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Intervalley scattering in GaAs/A1As resonant-tunneling diodes
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The current-voltage characteristic of a resonant-tunneling diode (RTD) is calculated with and
without I' to X intervalley scattering. The current is determined from the self-consistent solution
of the Schrodinger and Poisson equations. We examine a RTD for which the collector, emitter,
and central well are GaAs and the barriers are AlAs. Intervalley scattering makes a significant
contribution to the current, at voltages above the X-I' energy offset of the collector.

I. INTRODUCTION

Resonant tunneling diodes (RTD's) are currently of
great interest, due to their potential future use in high-
speed devices. Applications, such as oscillators, har-
monic multipliers, and logic elements are among those
recently being investigated. Scattering plays an impor-
tant role in RTD's by providing additional paths through
which an electron can traverse the device via the res-
onant state. However, including the effects of scatter-
ing in quantum mechanical simulations of RTD's is a
considerable theoretical challenge. By investigating in-
tervalley scattering in RTD's, we build upon an ear-
lier work, which studied polar-optical phonon, acoustic
phonon, interface roughness, and alloy scattering. This
is, to our knowledge, the first quantum mechanical simu-
lation of electron transport in RTD's that includes inter-
valley phonon scattering. In this study, as in Ref. 7, we
consider a full three-dimensional treatment of k space.

We simulate electron transport across one-dimensional
structures including intervalley phonon scattering. By
one-dimensional structures, we mean those that are spa-
tially varying in one direction, and translationally in-
variant on a similar length scale perpendicular to this
direction. The method used is described in Ref. 7, in
which the time-dependent Schrodinger equation is solved
using an energy expansion and an impulse response tech-
nique. Self-consistency is included through an iterative
solution with the Poisson equation. A combination Wan-
nier function and plane (Bloch) wave basis provides a
convenient discretization along the growth direction (lon-
gitudinal) and translational invariance perpendicular to
the growth direction (transverse). The time-dependent
envelope equation is solved assuming the envelope func-
tion to have both an unscattered and scattered part. The
scattered part contains an expansion over the phonon
wave vector and allows for the inelastic nature of the
phonons. The resulting coupled difference equations re-
duce to a single tight-binding type equation when scat-
tering is turned off. The nonzero coupling term allows
for phonon scattering and is described in terms of a
self-energy. Reference 7 contains a detailed derivation
of this method applied to other scattering mechanisms.
We present the coupled difference equations for phonon

scattering in Appendix A, for completeness. The details
which are unique to intervalley scattering are the deriva-
tion of the corresponding self-energy, which is done in
Sec. II and the corresponding current, which is done in
Sec. III. The numerical results are discussed in Sec. IV
and Sec. V presents the conclusion.

The band structure is assumed to be effective mass in
the transverse direction and tight binding in the longitu-
dinal direction. That is the electron Hamiltonian in the
absence of scattering is given by

h2k~2
H„'„,(k~) = H„„+ h„„

h2H„„=— b„+i„2a' gm„*m„*„,
h2

2a2 pm* m*

h2
+ + Econ ~app

G I
The index, n, refers to position, a is the lattice parame-
ter, V ~ is the applied electrostatic potential, and k~ is
the wave vector in the transverse direction. The spatially
varying effective mass, m', and the conduction band
edge, E' ", are set to either I'-valley or K-valley val-
ues, depending which valley the electron occupies. The
elliptical energy surfaces associated with the X-valley are
treated as spherical, using the density of states efFective
mass for GaAs and AlAs. We assume that the only elec-
trons that transfer to the X valley are those that have
undergone I' to X intervalley phonon scattering. The
transfer due to band mixing which has been previously
studied in single layer heterostructures, in RTD's, and
in superlattices, is entirely neglected. This has been
shown to be a good approximation for the barrier thick-
ness under consideration in this paper.

In contrast to the spatially varying band structure, the
deformation potentials and phonon frequencies are ap-
proximated by their bulk values. The justification being
that these crystal properties appear in only the weaker
scattering part of the solution. An additional justifica-
tion involves sacrificing some accuracy for a quicker and
more robust solution. We use the bulk deformation po-
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tentials given in Ref. 13. From symmetry considerations,
the only phonons that contribute to I' to X transitions
are LOX phonons; the phonon frequencies that we use
are also from Ref. 13.

