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Hydrodynamic electron How is experimentally observed in the difFerential resistance of electro-
statically defined wires in the two-dimensional electron gas in (AI, Ga)As heterostructures. In these
experiments current heating is used to induce a controlled increase in the number of electron-electron
collisions in the wire. The interplay between the partly diffusive wire-boundary scattering and the
electron-electron scattering leads first to an increase and then to a decrease of the resistance of
the wire with increasing current. These efFects are the electronic analog of Knudsen and Poiseuille
How in gas transport, respectively. The electron How is studied theoretically through a Boltzmann
transport equation, which includes impurity, electron-electron, and boundary scattering. A solution
is obtained for arbitrary scattering parameters. By calculation of Bow profiles inside the wire it is
demonstrated how normal Bow evolves into Poiseuille How. The boundary-scattering parameters for
the gate-defined wires can be deduced from the magnitude of the Knudsen efFect. Good agreement
between experiment and theory is obtained.

I. INTRODUCTION

In his 1909 paper on gas How through a capillary,
Knudsen demonstrated that the ratio between the pres-
sure drop over the capillary and the gas-How rate first
increases and then decreases with increasing density.
The mechanism is that with increasing density of gas
particles, the number of interparticle collisions increases.
At low densities (what is now known as the Knudsen
transport regime), the gas particles move almost inde-
pendently, so that the How is mainly carried by particles
with a large velocity parallel to the wire axis. These par-
ticles travel long distances before colliding with the wall.
An occasional interparticle collision, although not resis-
tive by itself because of momentum conservation, drives
the parallel-moving particles towards the wall and short-
ens their trajectories between subsequent collisions with
the wall. Therefore, in this regime, an enhancement of
the interparticle collision-rate leads to increasing dissi-
pation of forward particle momentum at the capillary
walls. At higher densities, however, many interparticle
collisions between subsequent particle-wall collisions oc-
cur, resulting in a random-walk behavior. As a conse-
quence, a laminar (Poiseuille) flow evolves, in which the
effective particle-wall interaction is decreased.

Because of the analogy between classical diffusive
transport of electrons and gas particles, one anticipates
that a similar transition between Knudsen and Poiseuille
How may occur in electron transport. In this case,
electron-electron (e-e) scattering events are the analog
of collisions between gas particles. Electron-electron
scattering has no influence on the electrical resistivity
of bulk materials, because it conserves the total momen-
tum of the electron distribution. Effects of e-e scattering
in the classical transport regime can only be expected in
the resistivity of films and wires of high purity and small
dimensions, where conditions similar to those leading to

hydrodynamic gas How can be realized. Typically, the
sample width TV should be smaller than or comparable
to the impurity mean &ee path lb of the bulk material.
These two lengths should be compared to I, , the av-
erage length an electron covers between two subsequent
e-e scattering events. When /, ) R', one expects an
increase of the resistivity with increasing e-e scattering
rate, which is the electronic Knudsen effect. In contrast,
when l ( W, the resistivity should decrease with in-
creasing e-e scattering rate, due to electronic Poiseuille
flow. The latter effect has been predicted by Gurzhi in
1963 (Ref. 5) and is now known as the Gurzhi effect. Fx-
perimentally, it proved. dificult to obtain reliable data on
these effects, because dissipation mechanisms not present
in gas How usually prevent the occurrence of electronic
Knudsen and Gurzhi How regimes: First of all, electrons
in a metal are scattered by impurities. Moreover, since
the e-e scattering rate is usually varied by changing the
lattice temperature of the sample, the induced effects
are overwhelmed by electron-phonon interactions. Fur-
thermore, an increase in temperature also enhances the
umklapp electron-electron scattering rate, which adds to
the bulk resistivity. Finally, deviations &om an ideal
spherical Fermi surface may hinder interpretation of ex-
perimental data.

Due to these complications, only a few experimental
indications of e-e scattering effects have been found.
Most experiments use potassium, as an exemplary sim-

ple metal, which to a good approximation has a spherical
Fermi surface. However, the observed changes in the re-
sistivity as a function of lattice temperature are limited
to about 0.01'%%uo of the total resistivity, because of the
small /b and the onset of electron-phonon scattering. Yu
et al. have reported a negative temperature derivative
of the resistivity (dp/dT) of potassium wires at temper-
atures around and below 1 K. However, an interpreta-
tion in terms of the Gurzhi effect was disputed, since

0163-1829/95/51(19)/13389(14)/$06. 00 51 13 389 Q~1995 The American Physical Society



13 390 M. J. M. de SONG AND L. W. MOLENKAMP

at these temperatures l, ) lV. In later publications of
the same group, it was shown that the negative dp/dT
can be attributed to metallurgical imperfections, and
also Kondo-like efFects in the resistivity were reported.
Observations of a positive dp/dT in wider wires were in-
terpreted by Movshovitz and Wiser as a Knudsen-like
behavior, due to the combination of e-e and electron-
phonon collisions. A similar mechanism was proposed to
explain an anomalously strong, positive dp/dT in very
thin potassium films. ' However, until now, to our
knowledge, there has been no observation of electronic
Poiseuille How, nor has there been an observation of a
Knudsen maximum in the resistance at the crossover
between Knudsen and Gurzhi How regimes.

In this paper, we present an experimental and theoret-
ical study of Knudsen and Gurzhi transport phenomena
in two-dimensional wires. The wires used for the experi-
ments are defined electrostatically in the two-dimensional
electron gas (2DEG) of (Al, Ga)As heterostructures. ~s

Using these devices to study hydrodynamic electron-Bow
ofFers several advantages: First, due to the high purity of
the material and the resolution of electron-beam lithog-
raphy, one can easily reach the condition /b ) W. Sec-
ond, umklapp electron-electron scattering is absent, be-
cause of the low electron density and the perfectly cir-
cular Fermi surface. Third, the electron-acoustic phonon
coupling is weak in the (Al, Ga)As-2DEG system. This
makes it possible to investigate the in8uence of e-e scat-
tering not by changing the temperature T of the full
sample, but by selectively changing the temperature T
of the electrons inside the wire by passing a dc current
I through the device. Previously, this current-heating
technique has proven very useful for the study of ther-
moelectric phenomena in nanostructures. ' The wires
studied here are equipped with opposing pairs of quan-
tum point contacts in their boundaries. Since the ther-
mopower of the point contacts is quantized, we can
determine the electron temperature T in the wire, as a
function of I, &om a thermovoltage measurement. The
ability to modify selectively the e-e scattering rate allows
a clear and unambiguous demonstration of hydrodynamic
eQ'ects on the resistance of the wire.

We measure in the experiments the differential resis-
tance dV/dI versus I.~ In the resistance curves, we can
distinguish three regimes: (1) Starting from I = 0, we
observe an increase in dV/dI with increasing I. This
is attributed to the Knudsen eKect. We find resistance
changes as large as 10% of the total resistance. (2) Then
there is a range where dV/dI decreases with increasing I,
which we identify as the Gurzhi efFect. In this range, we
see relative resistance changes up to 20%. (3) Upon in-
creasing I, we come into a regime where dV/dI increases
again. Here, the heating, due to the applied current,
also affects the lattice temperature, so that the resistance
increase can be attributed to enhanced electron-phonon
scattering. At the crossover between regime (1) and (2)
the Knudsen maximum is reached. The minimum in the
resistance between regime (2) and (3) was the actual sub-
ject of one of Gurzhi's first papers.

