above. For v = n/(np + 1), an arbitrary neutral
operator may be written as

In this appendix we analyze the long length scale edge-
state dynamics at finite temperatures. Such an analysis
arises in two different contexts. In Sec. III, we described
the disorder dominated T = 0 fixed point which has an
SU(n) symmetry, and hence n —1 propagating neutral
modes in addition to the charge mode. In this case, the
leading irrelevant operator which couples the neutral and
charged sectors, destroys the SU(n) symmetry and hence
violates the conservation of the neutral modes. Thus, at
finite temperature, when such operators have not Bowed
to zero, we expect that the n —1 neutral modes will not
propagate on long length scales. In this hydrodynamic
regime, there should be only a single propagating mode
associated with the conserved electric charge.

An analogous situation arises in perturbation theory
in the impurity scattering strength about the clean fixed
point, described by So+Sx in (2.7) and (2.8). In this case,
however, the perturbation theory is generally divergent
at zero temperature. Nonetheless, at finite temperatures,
perturbation theory can provide some useful information.
Like the random fixed point, the clean fixed point has a
high symmetry, since the charges in each of the n chan-
nels are independently conserved, leading to n propa-
gating modes. As shown in Appendix A, this implies
a nonuniversal conductance when any of the channels
Inove in opposite directions. At finite temperatures, how-
ever, the interchannel impurity scattering will destroy
the independence of the difFerent channels. We, thus,
again expect a long wavelength hydrodynamic regime in
which only a single propagating charge mode should ex-
ist. Moreover, as we shall show below, in this hydrody-
namic regime, the conductance is universal and given by
G = ve2/h.

In this appendix, we wish to explicitly compute the
Green's functions for the edge modes in the hydrody-
namic regimes described above. In doing so, we shall ob-
tain the temperature dependence for the decay lengths
for the neutral modes. The simplest approach is to de-
velop an approximation for the self-energy of the edge
modes. However, we find lowest order perturbation the-
ory for the self-energy fails to describe the long wave-
length limit of the edge dynamics correctly. Below we
will explain the origin of this failure and physically mo-
tivate a more accurate description.

Because it is conceptually simpler, we will first focus on
the effects of weak impurity scattering in the vicinity of
the clean fixed point. The following discussion can easily
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be generalized to describe the corresponding physics in
the disorder dominated phase.

For simplicity we will consider the specific case of
v = 2/(2@+ 1) in which there are only two modes. The
generalization to other hierarchical quantum Hall states
is straightforward. In Sec. IIC, we showed that these
two modes may be described in terms of an edge charge
density c) Pp and a single neutral density, 0 P (where we
have defined P = C r). The total action can be written,

S= So+Sg+S, „d + dxd7 gp p+g . B1

Here

1 1
So + Sy — dxd7 ——0~ p (9~ + 'UpO~ p4m v

G'Q
FIG. 5. Diagrams for the self-energy of the Greens function

in (B4). The solid circles represent the tunneling operator
(B3). The solid lines represent the bare propagator for P
G . A sum over all possible combinations of these lines is
implied.

8$ (tB ——v 8 )P + 2v;„t0QpB P (B2)

describes the clean edge and

two I uttinger liquids, which is related to the conductance
of the point contact. We may thus use the results of Ref.
26 to analytically continue to real time and evaluate the
retarded self-energy

S, „d. —— dzd7 x e'~2&- + c.c. (B3) e

g(1)R( )

is a weak perturbation, which describes random impu-
rity scattering between the two channels. As usual, we
take ((x) to be h correlated with variance W. gp and rl

are source terms which may be used to generate Green's
functions.

In the absence of interchannel tunneling, the retarded
Green's functions

G'.", (, t) = ((P.(, ), ~ (0, 0)])8(t) (B4)

with a, 6 = p, cr, may be determined from (B2) by ana-
lytic continuation i~„—+ u,

G z( ) = 2
~

~q((d —vpq) vintq
1 2

q(~+ V.,) )
(B5)

To analyze the effects of the random tunneling, we begin
by evaluating the self-energy to leading order in R'. Since
S, „q only involves P, the only nonzero element of
the self-energy matrix is Z . Evaluating the diagrams
shown in Fig. 5 gives

where

oc TVT (B9)

1 1—(c)t + v,a.)O.y, + v;„,c)2y = rI, ,2K P
(B10)

—[(—Bt+v 8 )0 P +v; t0 Pp =I~+rI, (Bll)2'

Below we will interpret Z as a mean free path for inter-
channel scattering. Unfortunately, this leading order ap-
proximation to the self-energy does not correctly describe
the long wavelength physics of an edge. In particular, it
predicts the existence of low-frequency modes, which are
inconsistent with the hydrodynamic arguments presented
above.

In order to understand the origin of this failure and
to physically motivate a way to correct it, it is useful to
analyze the Heisenberg equations of motion satisfied by
the operators Pp and P . These may be derived from
(B2) and (B3), and take the form

where

P
Z(')(q, ~„)= W d~(e' ""—1)P(~),

0
(B6)

I~ = —i[((x)e'~~ —c.c.]. (B12)

where I~ is an interchannel tunneling operator given by

p [
i~2/ (~) i~2/ (0)])—
m/P

Sln 'F7

- 2b,

(B7)

Here 6 is the scaling dimension of exp i~2/ . Equations
(B6) and (B7) are identical to the formula for the current-
current correlation function of a point contact connecting

In the absence of interchannel tunneling, the propagation
of the densities 8 Pp and c) P is described by the left-
hand side of (B10) and (Bll). In this case, there will be
two eigenmodes, which move at different velocities and
are in general linear combinations of Pp and P

The I~ in (B12) describes the effect of interchannel
tunneling. During a tunneling event, a unit of charge
is transferred between the channels. From (B10) we see
that this has no immediate efI'ect on the total electric
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charge density, c) (tp. However, (Bll) shows that a well
localized spike of integrated weight 2m is added to the
neutral density c) P, which in effect measures the charge
difference between the two channels. Equivalently, a soli-
ton is created, in which P winds by 27r.