II. SELF-ENEKCV

Our method requires that we calculate the matrix el-
ement of the electron-phonon Hamiltonian in the com-
bined Wannier-plane-wave basis. In Ref. 7, we considered
the electron-phonon Hamiltonian given by

H, ) pg(r, t) = ) n~[a~e*~' —at e '~'],
V

where V is the volume of the crystal, q is the phonon
mode, aq and at are the creation and annihilation oper-
ators, and Q.q gives the coupling strength, unique to the
particular phonon scattering mechanism. For interval-

l

ley scattering, we compare the matrix element of Eq. (1)
with Eq. (14) of Ref. 15, and make the following corre-
spondence n2 = hD2/(2puz). The deformation poten-
tial, Dq, is assumed to be independent of the electrons
initial wave vector. We assume a translationally invari-
ant deformation potential given by an average of those
for GaAs and AlAs. The density of the crystal, p, and
phonon frequency, cuq, are also assumed to be transla-
tionally invariant and given by their GaAs values.

Detailed in Ref. 7 and summarized in Appendix A
is the description of how phonon scattering is included
in the transport equations. A given scattering mech-
anism is included through an additional term, G(n),
relating to its self-energy. The expression, G(n)

Hsp (n, m) fp (m), describes the connection between
G(n), the self-energy (HsF), and the unscattered part of
the envelope function (fp). We proceed to calculate the
self-energy by determining the function G(n). The func-
tion, G(n), for intervalley phonon scattering is, with the
above o.q, given by

G(n) = G+(n) + G-(n)

) sin(q na) —) N~(2nz) fz(n, q&, q ) + ) sin(q na) —) (N~+ 1)(2m&) f&(n, q&, q ) (2)* q. )0 q )0 q.

The plus term represents absorption and the minus rep-
resents emission. The factors L and S are the normal-
ization length and area, respectively. Nq is the Bose sta-
tistical factor and fq (n, q~, q ) is the part of the envelope
function associated with the scattered wave. We assume
that or~ = (u;, , N(~~) = N((u, ~), and n~ = o.„. through-
out the entire derivation, where u, ~ is the LOX-phonon
frequency. Rewriting Eq. (2), we obtain the following:

G(n) = ) sin(q na) N;, (2n;,).
L

q &0

&&.+&~ + .~kp~ —X~ + q~
~

2

2ml

0&
(4)

2mp

The vector, XJ, allows for the displacement in k space
of X with respect to I' and is given by X~ = (0, 0, 2vr/a)
(Ref. 17), where a is the lattice parameter. We choose 0
to be the angle between kp J —XJ and qJ, and introduce
the wave vector KpJ, which is de6ned by K0J ——kp J
X~. Equation (4) is rewritten below:

qg

2 m~kp~, ~
Kpz 1 — „2 + 2Kp~qi cos8+ qz ~2m~ ( mpKp~

) sin(q na) (N;~ +1)(2n;~).L
q )0

x —) fy(n, qg) q~).
qg

For convenience, the summation over qJ is transformed
into an integration over El, which is defined below. For
consistency with Ref. 7, some variables associated with
the initial valley i (6nal valley j) have subscripts, denoted
as 0 (1). Even though a spatially varying band structure
is being used, a fixed lattice point is used as a reference
for the energy. Therefore, the energies El, Ep
Lp, and the masses ml and mp, all are with reference to
the first lattice site. Conservation of energy is expressed
below for an electron scattering from the I' to the X
valley:

+El —Lp+ El —Ep ~ Ru, ~
= 0.

Equation (5) contains two equations, one for absorption
and one for emission corresponding to the plus and minus
signs. For convenience, Eq. (5) is abbreviated by the
expression, Eq —E+(q~, e) = 0. The transformation,
qJ ~ El, proceeds as follows:

) f, (n, q~, q )

dElx . 1 ~)gJ Elx )gx ~ Elm —E gJ)0

dEla 1 ~) Elm) g~ ~ Elm E gJ ) 0 ~

qg
The summation over qJ using the b function is done as
follows:
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I = ) b Ei~ —E (q~, 0) + ) h Ei~ —E (q~, 0)

S 2m~
(27r)2 h2

S 2m. *

(2~)' h,'

~[q~ —q.'„(0)1
dqL q~

. ; 2]q~+, (9)-+ Koicos0~

6'[q~ —qo, (0)]

The zeros of the b function for absorption and emission
are denoted by qo+,.(0) and qo,.(0), respectively. Each zero
is a solution of a quadratic equation and, therefore, has
two possible solutions which correspond to i = 1, 2. We
choose the i = 1 root to be denoted as qo + (9) and the i =
2 root to be denoted as qo (0). Their values are given
explicitly in Appendix B. Upon integrating over q~ with
the use of the b functions, we arrive at the following:

2w

I= 1

(27r)2 h2

+ 8[%),+(0)] + O[qo —(0)]).

d0 (8[qo,+(0)l+ 8[qo, (0)]

I=, , ' [g(A[Ei ]) + g(B[E, ])],

A[E ] =1-
XDP 0J

+ [Elm Eox + +1 +0 ~ij]l
Kp~

B[E,.] = i-
mp OJ

2'
Q [Ei —Ep + Ai —Dp + Ru;~].