In order to understand our experixnental results, we
have developed a theory based on the Boltzmann trans-

port equation, which yields quantitative agreement with
the experiments. In the first half of this century, the
Boltzmann approach has been applied to study size ef-
fects on the resistance of small conductors. The thin film
case has been addressed by Fuchs and the case of a
thin wire by Dingle. A particularly insightful method to
solve the Boltzmann equation is due to Chambers, who
has expressed the solution in terms of the effective mean
free path the electron covers between either bulk irnpu-
rity or boundary collisions. These treatments consider
partially diffusive boundary scattering, in which part of
the electrons colliding with the boundaries is specularly
reBected and the remainder is di8'usely scattered. The
boundary scattering is modeled by a constant specularity
coefficient. In a more realistic treatment by SoKer, the
wave nature of the electrons has been taken into account
and results in a specularity coeIHicient which depends on
the angle of incidence. In Ref. 22, it is shown that in-
clusion of the angle-dependent specularity coeIHicient in
a calculation of the resistivity of thin wires gives a more
satisfactory agreement with experiments than Dingle's
original theory.

The inclusion of e-e scattering in the Boltzmann ap-
proach to the resistivity of wires is not trivial and has
been limited to a certain parameter range in Inost treat-
ments. In the pioneering work by Gurzhi, the situation

« Ib, TV is considered. It is shown that under these
conditions the Boltzmann equation can be mapped on a
Navier-Stokes type of equation. The opposite Knudsen
regime l )) tb, TV has been treated by Movshovitz and
Wiser, ' who use the Chambers method to calculate
effective mean free paths with the approximation that at
most one e-e scattering event in each electron trajectory
is taken into account. In Ref. 23 Gurzhi and co-workers
provide an alternative approach for this regime, by solv-
ing the Boltzmann equation perturbatively. This also al-
lows the inclusion of specific features of the e-e scattering,
such as the distinction between isotropic and small-angle
scattering. We know of only two approaches that de-
scribe the resistivity of wires from the Knudsen up to the
Gurzhi regime. The first is due to Black, who employs
a Monte Carlo technique to calculate effective mean free
paths in a wire. Although the numerical results are not
so accurate because of the limited computer power avail-
able at the time, the Knudsen maximum in the resistivity
is found. The results show similar behavior for isotropic
and small-angle e-e scattering. The second approach is
due to De Gennaro and Rettori. They start from the
Boltzmann equation and include e-e scattering by a scat-
tering term due to Callaway in which the electrons are
relaxed towards a distribution with a net drift velocity.
As pointed out by Gurzhi et al. , the final results of Ref.
25 are incorrect, because the spatial variation of the drift
velocity is neglected.

Our theoretical d.escription starts from a kinetic equa-
tion similar to that of Ref. 25. We have obtained a self-
consistent solution of the relevant Boltzmann equation.
This theory provides an analytical expression for the
Boltzmann distribution function for any set of /, Ib, TV.
It will prove insightful to express the Boltzmann distri-
bution function in terms of an efFective mean free path.
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For the regime t„))lp, R' our solution is equivalent to
the results of Movshovitz and Wiser, so that we have
provided a formal basis for their method of including
e-e scattering events in the electron trajectories. Our
approach is indeed able to describe the transition from
Knudsen to Poiseuille How. The transition can be illus-
trated by the evolution of the electron-Qow profiles along
the wire.

In the three-dimensional case, which has been ad-
dressed in most previous treatments, the e-e scattering
rate of electrons in a thermal slice around the Fermi sur-
face is proportional to T, as follows from the well-known
phase space argument. For a 2DEG, instead, the e-e
scattering rate is proportional to T ln7. ' In a study
by Laikhtman, of relaxation of injected electrons into
a zero-temperature 2DEG, it is found that small-angle
scattering is important. Features of e-e scattering in a
2DEG are also discussed by Gurzhi and co-workers.
The e-e scattering term which we use is first proposed by
Callaway and is not of a microscopic origin, but takes
the main feature of e-e scattering, conservation of mo-
mentum, into account. As we will show, an attractive
feature of this simplified scattering term is that it allows
an exact (numerical) solution of the Boltzmann equation.

We have compared experiment with theory through a
three step procedure: First, using the results of the point-
contact thermometry, we find T, versus I. Then, using
a formula due to Giuliani and Quinn, we calculate I„
as a function of T . Finally, we determine the wire re-
sistivity for the given 1„from our Boltzmann approach.
This has yielded quite a satisfactory agreement for both
the Knudsen and the Gurzhi regime. The regime (3) in
which phonon scattering, due to the heating of the lat-
tice, increases the resistivity is outside the range of our
theory. From the magnitude of the Knudsen effect we ob-
tain information on the boundary-scattering parameters
of the gate-defined wires.

A brief account of this work with an emphasis on
the experiments has already been published. Here, we
present a more extensive discussion. Particular attention
is paid to the derivation of the theoretical model and how
its results can be compared with the experiments. The
outline of this paper is as follows: In Sec. II, the experi-
ments are presented. Section III describes the theoretical
model formulated in terms of a Boltzmann equation. The
method of solution and. the theoretical results including
How profiles are stud. ied in Sec. IV. Section V discusses
the comparison between theory and experiment. Finally,
we conclude in Sec. VI. Appendixes A and B detail some
technical parts of the calculation.
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FIG. 1. Dependence of the thermovoltage Vt, „,= V6 —V3

and of the diiYerence between the electron and the lattice tem-
perature T, —T on the heating current I measured for wire
I at T = 1.5 K. Point contact AH is adjusted for maximum,
CD for zero thermopower. The inset shows the schematical
layout of the gates (hatched areas) used to define a wire with
point-contact voltage probes. The wire width W is typically 4
p,m, the length L varies between 20 and 120 p, m. The crossed
boxes denote Ohmic contacts. The coordinates used for the
theory are indicated.

split gate technique. On top of the heterostructures,
which are mesa etched in the shape of a Hall bar, a pat-
tern of TiAu gates is defined using electron-beam lithog-
raphy. The lay-out of the TiAu gates is given schemati-
cally in the inset of Fig. 1. The wires have a lithographic
width W~;qh 4.0 pm (note that due to electrostatic de-
pletion the width W of the wires in the 2DEG is some-
what smaller), and a length I that varies between 20 and
120 pm. A quantum point contact is incorporated in
each wire boundary. We report here on three different
types of samples, whose particulars as to L, R', electron
density n and mean free path /b are summarized in Table
I. For transport measurements, the samples are kept in
a cryostat at temperatures of 1.5 K and above, and at
zero magnetic field. For reasons of sensitivity, we mea-
sure the differential resistance of point contacts and wires
with standard low-frequency lock-in techniques, using a
100 pV ac voltage. All measurements are performed in a
four-terminal geometry.

