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Persistent spin currents induced by the Aharonov-Casher efFect in mesoscopic rings
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We investigate the Aharonov-Casher eKect in a niesoscopic ring in the presence of a cylindrically
symmetric electric field. The Aharonov-Casher phase is obtained as a function of the tilt angle of
the applied electric field. The exact energy spectrum of the system is obtained by using a gauge
transformation. We demonstrate the persistent spin current induced by the Aharonov-Casher efFect
at finite temperature.

I. INTRODUCTION

Since the remarkable discovery of the Berry phase,
much attention has been paid to geometric phases dur-
ing the last decade. When the system interacting with
the slowly varying environment undergoes adiabatic and
cyclic evolution, the quantum state acquires the Berry
phase. Without the restriction on the adiabaticity,
Aharonov and Anandan (AA) demonstrated that the
acquired phase of a quantum state after a cyclic evo-
lution in the projective Hilbert space can be expressed
as a sum of the dynamical phase and the geometric
phase (called the AA phase). A well-known example of
the geometric phase is the Aharonov-Bohm (AB) phase
which a charged particle moving around a magnetic fIux
in a force-&ee region acquires. In 1984, Aharonov and
Casher (AC) discovered the dual of the AB effect: a
neutral particle with a magnetic moment encircling a
charged line accumulates the AC phase. The AC effect
has been experimentally verified by Cimmino et al. us-
ing the thermal neutron, and by Sangster et al. for
the atomic system. The AC effect is a consequence of
the coupling between the spin and the SU(2),~;„gauge
field, ' just as the AB efFect results from the coupling
of the charge and the U(1), gauge field. The similari-
ties and differences between the AB and AC effects were
pointed out by Goldhaber.

The well-known manifestation of the AB effect is the
persistent charge current in a mesoscopic ring threaded
by a magnetic fIux. The persistent charge currents in
mesoscopic rings were experimentally measured by Levy
et al. , Chandrasekhar et al. , and Mailly et al. Loss,
Goldbart, and Balatsky found out that the persistent
currents can be induced in a mesoscopic ring by the Berry
phase due to the coupling of the spin and orbital motions
of an electron in a manner similar to the AB effect.

There are two kinds of couplings between the spin and
orbital degrees of freedom of an electron. One is the
Zeeman term which is the source of the scalar AC efFect
and the other is the spin-orbit term related to the vec-
tor AC effect. In the presence of the inhomogeneous
static magnetic field, the Zeeman term couples the spin
and orbital motions of an electron in a mesoscopic ring.
Loss, Goldbart, and Balatsky showed that the Berry

phase due to the Zeeman interaction results in the per-
sistent currents at finite temperature. Stern proposed
that the time-dependent Berry phase due to the Zeeman
interaction induces a motive force in a ring on the anal-
ogy of the Faraday law of the AB effect. Gao and gian
calculated the AA phase of an electron in a mesoscopic
ring in the cylindrically symmetric magnetic field.

The effect of spin-orbit scattering in a disordered meso-
scopic system was studied by Meir, Gefen, and Entin-
Wohlman. Meir, Gefen, and Entin-Wohlman derived
that the spin-orbit scattering modifies the bare spectrum
depending on the fIux CAB to the form depending on
CAB + b, where b is due to the random spin-orbit electric
field. Mathur and Stone showed that the effect of spin-
orbit interaction is the manifestation of the AC effect.
Aronov and Lyanda-Geller explored the effect of the
spin-orbit Berry phase on the transport properties of the
mesoscopic rings, and studied a spin-dependent motive
force due to the time-dependent Berry phase. Balatsky
and Altshuler demonstrated the persistent spin current
due to the spin-orbit coupling as a manifestation of the
AC efFect at zero temperature, including the possibility
of the spin-dependent motive force induced by the time-
dependent AC phase. Choi showed the spontaneous
spin current via the AC effect at zero temperature. Re-
cently, gian and Su showed the existence of the AA
phase in the AC effect.