Kp~

The function g(A: B) ranges in value from zero to one.
Using the result for the integral, I, the function, G(n) is
expressed as an integration over Eq instead of a sum-
mation over q~. Therefore, Eq. (3) is rewritten below:

G(n) = ) sin(q na)N, , (2n, i)L
q )0

2
x dEi fi(n, Ei, q )g(A[Ei ])

2vr 2 h2

+ ) sin(q na) (N;~ + 1)(2n, ~. )L
g~ )0

1 2™1dE» fi(ri, Ei» q~) g(B[E»])~

27r ~ h2

(6)

The step functions as a function of 0 are nonzero only if
the b functions contribute upon the q~ integration. The
conditions for qp and qp to be in the range of q~ inte-
gration are qo (0) ) O. Appendx B contains the details
of the evaluation of the angular integral. The result is
given below:

The final step, necessary in order to express the self-
energy in its desired form, is towrite G(n) in terms of
fp(n). We use the impulse response technique outlined in
Appendix A. The impulse response function, h (Ei ),
is de6ned by the following equation,

E, h„(E, ) =) H„r, h, (E, )+h„

With this definition the transport equation [Eq. (A2)] is
automatically satisfied if fi(n, E», q ) is written in the
following form:

fi(n, Ei, q ) = ) h„(Ei ) sin(q ma) fp(m).

We also make use of the following sum over the longitu-
dinal phonon modes, q:

) sin(q na) sin(q ma) = '
(i4'

q )0

The maximum value of the longitudinal phonon wave vec-
tor, q „,is given by its bulk value 2vria. The resulting
equation for G(n) is written below:

G(n) = —K;, (2n;, )'fp(n)

2™1x
2 2

' dE,~h„„(Ei~)g(A[EiE])
2vr 2 h2

+—(~'. + ~)(2 ' ) f ( )
1 . 2

2Gx, , ' f dE) E„„(E,)g(B[E, ]) (8).
In the above form, the difference equations are decou-
pled as d.escribed in Appendix A and an N x N linear
system remains to be solved for fo(n), where I(I is the
total number of lattice sites.

III. CUKKENT SU'MMATION

In this section, we derive the portion of the transmit-
ted current associated with the scattered electrons in the
X valley. The calculation of the net current across the
device is outlined in Appendix C. The transmitted cur-
rent for phonon scattering is written below as (a similar
equation gives the reflected current)
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JT' '+(Ep, Ep~) = e 1 (~
g )- S)- ( +2+2)

q~ )O

x (2n~) I
fi(K, Ei*~q*) I

vR(Ei ).
(9)

below:

lfi(~ Ei., q. ) I'

= ) ) h~~(Ei~) sin(q~ma) fp(m)
Notice the envelope function, fi(X, Ei» q~), is evaluated
at the last lattice site (n = K). Also note that the elec-
tron's group velocity at the right contact is denoted as
vR(Ei ). See Appendix C for the definition of the elec-
tron velocity, which is determined by the band structure.
The above expression is evaluated in a similar manner
as was the self-energy. The summation over q~ is trans-
formed into an integration over E» . The summation
over q is performed using Eq. (7); notice that the cross
terms are zero upon the q integration, as is illustrated

x ) h~„(Ei ) sin(q na) fp(n) l

)

") lh -(E*)I'If ( )I'.

The resulting expression for Jz (Ep, Ep~) is given by

1 2 1 2~m1JT' '(Ep, Ep~) = e N;~(2n—,, )2a 2~ 2 62 dEi g(AIEi ]) ) lhiv„(E, )I'Ifp(n)l'v~(E, )

+ e—(~v + ~)(2~v)', , ' dEi*g(&IEi*j)).Ih~-(Ei-) I'lfo(n) I'v~(Ei*). (l.o)

This current is used to calculate the transmission proba-
bility, which in turn is used to determine the net current
across the device, as explained in Ref. 7. So the efFect of
scattering on the current is entirely included in the mod-
ified transmission probability. All electrons are assumed
to be in the I' valley unless scattered into the X valley.
We consider at most one scattering event per electron.
Therefore, the scattered electrons within the X valley
continue unscattered. Thermal equilibrium is assumed
in the right and left contacts.