In order to adjust the electron temperature in the
wires, a dc heating current I = Iis (typically an order
of magnitude larger than the ac measuring current) is
passed through the wire using Ohmic contacts 1 and 5.

II. EXPERIMENTAL OBSERVATION
OF KNUDSEN AND GURZHI

TRANSPORT REGIMES

TABLE I. Length L, lithographic width W~;t, h, electrical
width W, electron density n, mean free path lb [at 1.5 K
(sample I) and 1.8 K (samples II 8z; III)j, and specularity pa-
rameter o. of the samples discussed in this paper.

Our devices are fabricated from two different
(Al, Ga)As heterostructures containing a high-mobility
2DEG, grown at Philips Research Laboratories, Redhill,
Surrey, UK. The wires used in the experiments are cre-
ated by electrostatic confinement of the 2DEG using a

Sample

I
II
III

L
(pm)
20.2
63.7

127.3

(pm)
3.9
4.0
4.0

TV n
(pm) (10" cm )

3.5 2.2
3.6 2.7
3.6 2.7

lg

(pm)
12.4
19.7
19.7

0.6
0.7
0.7
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Because of power dissipation, the average kinetic energy
of the electrons in the wire increases. Due to frequent
e-e scattering events, the electron distribution function
in the wire thermalizes rapidly to a heated Fermi func-
tion at a temperature T, above the lattice temperature
T. This increased electron temperature can be measured
using the quantum-point contacts in the wire boundaries:
since the electrons in the regions outside the wire remain
at the same temperature as the lattice, a thermovoltage
builds up across both point contacts AB and CD, which
can be measured as a transverse voltage Vt: V6 V3.
Note that Vt, „,does not contain a contribution from the
voltage drop along the wire, since point contacts AB and
CD face each other. We thus have

Vtrans —Vs —Vs ——(S~~ —S~ii)(T, —T) 1

where S~~~~D~ denotes the thermopower of point contact
AR(CD).

Like the electrical conductance, the thermopower S of
a quantum point contact exhibits a pronounced quan-
turn size effect: while the electrical conductance of
the point contact varies stepwise with the voltage on
the split gates, the thermopower oscillates. The exter-
nal gate voltage controls the number of one-dimensional
subbands present below the Fermi energy in the point
contact. When the Fermi energy inside the point contact
falls in between two subbands, the conductance is quan-
tized, and the thermopower S 0. However, when the
Fermi energy- inside the point contact exactly coincides
with the bottom of the Nth subband, the conductance is
in between the Nth and the (iV —1)th plateau, and the
thermopower attains a maximum value, which for a step-
function transmission probability of the point contact, is
given by

k~ ln 2
1e N ——
2

if % ) 1. The quantum oscillations in the thermopower
of a quantum point contact were predicted by Streda,
and an experimental demonstration of the effect has
been reported elsewhere. Here, we utilize the effect to
measure the electron temperature in the wire: we ad-
just point contact CD on a conductance plateau, thus
setting S~D 0, and adjust point contact AB for
maximum thermopower [G~~ = 1.5 x (2e /h), where
S~~ —40 pV/Kj. The result of such a measurement
of Vq, „„asa function of dc heating current I, obtained
for a wire of type I, is shown in Fig. 1. For the longer
wires a very similar behavior is found. In general, we find
that for ~I~ + 20 pA, and a lattice temperature T + 2 K,
the electron temperature T, in the wire is approximately
given by

T, = T + (I/W) o'C, .

where 0 is the conductivity of the wire. The constant
C 0.05 m K/W. Evidently, such a quadratic depen-
dence of T on I is exactly what one expects to a first
approximation for Joule dissipation. For ~I~ 20 pA,
the situation is more complicated since at these current
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FIG. 2. DifFerential resistance dV/dI of wire I, as a func-
tion of current I for lattice temperatures T = 24.7, 20.4, 17.3,
13.6, 10.4, 8.7, 4.4, and 1.5 K (from top to bottom). The up-
per panel (a) of the inset is a magnification of the T =1.5 K
result. The lower panel (b) displays the result of the theory
described in Sec. V.

levels, also, the lattice temperature starts to increase.
The hydrodynamic electron-fIow effects that are the

subject of this paper are observed in the differential re-
sistance dV/dI = dV24/dIis of our wires, as a function of
dc heating current I. Experimental results obtained for
wires I, II, and III for a series of lattice temperatures are
given in Figs. 2 and 3. Also shown are theoretical results
that will be discussed in Sec. V. A strongly nonmono-
tonic behavior of dV/dI is evident for all traces. This
nonmonotonic behavior in the differential resistance, is
the focus of this paper and we will show that it results
from electronic Knudsen and Poiseuille fIow.

A first remark we should make here is that in the high-
mobility 2DEG quantum corrections to the resistance,
such as weak localization, are not measurable at the tem-
peratures involved. This means that the nonrnonotonic
behavior must result from classical effects. Note further
that for the low lattice-temperature results of Figs. 2 and
3, all three resistance regimes indicated in the Introduc-
tion can be observed: (1) Increasing dV/dI, due to Knud-
sen flow, (2) decreasing dV/dI in the Gurzhi regime, and
(3) a quasiparabolically increasing dV/dI due to lattice
heating. Only in the last regime, we find from a nearby
thermometer that the lattice temperature of the sample
increases, implying that the quasiquadratic behavior (3)
is due to Joule heating of the lattice in combination with
the linear increase of electron-phonon scattering. Wire
I (cf. Fig. 2) exhibits a smaller Knudsen eKect (and only
at the lowest lattice temperature studied) than wires II
and III. As we will demonstrate below, this results from
the smaller ratio lb/W in wire I, compared to wires II and
III. If the lattice temperature T is increased we observe
in Fig. 2 two distinct effects. First, the I = 0 resistance
increases. This is due to the decrease of lg by additional
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the positive dV/dI occurs in the right current range for
the electronic Knudsen effect. In the following sections,
we will formulate our calculations that substantiate the
assignment of the anomalous behavior of dV/dI to hy-
drodynamic electron Bow.

III. BOLTZMANN EQUATION

We study the electron fiow inside a two-dimensional
wire of width W in response to a constant electric field
E, applied in the x direction, parallel to the wire. The
2DEG has an ideal circular Fermi surface. We look
for a time-independent distribution function f(r, k) for
electrons at position r = (z, y) and with wave vector
k = k(cosy, sing) (see inset of Fig. 1), which obeys the
stationary Boltzmann transport equation,

400

-20 -10 0
I I I I

10 20 -10 0
-300

10

0f (r, k) 8f(r, k) 0f (r, k)
Mk Br Bt

FIG. 3. Dilferential resistance dV/dI vs current I for wire
II and III for lattice temperatures of (from top to bottom)
T =4.5, 3.1, and 1.8 K. At higher current levels, dV/dI ex-
hibits a quasiquadratic increase with current, similar to that
in Fig. 2. Left panel (IIa) and (IIIa): experimental traces;
right panel (IIb) and (IIIb): results of calculations, see Sec.
V.

electron-phonon scattering. Second, the hydrodynamic
effects on the resistance disappear, the Knudsen effect at
lower T than the Gurzhi effect. This is caused by the
decrease of l„at I = 0 (where T, = T) with increasing
lattice temperature. Another point to notice in Fig. 3 is
that the magnitude of the initial increase of dV/dI (the
Knudsen effect) is twice as large for wire III as for wire
II. This shows that the effect scales with the length of the
wire and does not stem from, e.g. , the wire entrances.