In this paper we study the AC phase and the persis-
tent spin current in a mesoscopic ring in the presence
of a cylindrically symmetric electric field, based on the
SU(2),~;„gauge theory. This paper is organized as fol-
lows. In Sec. II we present a system of noninteract-
ing electrons confined to a mesoscopic ring embedded in
the cylindrically symmetric electric field. Based on the
SU(2),~;„gauge theory, we calculate the AC phase as
a function of the strength and tilt angle of the applied
electric field. We demonstrate the AC phase as a sum of
the AA and dynamical phases of the spin evolution and.
discuss the adiabatic limit. In Sec. III we obtain the
exact energy spectrum in connection with the SU(2),~;„
gauge transformation, and then calculate the persistent
spin current at finite temperature. A summary of the re-
sults is given in Sec. IV. In the Appendix, we derive the
exact energy spectrum by diagonalizing the Hamiltonian.
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II AC PHASE AND SU(&)SPIN GAUGE FIELD

Consider noninteracting electrons confined to a meso-
scopic ring of radius r embedded in a cylindrically sym-
metric electric field E(P) = E(cos yr" —sin yz) as depicted
in Fig. 1. The tilt angle y is the one with respect to the
plane on which the ring lies. Our model bears some re-
semblance to the mesoscopic ring in a cylindrically sym-
metric magnetic field considered by Loss, Goldbart, and
Balatsky. ~4

We approach this problem based on the gauge the-
ory as follows. The nonrelativistic Hamiltonian with
U(1), x SU(2),~;„gauge symmetry of an electron with
a charge e & 0 in an external electromagnetic field ' is
given by

dx+ . e ~ . p
~

0" + i —A" + i—a" @(s) = 0,
ds ( hc hc )

where 4(s) = 4(x(s)), and the curve C is represented
by x"(s) satisfying x"(0) = xo, x"(1) = x" with pa-
rameter s, 0 ( s ( l. Equation (2) is a solution of Eq.
(3).

Since we are interested in the AC effect due to the
electric field, we put A" = 0 and a = 0 in Eq. (1).
Then in cylindrical coordinates (r, P, z), the P component
of the SU(2),~;„vector potential becomes

E) - E
o,~ ——

~

cr x —
~

P = —(sinyr+ costi;) . cr.
2) 2

The Hamiltonian for the electron becomes
8 1 ( e p,

ih —ill =
~ p ——A ——a

~

+eA +pa iII, (1)Bt 2m g c c r
pr

2mr2 ( c )
(5a)

@(x")= O(C)@(x,")
. e= exp

~

i-
c

xP exp
~

—i-s
A„dx"

~

(2a)

(2b)

where 0& is a two component spinor and p = gp~ j2 is a
magnetic moment of an electron in the ring. g is a gyro-
magnetic ratio and p~ = eh/(2mc). Here A" = (A, A)
is a U(1), electromagnetic four vector potential, and
ai' = (—cr B,a' x 2) is an SU(2),z,„vector potential
that represents a Zeeman and a spin-orbit coupling. o
with a = 1, 2, 3 are Pauli matrices. Suppose the wave
function iIJ(x") is parallel transported along a curve C
&om an initial point xz~ to a final point x~ in the pres-
ence of U(l), x SU(2),z,„gauge fields. After the paral-
lel transport, the wave function 4(x") is related to wave
function iII(xz) by parallel transporter (gauge transfor-
mation) O(C) (Refs. 7 and 24)

. d pEr—i—— (sin y cos $02mr2 dP 2hc

+sinysinPo +cosyo ) (5b)

(6)

where P@ ———ih —is the z component of the orbital8@
angular momentum. The above Hamiltonian (5) implies
that the SU(2),~;„vector potential a of the AC effect
plays a similar role to a U(1), vector potential A of
the AB effect. Thus one may expect that the AC effect
results in persistent spin currents as the AB effect leads
to persistent charge currents.