It is interesting to note that the self-energy matrix,
HsE(n, m), is diagonal which is typical of a local scat-
tering process. However, phonon scattering is a nonlo-
cal scattering process. This reduction to a local pro-
cess results from the summation over the longitudinal
wave vector, q, which was done analytically. This ana-
lytic summation is possible because of the approxima-
tion that o.z is independent of q. The final form of
the current, JT (Ep, Ep~), is also characteristic of a lo-
cal scattering process. As shown above, the current's
form goes from nonlocal to local when the magnitude
squared of the sum of terms (I P h(m) fp(m) sin(q ma)

I )
is simpli6ed to the sum of the magnitude squared terms
(E l~(m) I'lfp(m) I').

IV. NUMERICAL RESULTS

We consider a test structure with two GaAs spacers
(emitter and collector), a GaAs quantum well, and AlAs
barriers. The test structure has barrierwidths of four
monolayers and is symmetric. We use a relatively wide
quantum well of 14 monolayers, in order to have a low
resonance energy. The spacers, the undoped regions be-
tween the barriers and the doped regions, have widths of

seven monolayers. The discretization scheme consists of
36 equally spaced sites with an intersite distance corre-
sponding to a single monolayer. We refer to the region
composed of the spacers, barriers, and quantum well as
the quantum region, since it is in this region for which
the Schrodinger equation is solved. This yields a quan-
tum region of approximately 100 A. Outside the quantum
region, are the doped contacts which we refer to as the
contacts or leads.

Our choice of device size and barrier widths were in-
fluenced by computational issues, which are important
when including scattering. The memory requirements
scale as the square of the device size, whether or not
scattering is included. We expect the eÃect of intervalley
scattering to increase with the barrier thickness. Un-
fortunately, increasing the barrier width decreases the
transmission resonance width, which compounded with
scattering can make it difBcult to achieve a desirable cur-
rent error. Therefore, we chose relatively thin barriers
and spacers. The test structure assumes doping levels
of 5 x 10 cm at each contact, and self-consistency is
enforced through use of the Poisson equation. The cur-
rent scales linearly with the device area, which is 1m .
The X-I' ofFset energy is 0.48 eV for GaAs and —0.92 eV
for AlAs. The GaAs I'-valley to AlAs I'-valley discon-
tinuity is 1.11 eV. The GaAs I'-valley to AlAs X-valley
discontinuity is 0.19 eV. The temperature is 300 K. Fig-
ure 1 plots the I' and X valleys, versus position for a sub-
set of the voltages dropped across the quantum region.
Note, the leftmost I potential is the reference energy as
described earlier, but is not set to zero because of our
contact model.

For electrons traveling to the right, their scattering to
the X valley only contributes to the current if their lon-
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FIG. 1. The conduction band is plotted versus position for
a range of voltages across the quantum region. The I' valley is
given by the solid line and the X valley is given by the dotted
line.

gitudinal energy is greater than the X-valley minimum
at the right most contact. This is assured for electrons
at each energy when the bias across the quantum region
is greater than the X-I' offset energy of GaAs. There-
fore, we expect intervalley scattering to be most signi
cant for biases above the I'-X energy ofFset (for GaAs).
In Fig. 2, the current with and without intervalley scat-
tering, is plotted versus the voltage dropped across the
quantum region. At high voltages, it is shown that in-
tervalley scattering makes a significant contribution to
the current. The minimum voltage for which intervalley
scattering contributes to the current matches extremely
well with the X-I' energy ofFset of 0.48 eV.

In addition, we see that intervalley scattering has an ef-
fect, even at lower voltages. There is a noticeable change
in the current-voltage characteristic below the X-I' ofFset
energy. The current peak is almost rigidly shifted to a
slightly lower voltage if intervalley scattering is included.
In Fig. 3, the transmission probability is plotted versus
energy with and without scattering for a voltage across
the quantum region of 0.1 Volts. The transmission peak
is shifted, but not significantly broadened. This indicates
a shift of the resonant energy level, but without much ad-
ditional broadening. This is characteristic of a discrete
energy state coupled to a continuum of states whose en-
ergy range excludes the discrete state. The implication
is that, at low voltages, intervalley scattering introduces
additional coupling, to states with energies diferent from
the resonant ground state. This should not be too sur-
prising since, at low voltages, the X-valley continuum
(spacers and well) is above the resonant ground state.
In our model, we actually have a slightly broadened and
shifted state in the above situation, instead of a discrete
state because of the finite barrier widths.