To see whether the hydrodynamic electron-How phe-
nomena mentioned in Sec. I can indeed be responsible
for the anomalous behavior of dV/dI, it is instructive to
estimate for wire I the e-e scattering mean free path l
for a current I = 15 pA, i.e. , in the regime of decreasing
dV/dI. According to Eq. (3), I = 15pA corresponds to
an electron temperature T, = 16K (for a lattice tem-
perature T = 1.5K). We have I„=v~7„, where v~ is
the Fermi velocity, and 7.„the e-e scattering time, given
b 28,34,35

&ee

Here, q = me /2m'e, cob is the Thomas-Fermi screen-
ing wave vector. We Bnd l, = 0.8@m, which is much
smaller than R'. In this limit, the electrons undergo a
random-motion due to frequent e-e scattering events, and
we assign, at this stage tentatively, the decrease in dV/dI
to the Gurzhi effect. For currents below 8@A, dV/dI is
positive. As L, 5 pm 0 for I = 8 pA and T = 1.5 K,

where the right-hand side (rhs) is the scattering term,
taking into account both electron-impurity and e-e scat-
tering. Application of the electric field leads to a dis-
turbance of the distribution function, from its equilib-
rium Fermi-Dirac distribution fo(e) = I/(I + expl(e—
Ej')/kgT, ]), for energy e = 5 A' /2m = mv /2 and with
Fermi energy E~. At not too high Belds, the nonequilib-
rium part of the electron distribution function is only in
a small shell around the Fermi surface. Therefore, and
using the translational invariance along the x axis, we
write the distribution function as

,E ~x(y, V) ~x(y v)
scattOt

where y is the unit vector in the y direction. We
neglect the energy dependence of the velocity in the
thermal region around the Fermi energy, so that v
v~(cos p, sin y).

Once the distribution function has been evaluated, the
current density can be calculated according to

j(y) = 2 ) f (r, k)ev,

d(IP

27'
X(y V')ev= f d~ D(z)

/

—'
dp= e17v~ y(y, y)v,

0 2K
(8)

with the two-dimensional density of states 17(e) = 17 =
m/mh2 (assuming a twofold spin-degeneracy) and with
unit vector v = (cos p, sin rp).

Let us now specify the scattering terms on the rhs of
Eq. (7). The scattering by bulk impurities is assumed to
be elastic and isotropic. This implies for the scattering

f(r k) =fo(&)+ I

—
~ l~(y v).~fo &t

~~)
Substitution of Eq. (6) into Eq. (5) yields in linear re-
sponse
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term,

~x(u, v) x(v v)
Bt b Vb Vb

2''
d I

I
x(v, v ), (9)

where 7b denotes the electron-impurity scattering time.
Note that the second term on the rhs of Eq. (9) repre-
senting the electrons scattered into (y, V) is omitted in
many treatments of the Boltzmann transport equation.
In these cases it is a priori assumed that the nonequilib-
rium density is zero. For completeness, we maintain this
term here and show explicitly that it equals zero for our
complete Boltzmann equation in Appendix A. For the
e-e scattering term, we follow Refs. 25, 26 (the Callaway
ansatz),

x(v v)
+ee +cc

+mv vgrift (g)

2' g f

x(v v')

(10)

~x(u v)
N

x(u, v)
7ee

X(y, V')(1+ 2v' v) . (11)
1 0(p

7ec P 2K

One readily verifies that this scattering term conserves
the total momentum,

with v; the e-e scattering time and vg„.gt the net drift
velocity. The e-e scattering term (10) implies that the
electrons are relaxed towards a shifted distribution func-
tion f (r, k) = fp(s —mv vQpjff, ). The second term on the
rhs of Eq. (10) again ensures the conservation of particle
density. The drift velocity is related to the current den-
sity (8) according to j(y) = nevQ 'ft with the electron
density n = Z)EF, so that Eq. (10) becomes

x(o, v) =J(v)x(0, 2~ —v)

+ [1 —s(v')]x(0 v')d(p
(14a)

if p C [0, vr], and for the y = W boundary

x(~, v) =s(v)x(~, 2~ —v)
7l'

+ [1 —u(v')]x(~, v '),
p 7l

(14b)

if p E [vr, 27r]. The first term on the rhs represents the
specularly refIected electrons, the second term the ones
that are difFusely scattered.

To proceed, the nonequilibrium part of the distribution
function is written as

X(v V') = «cos p/ fr(v V') . (15)

Here, the effective mean free path /, ~(y, p) can be in-
terpreted as the average length an electron at y in the
direction p has covered since the last boundary or im-
purity collision, as we show below. It is clear that a re-
placement of /, s(y, p) in Eq. (15) by the bulk mean free
path lb yields the well-known bulk solution of the Boltz-
mann equation. Let us now introduce mean free paths
for bulk-impurity scattering lb ——v~wb, for e-e scatter-
ing l, = v~7, , and for the combination of those two
l = lb + l„.As demonstrated explicitly in Ap-
pendix A, substitution of Eq. (15) into the combined Eqs.
(7), (9), and (ll) gives

parameter n = 4vrh /A~, depends on the ratio between
b, the root-mean-square boundary roughness, and the
Fermi wave vector.

The boundary conditions for the solution of the Boltz-
mann equation (7) are determined by demanding particle
conservation. For the y = 0 boundary, we have

(12)
~/. a(y, v) /.8(u, v) /. e(v) (16)

Actually, Eq. (11) is the simplest possible scattering term
with this property. Since the scattering probability from
direction p to y' is proportional to 1 + 2v' . v = jI. +
2cos(V —V'), small-angle forward scattering (y —p' = 0)
is most probable. The negative values for p —p'
correspond to the scattering of a nonequilibrium electron
into a nonequilibrium hole in the opposite direction.

For the scattering with the boundaries of the wire it
is assumed that a fraction p of the incoming electrons is
scattered specularly, whereas the remainder is scattered
difFusely. In the original theories of size efFects the
specularity coefFicient p is taken to be angle independent.
A microscopic model by SofFer for the scattering of the
incoming waves by the boundary roughness, finds that p
depends on the angle of incidence,

p(V) = exp[ —(o. sin V) ] .