The parallel displacement equation (3) in the presence
of the SU(2),z,„gauge field is

where P is a path ordering operator. The first factor of
Eq. (2b) gives the AB phase and the second one the AC
phase. The parallel displacement equation of the electron
under the U(l), x SU(2),p,„gauge fields reads

where B,ir = "2&"(sin y cos P, sin y sin P, cos y) is an "ef-
fective magnetic field. " The evolution of a spin state in
the presence of the SU(2),~;„gauge field is governed by
Eq. (6). If P in (6) is replaced by time t, then Eq. (6) is
exactly identical to the Schrodinger equation of a spin in
a rotating magnetic field, which has been well studied. '

Thus we identify the Schrodinger-type equation in Ref.
23 with a parallel displacement equation of the spin in the
SU(2),p,„gauge field. The solution of Eq. (6) becoines

.pErO(P):—P exp i (sin y cos P'0
o

+ sin y sin P'o + cos yo )dP'

FIG. 1. The mesoscopic ring of radius r in a cylindrically
symmetric electric 6eld with tilt angle y. The electron picks
up an AC phase 4 &z, while encircling the ring.

where path C is represented by angle P. Equation (7) is
identical to the time evolution operator for a spin in a
rotating magnetic field if the angle P is replaced by time

The exact solution of Eq. (7) is easily calculated by
employing the rotating kame method and given by
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O(P) = exp —i —o
2

x exp i
~

~qo + (~s+ 1)o1

J 2

where uq = "& "sing and u3 = "&
" cosy. This is a

purely (t dependent gauge transformation.
The SU(2),~;„vector potential ay can be gauged

away, if a continuous local gauge transformation U((t) =
0 (P) is made. Then the gauge transformation gives

H =
~ Pp — a—y ~

m H' = U(P)HU '(P) = P~,
1 /' pr 1

2mr2 ( c 2mr2

a~ —+ a~ —U(P)apU '(P) +i ™U(P) U '(4) = o,
p,r 8$

C(P)~ 4'((t') = U(P)4'(P).

(9a)

(9b)

(9c)

Under this gauge transformation, the Hamiltonian (5) is
changed to the free Hamiltonian (Qa), but the boundary
condition of the wave function Eq. (9c) is also changed.
In general, the spin state that has been parallel trans-
ported around the ring does not return to the initial
spin state. However, for the special initial spin state,
the spin state after a parallel transport around the ring
returns to the initial one apart from the phase factor as

@(2vr) = exp[i@„'~~]4 (0).
Let the initial spin state be the eigenstate of ~qo. +

(us + l)o . Then the spin state at P is obtained as

2m

+'+'(0) B ~ ~ +"'(4)d4
0

( (ds + lds + (d~
2

= +7r
/cd~ + (lds + 1) )

and the AA phase is given by

c ' ' = 4 (+) i—4'+) d(tAA

(14a)

(14b)

(15a)

@'+'(4) = ~(&)@'+'(0)

P+i(l —Ay)4/2
~( +e'~sin 2+ )

(10a)

(10b)

= —~(l —cos p~) .

Thus the AC phase can be expressed as

AC dyn + AA
(+) (+) (+)

(15b)

&o

where A~ = +gu~ + (&us + 1) are eigenvalues of ~qo +
((us + l)o, and the angle P~ are defined by tan P+
(uq/(ws + 1), and P = m —P+. After the parallel trans-
port by A(g) from P = 0 to P = 2vr, the spin state re-
turns to the initial state apart &om the AC phase. The
acquired AC phase is from (10b)

OA(c)(y) = —~(l —A~) .

Thus we obtain the AC phase as a function of the
strength and tilt angle y of the applied electric field.

Since the spin state acquires the AC phase after the
cyclic spin evolution, the AC phase can be decomposed.
into the dynamical phase and the AA phase. ' Follow-
ing Aharonov and Anandan, the spin state at P can be
written

@(+)(p) — ~(~ ~+)~/2 @(+)(p)

where @(+)(P) is a periodic function satisfying
4'(+)(2') = 4'(+)(0), and given by

C Ac —4 s —+ (E~r), —(+) (+) (17)

which is equal to the AC phase of the electron moving
around the charged line. Next, if y = vr/2, then the elec-
tric field is E = Ez. The Hamilt—onian (5) is identical to
Eq. (11) in Ref. 23 within the constant —mh tc/2. —

~2&

of (5) corresponds to mam in Ref. 23. The SU(2),~;„vec-
tor potential becomes a4, = (E/2) r o and the effective
magnetic field" B g lies on the plane. This situation is
similar to that of the planar magnetic Beld studied by
Loss and Goldbart. We have ~q ——~& ", and ~3 ——0.
The AC phase becomes from Eq. (11)

