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The dressed scattering matrix describing scattering of quasiparticles in various models with long-range
interactions is evaluated by means of Korepin s method [V. E. Korepin, Theor. Mat. Phys. 41, 953
(1979)]. For models with 1/sin (r) interactions, the S matrix is found to be a momentum-independent
phase, which clearly demonstrates the ideal-gas character of the quasiparticles in such models. We then
determine S matrices for some models with 1/sinh (r) interactions and find them to be, in general, non-
trivial. For the 1/r limit of the 1/sinh (r) interaction we recover trivial S matrices, thus exhibiting a
crossover from interacting to noninteracting quasiparticles. The relation of the S matrix to fractional
statistics is discussed.

I. INTRODUCTION

Haldane' recently put forward an interpretation of the
Haldane-Shastry (HS) model as a generalized ideal gas
with fractional statistics (ideal gas of spinons). The
Calogero-Sutherland (CS) model is another example of a
system of free particles with fractional statistics. All
methods employed so far in exhibiting the ideal-gas char-
acter and the nature of the statistics are based on the
knowledge of the exact wave functions for the HS and
CS models. For the multitude of other models with long-
range interactions, in particular models solvable by the
asymptotic Bethe ansatz (ABA), ' exact wave functions
are not known. It would be useful to have a method
based merely on the ABA to decide whether or not those
systems fall into Haldane's category of ideal gases with
fractional statistics. The most direct way to determine
whether a system of quasiparticles is an ideal gas is to
evaluate the dressed scattering matrix describing scatter-
ing of the elementary excitations in the model. If it is a
momentum-independent phase, then we are indeed deal-
ing with an ideal gas. Furthermore, if the phase is not

1, the quasiparticles have fractional statistics in the
sense that the phase of the wave function under inter-
change of two particles is neither bosonic (+1) nor fer-
mionic ( —1). This follows from the observation that for
noninteracting particles (i.e., for momentum-independent
S matrices) the scattering phase is precisely equal to the
phase picked up by interchanging the two particles.

The plan of this paper is as follows: In Secs. II and III
we determine the S matrix for scattering of quasiparticles
in SU(N) Haldane-Shastry chains. It is found to be a
momentum-independent phase, which shows both the
ideal-gas character and the fractional statistics of the
quasiparticles. In Sec. IV we repeat this analysis for the
case of the Calogero-Sutherland model. In Sec. V we dis-
cuss the generalization of our results to other models
with 1/sin (r) interactions. In Sec. VI we consider the
1/sinh (r) CS model and its exchange generalizations and
show that quasiparticles in these models are interacting,
and become free in the 1/r limit only. In Sec. VII we
summarize and discuss our results.

II. SU(2) HALDANE-SHASTRY CHAIN

The Hamiltonian of the SU(2) HS chain is given by' '"

H=2+
N . m—sin (i ——j)N

. -2 (P;~ —1), (2.1)

where P, . is a permutation operator exchanging the spins
a sites i and j. Ha and Haldane' proposed to character-
ize eigenstates of (2.1) by means of sets of spectral vari-
ables k" obeying the following set of Bethe-like equa-
tions:

Nk" =2rrI" +mgt„sgn(k" —kt7 ),
mP

(2.2)

where k" is the position of the center of a string of length
n (a labels different strings of the same length), t„=2
min(n, m) —5 „, and I" are integers or half-odd integer
quantum numbers with range

1
QO

m=1
(2.3)

where M is the number of strings of given length m.

Thus g„&nM„=M, where M is the total number of
down-spins. The energy and momentum are given as
E =g„2[(k" )

—
m ] and P =g„(k"+m ). The above

equations are very similar to the Bethe equations for the
spin- —,

' Heisenberg XXX (nearest neighbor) antiferromag-
net. ' ' Ha and Haldane proceed to show that ground
state and excitations as well as the thermodynamics of
the HS chain are described correctly by the above equa-
tions if one considers them true Bethe equations for an
integrable system. The ground state is a filled Fermi sea,
where all vacancies for the integers I' [allowed by (2.3)]
are taken. More precisely we have M =M, =N/2, and
there are N/2 vacancies for the integers I', all of which
are filled. This corresponds to filling all vacancies for the
momenta k ' between —m and m. The Ha-Haldane equa-
tions take the form
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=p, (k)+ f dk'5(k —k')p, (k'), (2.5)

which can be solved trivially with the result p, (k) = 1/4'.
This shows that the ground state is of a much simpler na-
ture than for the Heisenberg antiferromagnet.

The elementary excitations or quasiparticles are
identified as two spin- —, objects, called spinons, with
dispersion (using the conventions of Ref. 12)
e(p) =p(m —p), p H [O, m ]. The situation is thus very simi-
lar to the nearest-neighbor Heisenberg model, where
there are also two elementary excitations' ' carrying
spin- —,', but with dispersion e„„„(p)=m sin(p), p E [0,m].
In order to compare the results of Ref. 14 with the
Haldane-Shastry case, we should set J =2 in the Hamil-
tonian of Ref. 14. The similarity is not surprising due to
the fact that (2.3) is the same for both models, and the
ground states of both models are given by filling a Fermi
sea of real spectral parameters. The SU(2) structure of ex-
citations is the same for the HS chain' and the nearest-
neighbor model: all excited states over the true ground
state are scattering states of an even number of quasiparti-
cles. A scattering state is characterized by having energy
and momentum equal to the sum of the energies and mo-
menta of its constituent quasiparticles. The simplest ex-
cited states are in the two-particle sector, and their
SU(2)-representation theory is given simply by tensoring
two fundamental representations (the quasiparticles
transform in the fundamental representation —,'):
—,' —,

' =10. In other words there are four excited states
in the two-particle sector, three of which form a SU(2)
triplet and one a SU(2) singlet. Their energies and mo-
menta are degenerate, and are given by the sums of the
quasiparticle energies and momenta E =e(p, )+e(p2 )

and I' =p l+@2. In the four-particle sector we obtain the
SU(2) representation content —,

' s —,
'

—,
' s —,

'

=2+ 1 1@1+0+0, and so on.
The dressed S matrix can also be obtained from Eqs.