The increase in the current at higher voltages is at-
tributed to the same quantum mechanical effect. Only it
is due to the erst excited state being shifted; the ground
state is energetically inaccessible at these higher voltages.
In Fig. 4, the transmission probability is plotted versus
energy with and without scattering for a voltage across
the quantum region of 0.7 Volts. The energy shift is much
larger than for the ground state, and is accompanied by
broadening as well. We would like to point out that it
is the energy shift that is particularly important in re-
gard to the effect of intervalley scattering on the current.
This is because the injected electrons obey a therma dis-
tribution and, therefore, sample only the low energy part
of this peak. We emphasize that well over (95%%uj) of the
current remains in the I' valley, even at high voltages,
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FIG. 2. The current is plotted versus the voltage across the
quantum region. The voltage across the leads is excluded.
The solid curve gives the current without scattering and the
dotted curve gives the current with intervalley scattering in-
cluded.

FIG. 3. The transmission probability is plotted versus the
longitudinal energy. The solid curve gives the probability
without scattering and the dotted curve gives the probability
with intervalley scattering included. The voltage across the
quantum region is 0.1 V.
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APPENDIX A:
THE DIFFERENCE EQUATIONS

We present the coupled difference equations that de-
scribe transport across one-dimensional structures in the
presence of phonon scattering. The notation is similar to
that in Ref. 7, except G(n), defined by Eq. (2), implic-
itly includes the q summation. H represents the het-
erostructure Hamiltonian, including the applied voltage,
effective mass in the transverse direction and tight bind-
ing in the longitudinal direction [see Eq. (6) of Ref. 7].
The coupled difference equations are given below:

0.25 0.3 0.35
energy (eV)

0.4 0.45 0.5
Eo fp(n) = ) H„ fp(m) + G(n) (Al)

FIG. 4. The transmission probability is plotted versus the
longitudinal energy. The solid curve gives the probability
without scattering and the dotted curve gives the probability
with intervalley scattering included. The voltage across the
quantum region is 0.7 V.

and that it is the shift of the resonant energy that is
responsible for the increased current.

We also point out the lack of any secondary peaks in
the transmission probability, which are present for polar-
optical phonon scattering. This implies that intervalley
scattering primarily occurs from the resonant state to the
collector, rather than into the resonant state from the
emitter. This is expected, since a right traveling electron
has significantly more kinetic energy available on the col-
lector side.

V. CONCLUSION

The current-voltage characteristic of an RTD is deter-
mined by solving the time-dependent Schrodinger equa-
tion with and without intervalley scattering. We con-
clude that intervalley scattering makes a significant con-
tribution to the current, at voltages above the X-I' en-
ergy offset of the collector. The significant increase in
the current, at high voltages, is shown to be due to a
scattering-induced downward shift in the energy of the
first excited. resonant state. We also explain the rigid
shift of the current peak to lower voltages, as due to the
scattering-induced downward shift in energy of the reso-
nant ground state.
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Ei fi(n, Ei, q ) = ) H„ fi(m, Ei, q )

+ sin(q na) fp(n). (A2)

The energies Ep and Ei, and the function G(n) are
defined in Sec. II for intervalley scattering. The above
difference equations are decoupled by using the impulse
response function (the sine factor is missing in Ref. 7),
as follows:

fi(n, Ei~, q~) = ) h (Ei ) sin(q ma) fp(m). (A3)

E,.h,„(E„.) = ) H„i h, (E,.) + 8„
l

(A4)

APPENDIX B: THE 8 INTEGRATION

We solve the following angular integral:

27l

«(Hlqo'+(0)]+ 8[qo (6)]

Equation (A3) is substituted into the expression for G(n)
given by Eq. (6). Therefore, G(n) has a dependence on
fp(n) instead of fi(n, Ei, q ). This allows for a decou-
pling of Eqs. (Al) and (A2) along with defining the
self-energy, HsE(n, m), as G(n) = P HsF(n, m)fp(m).
The self-energy is used to solve for the envelope function,
fp(n) and later to solve for the current, JT (Ep Epj ).
The impulse response function is defined below:
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e[q (e)] + o[q (e)

with the zeros given by

qp++(8) = —Kpz cos0 + Ko& cos 0 —Ko& I—miko~
moKO~

2mi
[Ei —Ep + b, i —Ap —hu);, .],

cos'8) I — .', +, ,' [Ei —Eo + &i —&o —~'~]
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and