This shows that electrons with grazing incidence (sin rp ~
0) approach a unit probability of specular reflection. The

d(p
/. e(y) = cos p / s(y, p) .

p
(17)

The integrodifFerential equation (16) constitutes a major
simplification with respect to our starting point. This
result is the basis of our further analysis in the following
section. The average efFective mean free path /, g(y) is
directly proportional to the drift velocity,

eE—
va.m(y) = /.a(V)mvp

(18)

as follows from Eqs. (8), (15), and (17). The conductivity
of the wire, defined according to j = o.E, is given by

ne dy — ne—/, g(y) = L.g .
mvy p W mv~

(19)

The overall efFective mean free path I,@ is directly pro-
portional to the conductivity and will be used instead of
0 below.
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IV. THEORETICAL RESULTS

As a preliminary application of Eq. (16), we brieRy
treat the case of transport through a bulk conductor. We
thus seek a solution of the Boltzmann transport equation
independent of the spatial coordinates. As a consequence
of the disappearance of the y dependence in Eq. (16), it
follows that the effective mean &ee path l,g is indepen-
dent of &p as well, so that [from Eq. (17)] L,rr = L,ir. The
solution of Eq. (16) is then easily found,

1
l e = = lb.

l l —l,
(20)

Note, that substitution into Eq. (15) produces the or-
dinary bulk solution of the Boltzmann equation in the
absence of e-e scattering. This solution is thus shown
to be independent of the e-e scattering rate. It clearly
demonstrates that momentum-conserving e-e scattering
does not inHuence the bulk conductivity.

Let us now return to the wire, for which e-e scatter-
ing can have a prominent inHuence on the conductivity.
As shown in Appendix A, it follows &om a symmetry
argument that L,rr(y, p) = L,ir(y, vr —p) for all y. It is
then clear from Eq. (15) that the second term on the rhs
of both Eqs. (14a) and (14b) vanishes. The solution of
Eq. (16) in coinbination with the boundary conditions
(14) can be written in the form of an integral equation.
For clarity we first treat the case of completely diffusive
boundary scattering p = 0. We then have for p 6 [0, vr],

2lV-
L,rr = 1n(/s/W) + ln2+ i —p

7r
(22)

ing event must be accounted for, which is done by the last
term. The second term denotes the contribution of elec-
trons after diffusive boundary scattering. This interpre-
tation of the solution of the Boltzmann equation is orig-
inally due to Chambers. The above derivation demon-
strates that this approach is still feasible when an e-e
scattering term is included in the Boltzmann equation.
However, the solution itself is certainly more dificult to
obtain, since Eq. (21) must be solved self-consistently
with Eq. (17).

Previously, Movshovitz and Wiser have evaluated the
efFect of e-e scattering on the resistivity of (three-
dimensional) films and wires, io by calculating effective
mean &ee paths with at most one e-e scattering event per
trajectory. This approach (most extensively described
in Ref. 11) yields valid results for the Knudsen regime
l )) R', lb. We can treat this regime conveniently within
our formalism by solving Eq. (21) perturbatively. Only
the result of the first two terms of Eq. (21) is substituted
into the third term. One can prove that this procedure
is precisely equivalent to that of Ref. 11.

In Appendix B we discuss a perturbative analysis for
the two-dimensional wire with diffusive boundary scat-
tering (p = 0). Here, we present the main results. For
the limit /b )) W, the conductivity [see Eq. (19)] in the
absence of e-e scattering is given by

y
/ x y y y —(y —y')/1 sin ~

eZ&y y~
— . . e

l sin p sin y

+ y —y/l sin rpe
SlIl (P

y

+ y
L (

I
)

—(y —y') /i sin rp

0 lee SlIl P
(21a)

where p is Euler's constant (see Appendix B). In this
limit the conductivity is directly proportional to the
width, whereas the dependence on the mean &ee path
is only present in the form of a logarithm. The per-
turbative solution allows us to calculate the first order
correction to the conductivity due to e-e scattering. For
the situation l, )) lb )) W, we find

and for p 6 [vr, 2vr],

W
y e (y' y)/rl

' vl— —
L] sincp]

f sing]
—(W —y)/l/ sin ~/

W—
e

/

sin p/

L ~(y&)e
—(y' —y)/rl»~~ldy'

(21b)

Equation (21) elucidates the meaning of the efFective
mean free path /, ir(y, p) as follows: Each electron ar-
riving at y in the direction y has covered a certain path
length since the last diffusive scattering event. The first
term on the rhs of Eq. (2la) takes into account the length
covered &om the last scattering event at any y' in be-
tween 0 and y. The exponential factor gives the proba-
bility that the particle indeed reaches y without any addi-
tional scattering, whereas the distance covered is given by
(y —y')/ sin p. Note, that the scattering event at y' might
have been either diffusive impurity scattering or e-e scat-
tering. In the latter case, also the path before the scatter-

2lVlb
efF—

vrl, (23)

4/b~e=lb—
3mW

(24)

The diffusive boundary scattering yields a small nega-
tive correction to the bulk conductivity. The first order
inHuence of e-e scattering in the regime l )) W )) lb is

4lb3LI ~ ——
15~Wl.. (25)

We note that the conductivity decreases due to the e-
e scattering. This is the Knudsen effect. It is clear
from Eqs. (22) and (23) that the larger /s/W, the more
prominent this effect becomes. Previous calculations
for this regime have yielded ZI, rr = —4W/s//„ for a
three-dimensional film of thickness TV l and LI,H;—(W2/L„) ln(L„/W) for a three-dimensional wire of di-
ameter TV.2

For the opposite limiting regime lb (& W, the inHuence
of the boundary scattering on the conductivity becomes
quite small. From the analysis in Appendix B, we obtain
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Apparently, in this limit e-e scattering always increases
the conductivity, which can be understood as follows:
Since e-e scattering does not inhuence the bulk con-
ductivity, it can only change the small negative cor-
rection due to the boundary scattering, represented by
the second term in Eq. (24). Electron-electron scatter-
ing decreases this correction, which can be interpreted
as the onset of the Gurzhi effect. For comparison, we
again mention results for three dimensions: AL,g

ss (s —ln2)l&/W 1„ for a film (this can be calculated
from the results given in Ref. 11) and AL,~ l&~/W/„
for a wire.

The calculation of the first order correction on the con-
ductivity due to e-e scattering thus displays an opposite
behavior in the two limiting regimes. This raises the
question how LL,~ crosses over from a positive value
at small ls/W to a negative value at large ls/W. One
expects that the negative correction to the conductivity
appears when /b ) TV. To substantiate this expectation,
we have calculated the correction for the full regime of
the ratio li, /W. Details of this calculation are given in
Appendix B. The results are presented in Fig. 4, which
depicts both the conductivity in the absence of e-e scat-
tering, as well as the relative first order correction due to
e-e scattering as a function of ls/W. For the conductiv-
ity, one observes a crossover from bulklike behavior [Eq.
(24)] to the logarithmic dependence of Eq. (22). The first
order correction in the conductivity due to e-e scattering
goes from a positive to a negative value. We And that
the Knudsen effect is only present for /b & 1.3R'.