We now consider two special cases of y. First, ii y = 0,
then the electric field is in the radial direction, E = Er",
corresponding to the case of a charged line. Then uq ——0,
clj3 —"„'. Also P+ ——0, P = 7r. The initial spin state
becomes a spin-up or spin-down state. The parallel trans-
porter becomes simply O(g) = exp[i~2&" Po ]. The AA
phase vanishes. The AC phase is equal to the dynamical
phase

@Ac ——Vl- 1 +(+) (18)

The dynamical phase is calculated as and the AA phase reads



13 AAA SANGCHUL OH AND CHANG-MO RYU 51

(+)
@AA

The dynamical phase is given by

(20)

C'~c = —~l 1+(+)
&& +Los +cosg l2 2

The dynamical phase of the adiabatic evolution is calcu-
lated from the exact solution (14) and given by 4& „-
+7rg(uq + (us. Since tanP+ = (ux/(~s + 1) ~x/~s =
tan y, the Berry phase is the adiabatic approximation of
the AA phase (15)

4AA ~ 4n ——7l (1 + cos g) .(+) (+) (22)

In Fig. 2, we summarize the AC, AA, dynamical, and
Berry phases as a function of tilt angle at various values of
+&" ——0.5, 1.5, 2.5, and 3.5. The values of ~&" are chosen
in accordance with the value taken in Ref. 23. For small
values of ~&" the AC, AA, and dynamical phases cross
each other as tilt angle y increases. In this region, there is

Equations (18), (19), and (20) agree with the results ob-
tained by gian and. Su.

Consider the adiabatic approximation of the spin evo-
lution. The condition for the adiabatic limit is

&

" &) l.
In this case, the initial spin state is an eigenstate of
—o' B,s(0). After adiabatic cyclic evolution with period
2', the acquired phase of the spin is the approximate
value of the AC phase (ll)

III. PERSISTENT SPIN CUB.MENTS
BY THE A.C' PHASE

Under the gauge transformation (9), the Hamiltonian

(5) becomes that of a free rotator, and at the same time
the AC phase modifies the boundary condition of the
wave function of the free rotator. Then the exact energy
spectrum of the system simply becomes

( @(~))Ac
2m'p ( 27r

where n = 0, +1,+2, . . . denotes the orbital quantum
number and o. = + is a spin quantum number. Meir,
Gefen, and Entin-Wohlman obtained the general form
of Eq. (23) by using the transfer-matrix method. The
dependence of the AC phase on the tilt angle implies that
the exact energy spectrum (23) is also a function of the
tilt angle. The eigenstates are given by

v'2m ( +e'~sin ~~
p

' (24)

a great difference between the values of the AA phase and
the Berry phase. On the other hand, for large values of
"& ", the dynamical phase becomes Qat and its magnitude
is approximately that of the adiabatic dynamical phase,

C& „=+erich
". The shapes of the AA and AC phases(+)

resemble each other. The AA phase is nearly equal to
the Berry phase. Thus the adiabatic approximation in
the limit of

&

"
&& 1 is justified. Note that the value of

the AA phase is —2' & 4 AA & 0.(+)

2.0
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FIG. 2. AC (solid line), AA (dashed-
dotted line), dynamical (dotted line), and
Berry (dashed line) phases (divided by 2vr)
as a function of tilt angle y for (a)
0.5, (b) 1.5, (c) 2.5, and (d) 3.5. (i) Note
that 4 ) = C~( ) + C' ). (ii) Note that the
Berry phase is approximately equal to the AA
phase for large values of ~z . (iii) At y = 0,

Chc equals the dynamical phase; the geo-(+)

metric phase vanishes.
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which are single-valued functions.
The thermal equilibrium expectation valu

~ ~ ~ l e ~O~ of the
observable 0 is easily calculated as

1 Irl r pr(J ) = —Tr e ~ —~Py ——apso.
Z 5 i c

(0) = —Tr[e ~ 0],g (25)
n, a

Ac ij pE„,
(~)

cosp
i
n — e

27l'
(3Ob)

(o ) = —Tr[e cr ],
1 —pH a
z
1 H1 Pr(J)= —Tr e & — (Pp ——ag oz

(26)

(27)