2

qp + (0) = +Kp~ cos 0 6 K p2& cos2 0 —Kp2& -.K.. 2 1 [Ei —Ep + Ai —Ap + Ru;,.],

The step functions are nonzero when qp (0) and qp (0)
are real and positive, and, therefore, in the range of the
previous integration over q~. Using the above conditions,
the step functions are simplified as follows:

0[qp+(0)] + 8[qp —(0)]

tion, fp(n), has a flat band form, at the boundaries of
the quantum region. Therefore, we consider an addi-
tional lattice site on each side of the quantum region.
Accordingly, on the left side (emitter), we have

fp(n) = exp(ikp na) + bp exp( —ikp na).

= 8(cos 0 —A.)O(—A) + 8(cos 0 —A)8(A)
= 8(cos 0 —A)

and

8[q., (0)]+ o-[q., (0)]

= O(cos 0 —B)O( B) + 8(c—os 0 —B)8(B)
= O(cos 0 —B).

The constants, A[Ei ] and B[Ei ], are given in Sec. II.
The angular integral is rewritten and completed below:

On the right side (collector), we have

fp(n) = cp exp(ikp na).

The wave vectors kp and kp are obtained for a given
energy Ep from the tight-binding band structure of the
left and right contact, given by

Ep = A) —A) cos kp

= A„—A„roskp .

The numerical solution for fp(n) inside the quantum re-
gion is matched to the above form at the right and left
contact. As a result, the incident and transmitted cur-
rents for the envelope function, fp, are determined to be

2''
I = d0 [8(cos 0 —A) + O(cos 0 —B)

JI(Eo.) = ev~(Eo. )
Jz' (Eo ) = e

~
fo (N)

~
v, (Eo ) .

,' 2ir [g(A) + g(B)].

The function g(X'), which ranges between zero and one
is defined below (X assumes the value of A or B, abave):

7t X(0
2vrg(X) = 2 & 2cos (~X) 0 ( X ( I

0 X)1

The rightmost lattice site in the quantum region is la-
beled by N, v~(Ep ) is the electron velocity at the left
boundary, and v, (Ep ) is the electron velocity at the right
boundary. The left and right velocities are determined
from the tight-binding band structure, given by

1 dEO~

Om

where i is r or /. The transmitted current associated with
the envelope function fi(n, q) is given by

APPENDIX C: CURRENT JF '(Eo, Eoi, q)

The method used to calculate the net current is de-
scribed in Ref. 7 and is summarized here for complete-
ness. The method is based on a generalization of the
Tsu-Esaki formula, involving the transmission coeK-
cient's dependence on energy. We allow the transmission
coefficient to depend on the energy associated with the
transverse direction (Ep~), as well as the energy associ-
ated in the longitudinal direction (Eo ). The net current
is the difference between the left going current and right
going current.

As a first step, we calculate the transmission coeK-
cient for an electron traversing the resonant tunneling
diode &om left to right. We assume the envelope func-

(N +I) + ~f

+eN, ~fi(N, q) ~
vR(Ei. ),(2~q)'

where the emission and absorption terms are written sep-
arately. Notice the scattered current depends on the par-
ticular phonon mode, having wave vector q. The trans-
mitted current resulting from considering all the phonon
modes is given by

JF '(Eo, Eo~) = ) .JF ' (Eo, Eo~, q)
g
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In Sec. III, Eq. (Cl) is used as the starting point in the derivation of the current, due to intervalley phonon scattering.
The total transmission coefFicient for electrons traversing from left to right, T&~„ is given by

Jr(Eo ) + JT""(Eo*,Eo1)
I—+7 Ox) OJ Jl(Eo )

In order to calculate the total current across the device it is necessary to consider incident electrons impinging from
the right contact as well. The total transmission coefficient for electrons traversing from right to left, T„~~(Eo Eo~)
is determined by considering the reverse structure and voltage. The net current is the difference between the left and
the right going current and is given by

Inet = Ii~~ —I~~I,
m&e

dEO

m, „*e
2 3 dEO~

&i~.(Eo. Eo~)
1+ exp[(Eo + Eo~ —p')/kT]

i(Eo*,Eo~)
1+ exp[(Eo + Eo~ —p )/kT]

'

where m„*
&

are the electrons I'-valley e8'ective masses at the right and left contacts, e is the charge of an electron, and
p"' are the chemical potentials at the right and left contacts.
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