The above results are valid for the regime of very low
e-e scattering rate. However, in order to compare with
the experiments, we must also obtain solutions of Eq. (16)
for the regime, in which / becomes comparable with and
smaller than /b, t/V. In addition, we need to incorporate
the boundary condition (14) for arbitrary specularity co-
efficient p(p). By transforming Eq. (16) into an integral
equation and integrating over p, we And

l,s(y) = l,~(y) + dy'G(y, y') l,s(y'),

l,& (y) = t —— dp cos p
-(0) 2/ 2

[1 p(+)] e —y/I sin ~ + e—(w' —y)/I sin
&PI

X (27)
1 p(+)e —Tv/l sin ~

G(y, y') =
~//2 —

~y
—y'

~
jl sin ~

sin p

( ) g
—/I+I')/"'"v'/ g -('~ —tl —I')/' '"w

I1 p(+)e —w'/i sin rp

(28)

These are the key equations which allow the evaluation
of the conductivity for all values of /, , /b, R', and p. Es-
sentially, the /, & term ls the two-dimensional equivalent

-(o)

of the Fuchs solution of the Boltzmann equation. The
second term in Eq. (26) is a classical electron propagator
function, which takes the correction due to e-e scatter-
ing into account. Note, that the perturbative approach
as described in Appendix B is equivalent to the approx-
imation /, s = (1 + G)l &. However, for larger values of-(o)

/„Eq. (26) must be solved self-consistently according to

(1 —G)l,& = l &. This can be achieved numerically by
-(0)

discretizing the y axis, so that Eq. (26) becomes a ma-
trix equation. This scheme allows the evaluation of the
solution /, g with a precision which is only limited by the
available computer power. We have used at least 400
gridpoints in our calculations to obtain suKcient preci-
sion.

In Fig. 5, the conductivity for a wire with diffusive
boundary scattering (p = 0) is plotted against the e-e
scattering length for various values of the bulk-impurity
mean free path. For a wide wire (li, /W = 0.2) the
conductivity remains approximately constant over the
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l, /W
10
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FIG. 4. The conductivity L,& in the absence of e-e scat-
tering and the erst order correction AL g, due to e-e scatter-
ing against the bulk-impurity mean free path lb. Results are
for a two-dimensional wire with diffusive boundary scattering
(p = 0) according to Eqs. (B5) and (B8), respectively.
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FIG. 5. The conductivity L,& of a wire with difFusive
boundary scattering (p = 0) against the e-e scattering mean
free path l for various bulk-impurity mean free paths lb.
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FIG. 6. The conductivity L,& of a wire with a mean free
path /q

——5W, against the e-e scattering mean free path l for
various specularity coefficients p. The inset shows the relative
change in the conductivity at the Knudsen maximum (which
corresponds to the minimum in the conductivity).

full range of l„/W. The cases lb/W = 0.5, 1 display
a monotonous increase of I,~ with decreasing 3„, the
Gurzhi effect. Only for wires of a width smaller than the
mean free path (lb/W = 2, 5, 10) can both the Knudsen
and the Gurzhi regimes be reached: an initial decrease
followed by an increase of L ~ with decreasing l is found
&om the calculation. The Knudsen minimum in the con-
ductivity is reached at l R'. It is clear that both the
Knudsen efFect and the Gurzhi effect on the conductivity
become more prominent for larger ratios lb/W. We fur-
thermore note that the conductivity saturates to its bulk
value (I,g ~ lb) when the e-e scattering rate becomes
high (l„-+ 0), which reflects the vanishing inHuence of
the boundaries in this regime.

I et us now have a closer look at the effect of the bound-
ary scattering. Figure 6 displays the conductivity of a
lb/W = 5 wire for various angle-independent specularity
coeKcients p. The conductivity increases with decreasing
diffusive boundary scattering. Besides this, we observe
that for all p ( 1 both the Knudsen and the Gurzhi
effect are found. If the boundary scattering is fully spec-
ular (p = 1), L,rf = lb regardless of the amount of e-e
scattering. Essentially, the situation of specular bound-
ary scattering is equivalent to the bulk case, in which the
effects of e-e scattering are absent. It is easily checked
that l,g(y) = lb solves Eq. (26) for p = 1. The relative
conductivity change at the Knudsen maximum KL,p/L, ~
(with respect to the l„=oo value) is depicted in the in-
set to Fig. 6. It decreases when the boundary scattering
becomes less diffuse.

As we have remarked above, the modeling of the
boundary scattering by a constant specularity coe%cient
is only approximate. SofFer has shown that a better
description is given by the angle-dependent specularity
coefficient of Eq. (13). Since the hydrodynamic effects in
the conductivity are caused by the interplay between the
e-e scattering and the boundary scattering, one may ex-
pect that the angle dependence leads to difFerences in the
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4.5

4.0

0.895 0.6

0.87 0.7
0.845 0.8

3.5 I ( (

10' 10' 10 '
1

i.. /w
10 10'

magnitude of the Knudsen and Gurzhi efFects. Results
comparing both models of boundary scattering are shown
in Fig. 7. The parameters in both models are adjusted to
yield equal conductivity in the absence of e-e scattering.
It is clear &om Fig. 7 that the angle-dependent scattering
leads to a much larger Knudsen effect. The reason is as
follows: The conductivity is mainly determined by elec-
trons that move nearly parallel to the wire axis. These
electrons hit the boundaries at grazing incidence. In the
Soffer model electrons at grazing incidence experience a
rather high boundary specularity. However, to have an
equal conductivity for both models in the absence of e-
e scattering, the boundary scattering of electrons with
larger incoming angles must be more diffusive in the Sof-
fer model. It is clear that this enhances the Knudsen
effect.

So far, we have focused solely on the conductivity.
More insight in the microscopic processes inside the wire
can be obtained from the solution l,~(y). Since it is pro-
portional to the drift velocity according to Eq. (18), it
represents the flow profile across the wire. Profiles for
lg ——5.5R' and o. = 0.7 and various amounts of e-e scat-
tering are shown in Fig. 8. In the absence of e-e scattering
the drift velocity is almost constant as a function of y.
On increasing the e-e scattering rate, the flow profile over
the full cross section of the wire shifts downwards, due to
the Knudsen effect: Occasional e-e scattering events bend
the electrons moving parallel to the wire axis towards the
boundaries. This efFectively decreases the drift velocity
and thus the conductivity. However, for smaller I,, val-
ues the flow profile develops a distinct curvature. This
indicates that electrons near the boundaries experience
more &iction, due to diffusive boundary scattering, than
electrons in the middle of the wire. The eventual result
of this change in the flow profile is that the conductivity
increases with increasing e-e scattering rate, the Gurzhi
effect. This behavior becomes more pronounced upon de-
creasing L, , and the profile becomes similar to the clas-

FIG. 7. Comparison of the conductivity L,&, as a function
of l, for constant boundary-scattering coefficients (dotted.
curves) and for angle-dependent coefFicients (solid lines) ac-
cording to Eq. (13). To have approximately equal conductiv-
ity in the absence of e-e scattering the comparison is between
(top to bottom) p = 0.895, 0.87, 0.845, and o; = 0.6, 0.7, 0.8,
respectively. The bulk-impurity mean free path /&

——5.5W.
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pm. The actual value of Bp may vary from wire to wire,
and with the lattice temperature. From previous exper-
iments, we estimate Bp 60 —900. We thus have for
the resistance

her LB=Bp+
2e2 k~ R' W~ (29)

1 100

0
0.0 0,2

I I

0.4 0.6 0.8 1.0
y/W

FIG. 8. Velocity profiles inside the wire show how the Bow
changes from the Knudsen upto the Gurzhi regime. Depicted
are the (normalized) drift velocity /, ir(y), as a function of the
transverse coordinate y for /„/W = 100 (x), 1 (A), O. l (+),
0.01 ( ), and 0.001 (Q). The inset shows the conductivity I,s.
as a function of the e-e scattering length /, and the symbols
that indicate to which value each Bow profile corresponds.
Results are for the bulk mean free path l& = 5.5W and for
angle-dependent boundary scattering with n = 0.7.

sical, laminar Poiseuille fIow. Ultimately, however, the
Gow is limited by the bulk-impurity scattering, as shown
by the curve in Fig. 8, for the smallest value of /, . The
electrons in the middle of the wire have a drift velocity
equal to the bulk value, whereas close to the boundaries
thy drift velocity goes to zero.