A linear approximation for the equations of motion
may be derived from the self-energy for P in (B8). In
particular, Dyson's equation G = Go —Z with E in
(B8) is equivalent to Eqs. (B10) and (Bl1), with I~
replaced by

(B13)

This approximation makes physical sense if we identify
(x), via a Josephson-like relation, with the voltage dif-

ference between the two channels at point x. Then (B13)
is simply a statement of Ohm's law for the tunneling cur-
rent at x.

However, there is a subtle problem with the interpre-
tation of P as a voltage drop, which can be seen from
(B10) and (Bll). Let us suppose that at xi, far away
from x = 0, an electron tunnels between the two chan-
nels at time t = 0. Then, according to (B10), there is

a b-function "glitch" in P (x = 0) at time t = 0. This
occurs because the tunneling event introduces a soliton
in P at x = xi, which forces P (x = 0) to jump by 2m.

But this glitch in (t (x = 0) cannot correspond to a volt-
age glitch at x = 0 since it must take a finite time for
the signal to propagate there. The origin of this discrep-
ancy is the fact that P is an angular variable, so that a
sudden jump by 2' should have no effect at all. There
will be a voltage glitch at x = 0 only when the soliton in

(which has a small but finite spatial extent set by the
cutoff) propagates through x = 0.

Clearly, inclusion of 2m glitches in P in the expression

for I& is not physically correct, and is an artifact of
the lowest order approximation for the self-energy. We
may correct this situation by replacing Eq. (B13) with a
modified approximation for the tunneling current, which
has the same physical content in terms of Ohm's law, but
does riot include the 2' glitches in the voltage. We thus
substitute P from (Bll) into (B13), but then explicitly
remove the term from (Bll) involving I~, which only
gives the 2' glitches. We thereby obtain

To leading order in W (or E i) Z() and E() are equiva-
lent. However, (B8) breaks down when qE ( 1. In order
to describe correctly the long wavelength limit, it is es-
sential to use the modified self-energy (B16).

The validity of this approximation, which we have mo-
tivated physically, may be checked in two ways. First, it
is clear from (B16) that terms in the self-energy at higher
orders in TV are singular in the q —+ 0 limit. We may ver-
ify this explicitly by considering the self-energy to order
TV2. This involves the expectation value of a product
of four of the tunneling operators in (B3). In evaluat-
ing this self-energy, care must be taken to subtract off
the terms in the expectation value, which are one par-
ticle reducible, and hence already accounted for by the
leading order term in Z. The resulting term contains
precisely the required singularity, u/(2vrl q). Evidently,
the approximation (B16) corresponds to summing a class
of diagrams, which corresponds to a geometric series in
W/q.

An additional nontrivial check of the validity of (B16)
is available when v;„t——0 in (B2). In this case, as shown
in Sec. III B, the neutral sector may be solved exactly by
mapping onto chiral fermions. We have checked that the
ensemble averaged Green's function G calculated from
this exact solution agrees with the form in (B16).

From (B15) we see that for W = 0 there are two prop-
agating modes and, using the results of Appendix A, the
conductance is nonuniversal and given by (2.19). In con-
trast, for any finite lV, in the limit q (( 8, there
is only a single propagating mode ~ = (vp —v,„t/v )q.
This reflects the fact that at finite temperatures, when
there is interchannel tunneling present, only the total
charge is conserved, so that there is a single propagat-
ing mode. Moreover, it may be explicitly verified from
(B15) that the conductance is given by the quantized
value G = ve2/h.

We now consider the analogous calculation in the vicin-
ity of the SIj(n) random fixed point. In this case, as ar-
gued in Sec. IIIC, we wish to compute the self-energy
for Gi, defined in (3.21), due to the random perturbation
vq2, which has mean square average W and couples to
c) Pp exp ii/2yi. The self-energy to leading order in W,
is computed by evaluating the diagrams in Fig. 3. We
find

(2) 2~
un BxPcr + Vint A 0'p + Ocr

2vrE i
(B14)

where

Z(q, ~„)= W, d7 (e' " —1)P(v-), (B17)

Using the equations of motion with this modified tun-
neling, including the source terms, we can derive a new
approximation for the Green's functions,

&()=( l*~() ' *(t'() ' j)

f —'q(~ —vpq) v;„,q'
I & ntq q(i;(qg) —i + &rrq) ) Sin 7r7

4

(B19)

This corresponds to a neutral mode self-energy

(B15)
Upon analytically continuing to real frequency, we thus
find

tea/ 1
2vrI 1 —i(q/)

—' (B16) K(q, (u) =
2vrE

(B20)
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with E~ (x: R" T . It may again be checked that terms in
the self-energy higher order in TV are singular as q ~ 0.
Using arguments analogous to those presented above, we
conclude that to correctly describe the long wavelength

physics, we must replace (B20) by

Z(q, ~) =
2vrl I —i(qE)

(B21)
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