The canonical partition function of the one electron xs

Z = Tr(e ~
) = ) ) exp( —PZ„). (28)

Because of cylindrical symmetry of the system, the
thermal expectation values &o

(4„~o ]4„)= cosP, (o ) can be written as

0 = — c ' cos
n, a

(29)

But we have (os) = 0 because E~+ ——E ( +~)
«»p+ ———cosp . For the same reason that (o.~) and

pectation value of the persistent spin current (Js) is given
by

where Z is the canonical partition function and P
1/k~T T.he interesting physical observables are t e
magnetszatxon a &'h /2 and (dimensionless) spin current
J —(Py ——""ay~o. ,~h with a = 1,2, 3 for spin indices.
The thermal expectation values of the spin and the spsn
current are given by

@AC + C'AC —27t, + — { + )
= E and

cosP+ ———cosP, the persistent spin current (Js) can
be finally reduced to

) ~

n—

(J ) = cosP+
"

(+)
Ac ') e

—pE„,+
2' )
—PE

sin Z+ cosZgcos y+ 4(y+ y )cos p+ ——

1+2@

ere y = @Ac/2m.(+)

Thus the persistent spin current for the spin-up and spxn-

down) only. This implies that the persistent spin current
would be independent of spin polarization. It should be
noticed that the magnetic field necessary for polarization
of the electron is not required to observe the persistent
s in current. If cosP+ ——1, i.e. , g == 0 then the per-
sistent spin current is a periodic function of the AC flux

/ d (J ) of Eq. (31) is identical to the persis-
tent charge current by the AB effect. Except or y =
or m, e pers'the ersistent spin current is an osci ating func-
tion of the AC flux with the modulation cosP+. From

modulation can be written in terms of the AC flux as

(J
0.5

0.25

-0.25
-0.

0.5
0.25

-0.25
-0.

J3FIG. 3. The persistent spin current J
as a function of temperature T an tilt angle

for (a) "z, ——0.5, (b) 1.5, (c) 2.5, and (d)
3.5. Temperature T is drawn in units of mK.

0.5
0.25

-0.25
-0.

mK)

0.5
0.25

-0.25
-0.
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(J
0.5

0.25

-0.25
-0.

0.5
0.25

-0.25

@Ac /2~(+)

FIG. 4. The persistent spin current (J ) as
a function of temperature T and the AC Bux
C'Ac/2vr for (a) y =0, (b) x/4, (c) vr/2, and(+)

(d) m. Notice that the persistent spin current

is periodic as a function of 4Ao /27r in (a) and
(d). It is modulated by cosP+ [cf. Eq. (32)
in the text] in (b) and (c).

0.5
0.25

-0.25
-0.

mK)

0.5
0.25

-0.25
-0.

mK)

AC
( )

AC
( )

We numerically calculate the spin current (Js) by vary-

ing "z ", tilt angle y, and temperature T. For an InAs
ring of radius r 1 pm, maK is taken as 1.8 in Ref.
23. This value is equivalent to +&" ——3.6 since maKAc

corresponds to —z&". Thus we take "&" ——0.5, 1.5, 2.5,
and 3.5. The teinperature ranges &om 0 to 3 mK. Since
temperature T = 1 mK and "&" 1, the contribution of
terms with n & 10 in the summation of (30b) is negligi-
ble.

Figure 3 shows the persistent spin current (Js) as a
function of tilt angle y and temperature T for ~ " = 0.5,Ac
1.5, 2.5, and 3.5. As the tilt angle y varies from 0 to vr,

the change of (Js) is noticeable. There is no jump of the
persistent spin current in Fig. 3(a), because in this case

0 5 ( (+)@Ac/2m & 0.5 as shown in Fig. 2(a). Only at
the values of 4&c/2m = n + 0.5 with n an integer, the(+)

persistent spin current changes direction suddenly, keep-
ing the magnitude (see Fig. 5). The abrupt changes in
Figs. 3(b), (c), and (d) occur at the specific tilt angles
at wh ich C &c /2vr becomes 0.5, 0.5, and 1.5, respectively.
In Fig. 4, the persistent spin current (Js) is shown to
disappear when the temperature is beyond 3 mK. This
indicates that the persistent current is a quantum me-

0.5 0.5 —..