In this section, we have demonstrated which fIow phe-
nomena may occur in a wire with both difFusive impurity
scattering, as well as nonresistive e-e scattering. In the
next section, we present how the theory can be brought
into agreement with the experiments.

V. CDMPAB. ISON
BETVPEEN EXPEH,IMENT AND THEORY

Now that we have found that both the Knudsen and
the Gurzhi efFect as observed in the experiments, cf. Sec.
II, can at least qualitatively be understood by the theory
of the previous sections, we wish to make a more quan-
titative comparison. Note, that the experimental traces
are dV/dI versus I curves, whereas the theoretical results
provide L,g as a function of Ig, l „and W.

The resistance B of the sample, as measured in the ex-
periment, is due to two contributions. First, there is the
resistance of the wire itself. As shown in Ref. 36, this is
equal to a good approximation to the sum of the
Drude resistance and the Sharvin contact resistance.
The second contribution Bp is due to the unbounded re-
gions in the 2DEG between the Ohmic contacts and the
entrance of the wire (see inset to Fig. 1). Note, that in an
ideal four-probe measurement, the contacts should be so
close to the entrance of the wire, that this contribution
would be absent. In our samples, the typical distance
between the contacts and the wire is on the order of 200

in which the second term is the Sharvin resistance and
the third the Drude resistance. The conductivity 0. is
given by Eq. (19). The values for L, W, n, and /b for each
wire are displayed in Table I. Due to the electrostatic
depletion, the width TV of the wires is slightly smaller
than the lithographic width of the gate structure. For
wire I, we take W = 3.5 pm and for wires II and III,
TV = 3.6 pm.

The theoretical L,g versus l, curve can now be trans-
formed into an Bversus I curve in a three step procedure.
First, we apply Eq. (3), which gives the electron temper-
ature T against I. Then, /', is determined as a function
of T, through Eq. (4). Finally, the Boltzmann theory
provides I ~ (and thus o) for the given /„, so that the
resistance is given by Eq. (29). There is a little subtlety
here, since the resulting conductivity o is already used
in Eq. (3). One could adopt two approaches: The first
would be to neglect the dependence of o. here and simply
use its I = 0 value in Eq. (3). The second approach,
which we have applied, is to fj.nd a self-consi. stent value
of o. and l in a numerical procedure. Actually, this only
slightly changes the I axis. From the B versus I curve
the difFerential resistance dVjdI versus I is found. 7 It
should be mentioned that we do expect some deviations
in the I axis, because of the approximate nature of Eq.
(3). Because of the limited validity of Eq. (3) we can only
treat the regime ~I~ & 20 pA. This is sufficient since we
only aim to model the Knudsen and the Gurzhi regimes.
The dissipative behavior, due to the heating of the lat-
tice, which is observed for higher currents in Figs. 2 and
3, is not treated in the comparison.

In Fig. 9, we apply the above analysis for the differen-
tial resistance of wire II at T = 1.8 K. The experimen-
tal curve is a blowup of the lowest temperature trace in
Fig. 3. The theoretical curves are for various boundary-
scattering parameters and correspond to the plots in Fig.
7 (since /i, = 5.5W). It should be stressed that Ro is not
included in the theoretical curves, since its precise value is
not known. This will be the case for all the comparisons.
Clearly the numerical results for a constant specularity
coefIicient display a far too weak Knudsen and Gurzhi
behavior. Both efFects can be increased by decreasing
p, but this also enhances the I = 0 resistance to unrea-
sonable values. The plots in which the boundary scat-
tering is taken to be angle dependent — using Eq. (13)

display a much better resemblance with the experi-
ment. Our experiments thus clearly indicate the validity
of SofFer's model for boundary scattering in split-gate
defined wires. We find the best agreement with o, = 0.7.
At I = 0, the difFerence between the experimental and
the theoretical resistance is 83 0, which is within the
right range of Bp.

We have applied the same analysis to the T = 1.5 K
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425

400—

wire III, the theoretical curves are quite similar to the
experiments as to shape and amplitude. The decrease in
the Knudsen effect with increasing lattice temperature is
indeed found. We do observe, however, a difference with
the experiment for the additional offset between the indi-
vidual curves. This is probably caused by a temperature
dependence in Ao.

350 VI. DISCUSSION AND CONCLUSIONS

300 —
I

—15
I

—10 —5
I

0
I (pA)

10

FIG. 9. DifFerential resistance dV/dI versus current I for
wire II. The top curve is the experimental result at T = 1.8
K, as shown for a larger current range in Fig. 3. The other
curves are theoretical results for various boundary-scattering
parameters. The dotted lines are calculated with a constant
specularity coefficient p = 0.845, 0.87, 0.895 (top to bottom).
The solid lines are calculated for angle-dependent boundary
scattering, with n = 0.8, 0.7, 0.6 (top to bottom). Best agree-
ment with experiment is found for n = 0.7 (thick curve).

result of wire I. As noted above, the magnitude of the
Knudsen effect is much smaller than in wires II and III,
due to the lower ratio of /g/W = 3.5. This is indeed what
is found in the theoretical calculation. The comparison
between theory and experiment is given in the inset to
Fig. 2. We have found that for wire I, o. = 0.6 yields the
best agreement.

The values of a that emerge kom the comparisons im-
ply that the root-mean-square boundary roughness of the
gate-defined wires b —2.5nm and that approximately
80% of the boundary scattering is specular. This is
consistent with earlier magneto resistance and electron-
focusing experiments in gate-defined 2DEG systems.
Note, that in the potassium wires used for hydrody-
namic electron-fiow experiments the boundary scattering
is much more diffusive, values of o. 25 are used.

Finally, we investigate the resistance behavior when
the lattice temperature is increased. The experimental
curves for wire II and III for T =1.8, 3.5, and 4.5 K are
given in Fig. 3. The change in lattice temperature both
influences Eq. (3), as well as the bulk mean free path
/g, which also includes some electron-phonon scattering.
The difference in the I = 0 resistance for the three tem-
peratures are thus caused by changes in /g and in /„.
Both increase the resistance with increasing lattice tern-
perature. The decrease in l causes a part of the Knud-
sen correction to be already incorporated in the I = 0
value of dV/dI. From temperature-dependent mobility
measurements, we have /b

——18.5 p,m at T = 3.1 K and
/g

——17.1@m at T = 4.5 K. Note, that for the theoret-
ical analysis at T = 3.1,4.5 K, we push Eq. (3) slightly
beyond its range of validity. A comparison with theory
for o. = 0.7 is presented in Fig. 3. For both wire II and

Our experiments have provided an unambiguous
demonstration of the occurrence of Knudsen and Gurzhi
fiow regimes in electron transport. The existence of these
transport regimes has already been anticipated in the
1960's. ' Although some aspects of hydrodynamic elec-
tron How have been observed in potassium wires, it
is the high-mobility obtained in (Al, ca)As heterostruc-
tures in combination with nanolithography techniques
that has made the observation of the complete transition
from the Knudsen to the Gurzhi How regime accessible.
The current-heating technique appears to he an essential
tool, by which the e-e scattering rate can be varied, while
keeping the other types of scattering unaltered. Due to
the point-contact thermometry, we are able to determine
the electron temperature inside the wire as a function of
the current. Although hydrodynamic electron fiow has
been predicted many years ago, its actual observation
in our devices and the sheer size of the efFects is quite
astonishing.

We have developed a theory based on the Boltzmann
transport equation. The theory is more complex than
that for gas How, because of the presence of bulk-impurity
scattering. Most previous theoretical work ' is
only applicable to certain limiting How regimes. Our ap-
proach is more general, in the sense that it provides the
conductivity for the complete Bow regime, i.e., for any
value of the wire width, the e-e scattering length, and
the bulk-impurity mean free path. It should be men-
tioned that we have made two essential simplifications
in our Boltzmann approach. First, we assume isotropic
impurity scattering instead of the small-angle scattering
known to occur in a 2DEG. Second, we apply a simple
e-e scattering term due to Callaway, which only takes
into account the conservation of the total momentum.
At this moment, we do not see a method of solution of
the Boltzmann equation with on the one hand more re-
alistic scattering terms, and which is on the other hand
applicable to the complete transport regime. However,
our method already shows how complex the fiow behav-
ior becomes, due to the combination of resistive impurity
scattering, as well as partly di8'usive boundary scattering
and nonresistive e-e scattering.

A quantitative comparison between experiment and
the Boltzmann theory can be made, since the electron
temperature and thus the e-e scattering length inside
the wire can be inferred &om experiment. The obtained
agreement is quite good. This proves that in spite of its
simplifications our Boltzmann theory contains the essen-
tial physical ingredients to describe the experiments. Our
results show that the Soffer model, for angle-dependent
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boundary scattering, is more appropriate to describe the
scattering with the gate-defined wire boundaries than a
constant specularity coefEcient. Apart &om the determi-
nation of the specularity parameter, our comparison is
only based on experimental data and contains no fitting.

It would be of interest to perform further experiments
on hydrodynamic electron Bow. Promising areas of in-
vestigation are the inBuence of more diffusive boundary
scattering, e.g. , in wires defined by reactive ion etching
or ion exposure, and the application of a magnetic field.
The theoretical analysis given here can be adopted in a
straightforward manner to describe the transition from
Knudsen to Gurzhi Bow in three-dimensional systems.

~&.ff(V V)
COS (P + Cos P SlIl (P

By

cos rp l,ff(y, p) 1 dp'

l
+-

l 2' cos p leg(y) p )

2'' /

+ cos p dp cos p l,ff(y, p).l, 1|
(A3)

Analysis of Eq. (A3) shows that l,ff (y, y) and l,ff(y, vr —
&p)

obey precisely the same equation. In addition the bound-
ary conditions (14) are equal. Due to this symmetry, we
have

t ff('g, p) = t,ff(y, vr —p) . (A4)
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APPENDIX A

dye(y, p) = eE dp cospl, ff{y,p) = 0. (A5)
0 0

Thus, the second term on the rhs of Eq. (A3) vanishes.
[This equally applies to the second terms on the rhs of
Eqs. (9), (11), and (14).] As a result, Eq. (A3) leads to
the integrodifferential equation (16) of the main text.

APPENDIX. H

In this Appendix, it is shown how some results pre-
sented in Sec. IV can be obtained. We study the conduc-
tivity and its first order correction, due to e-e scattering
for a wire with diffusive boundary scattering (p = 0).
By multiplication of Eq. (21) with cos p and integration
over p, one finds

We show how Eq. (16) can be derived. The combina-
tion of the Boltzmann equation (7) with the impurity (9)
and the e-e (ll) scattering terms yields

l,ff(y) = 1 —— d&p cos p e
p

+ —(Tv —y) jl sin y

~x{u,v)—eEv~ cosy+ v~ sing
By TV

+~l„
Xt,ff(y') .

dy'
m/2 —

~y
—y' (/l sin g

sin (p

27K d f

+ cos(F —rp )X(V y& )
p

(A1)

»no' ~(y W) = 0.
p 7T

(A2)

with v. = v& +~„For the time-independent case the
drift velocity has no component in the y direction, 4l' l2

I(l/W) + ——
8l3

+ K(l/W),
ee

Lg ——l— 8l3
I(l/W)

7t ee

(B2)

In the limit of a very small e-e scattering rate (I„
ls, W) the next step is to solve Eq. (Bl) perturbatively.
The erst two terms of Eq. (Bl) are substituted into the
third term. An additional integration over y then yields
the conductivity [cf. Eq. (19)],

As a result, the cos(y —y') in the last term in Eq.
(Al) can be replaced by cos rp cos y'. Substitution of the
parametrization (15) yields

I(A) = f du upi —u* (1 —e '~""), (B3)
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K(A) = dv v/1 —v2

—1/Au —1/Av —1/Au —1/Av
X + (B4)

following series expansions:

lim I(A) = —— (ln2A+ 2
—p) + O(A ),w-+~ 4A 2%2

(B7a)

In the absence of e-e scattering (I„=oo), the conduc-
tivity is given by

4l2
L tr = lb — I(lb/W) . (B5)

1
lim I(A) =-
A-+0

7|
lim K(A) = —,
&~0 30 '

(B6a)

(B6b)

which provide Eqs. (24) and (25). In the opposite lirnit-
ing regime of a very narrow wire, (tb )) W) the integrals
(B3) and (B4) are more complex. We have obtained the

The first order correction, due to e-e scattering, can be
found by substracting Eq. (B5) from (B2) and expanding
I = lb —lb/l, . The result can be evaluated analytically
in two limits. For a very wide wire lb (( TV, we use the
results

lim K(A) = —— (ln2A+ 2
—p) + O(A ),8A 242

(B7b)

where p 0.577 is Euler's constant. These results yield
Eqs. (22) and (23).

The first order correction, due to e-e scattering inbe-
tween these two regimes, can be evaluated by substract-
ing Eq. (B5) from (B2). We then have

AL, tr = — " K(lb/W) — J(Lb/W)
Ib 8lb 4lb

~2' 'll

1

J(A) = duV I —u2e
0

By numerical integration of I, J, and K the plots in Fig.
4 are obtained.
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