0.25 0.25

(J') o (J') o

-0.25

-0.5 '

0.5

0.25-

2 3

@Ac /2~(+)

-0.25

0.5

FIG. 5. The persistent spin current vs the
AC flux 4Ao /2x for (a) y =0, (b) x/4,(+)

(c) vr/2, and (d) vr at temperature T = 0
(solid line) and T = 1 mK (dotted line).
The dashed-dotted line represents the modu-
lation (1/2) cos P+. Fixed. temperature slices
through Fig. 4 (at T = 0 K and 1 mK) are
plotted in Fig. 5. These slices show more
clearly the periodicity and modulation efFects
noted in Fig. 4.

(J') o

-0.25-
1'

-/

-0.5
0 1

I . . ~. . . ~ I ~

2 3

C'A'c/2r

-0.25

-0.5
0 2 3

4„",~/2r
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chanical effect. The persistent current vanishes when
the thermal energy k~T is larger than the level spac-
ing AE = h /2mr For T = 3 mK, and r = 1 pm,
k~T =414x10 2 Jand&E=610x10 7 J. The
rest electron mass m has been used in our calculation.

Figure 4 exhibits the persistent spin current as a func-
tion of the AC Bux and temperature. If tilt angle y = 0
or vr, then (Js) is a periodic function of the AC flux

4&&/2~. But if y g 0 or m, then the persistent spin

currents are oscillating functions of the AC flux 4&& /2~
with the modulation cosP+. Figure 5 shows this phe-
nomenon more clearly. In the case of y g 0 or vr, the
persistent spin current (J ) decreases as the AC flux

4&c /2n mcreases. Since 4&c depends on the strength(+) (+)

of the electric field E, for a strong electric field in the
z direction, the persistent spin current (Js) diminishes.
For y = 0 or ~, (Js) is identical to the persistent charge
current of the AB effect.

IV. CONCLUSION

We have studied the geometric phases and the per-
sistent spin current associated with the AC effect in a
mesoscopic ring embedded in a cylindrically symmetric
electric field. Using the SU(2),~;„gauge theory, we have
obtained the AC phase as a function of the strength and
tilt angle of the applied electric Beld. The AC phase is
shown to be a sum of the AA phase and the dynam-
ical phase of the spin evolution. The SU(2),p,„gauge
transformation gives rise to the energy spectrum rather
easily. The thermal equilibrium value of the magnetiza-
tion vanishes. The persistent spin current (Js) has been
numerically analyzed by varying the tilt angle, ~& ", and
temperature. Especially, we have noted that the persis-
tent spin current, which is a periodic function of the AC
flux, is modulated by cos P+.
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APPENDIX

Since the Hamiltonian (5) possesses cylindrical sym-
metry, the z component of the total angular momentum,
J, = Py+ (h/2)os is conserved. One can easily obtain the
exact energy eigenvalues of the Hamiltonian (5) by diago-
nalizing the Hamiltonian. The simultaneous eigenstates
of J and 0 are

J, it;n) = hliL;n),
cr Jl;n) = nfl;n),

(Ala)
(A1b)

where l = +1/2, +3/2, . . . and n = +. The matrix ele-
ments of the Hamiltonian (5) in the basis of (~l; n)) are
given by

(I', n'[Hil; n) = h2

2mr2

x
i

(l ——,'(cu, + 1)
I+ —,'(~s+ 1) )

(A2)

+l (di + (lds + 1) (A3a)

h2 1
- 2

n ——(1 —A~)2m' 2 2
(A3b)

@(+)
AC

2mr2
"

2m
(A3c)

where n = 0, +1,+2, . . .. Thus the energy spectrum ob-
tained by diagonalization is equal to that calculated via
the gauge transformation. Apparently matrix diagonal-
ization is an easier way to obtain the eigenvalue than
the SU(2),~;„gauge transformation that we have taken.
However, the latter approach reveals the internal struc-
ture of the AC effect more clearly and may be used to
identify the additional physical effects such as the spin-
dependent motive forces and the non-Abelian Faraday
law."

Then the exact energy eigenvalues are readily obtained
as

Ei~ = l + —
i

(QJs+ 1) +(d
n'

r2m'' 4 q
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