(2.2) and (2.3), if we treat the Ha-Haldane equations the
same way we treat Bethe equations for Bethe-ansatz solv-
able models. This is not as straightforward as it may
seem, as Bethe-ansatz equations have a direct connection
to the exact eigenfunctions of the Hamiltonian, which is
something missing for the case of the HS chain and the
Ha-Haldane equations. However, this connection is not
vital for determining the scattering phase shifts. ' '
Adopting (2.2) as Bethe equations, Korepin's method'
can then be applied in a way completely analogous to the
nearest-neighbor XXXchain. ' ' For a more detailed ex-
planation of the method we use we refer to Refs. 18 and
20.

In order to determine the two-quasiparticle scattering
matrix we need to determine the two-quasiparticle eigen-

M
Nk' =2vrI'+~+ sgn(k' k—

tI ), a=1, . . . , M . (2.4)
P= 1

pea

Subtracting (2.4) for a and a+ 1, one obtains an equation
for the density of k's p, (k' )=(1/k'+, —k' ), which in
the thermodynamic limit X~ ~ turns into the following
integral equation:

Here we have used the notation k to indicate that the mo-
menta of the particles in the Fermi sea are slightly
different for the excited state as compared to the ground
state. Subtracting (2.6) from Eq. (2.4) for the ground
state and taking the thermodynamic limit, we obtain an
integral equation for the shift function FT(k) (Ref. 21) of
the spin-triplet state [which is the limit of the finite-
lattice quantity FT(k '

) = ( k ' —k '
) /( k '+, —k '

) ]

FT(k) = 1 —f dk'5(k —k')FT(k')

2—
—,
' g sgn(k —k") . (2.7)
j=l

The solution to this equation is

2

FT(k)= ,' —
—,
' g sgn—(k —k,") .
j=l

(2.&)

The phase shift for the spin-triplet state is (for an ex-
planation see, e.g. , Ref. 20)

5T(k", , k2 ) =2m FT(k", ) kh) kh

h h=sr —sgn(k—"—k")=—.1 2

Here k& must be larger than k2 [or vice versa, in which
case 5T(k, , kz)=2vrFT(k2)~„h kl, ] for scattering to

k2 &k)
occur. The spin-singlet excitation is constructed by tak-
ing M, =(N/2) —2 and M2= 1. Now there are N/2 va-
cancies for the 1 strings and thus again two holes,
whereas there is only one vacancy for the 2 string.
Denoting the positions of the two holes again by k and
the position of the 2 string by ~, we 6nd that the Bethe
e uation for the 2 string leads to the condition
k, )~) k2 or k2 )a )k „whereas the equations for the
1 string lead to an integral equation for the singlet shift
function Fs(k), which has the solution

Fs(k) = ——g sgn(k —k")+sr sgn(k —~) . (2.10)
2 =1

The leads to the following result for the singlet phase
shift:

5s(ki k2)=2~Fs(ki )l„~kl k2 2

states of the Hamiltonian (the triplet and the singlet),
which by construction are also eigenstates of the scatter-
ing operator we seek. We proceed again in a way analo-
gous to the XXX case: the spin-triplet SU(2) highest
weight state is obtained by choosing M&=(N/2) —1.
The allowed range of integers is ~I'

~

~ N/4, which means
that there are (N/2)+1 vacancies and thus two holes.
We take the holes to have momenta k, and k2. The Ha-
Haldane equations for this excitation are

X/2 —1 2
Nk' =2vrI'+m. g sgn(k' kp) —~g—sgn(k' —k") .

P=l j=l
pea

(2.6)
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Our result for the complete dressed S matrix is thus

SHs(k, , ki)=iid . (2.11)

This result ought to be compared with the exact S matrix
for the nearest-neighbor Heisenberg model'"'

~xxx(P) =
1+lp ~ lp

2 2

t

1

LPGA

1+ lP
2 2

" Ed+- '
@+i P+l (2.12)

The SU(N) case can be dealt with in an analogous
manner: the Bethe equations given by Haldane and Ha'
are gain very similar to the ones of the nearest-neighbor
SU(N) Sutherland model. The quasiparticle interpreta-

where I' is the 4 X4 permutation matrix and p =A,
&

—A, 2 is
the difference of the spectral parameters of the two quasi-
particles. We see that (2.11) is the )M~~ limit of the
XXX S matrix. Note that this does not imply (and it is
not true either) that the low-energy spinon-spinon
scattering is the same in HS and XXX models: the low-
energy region of the XXX chain is defined by taking
X ~+~, j =1 and 2, which still leaves the difference p
as a free parameter, the HS chain corresponds to the
p~~ limit of the XXX low-energy physics. This fact
does not contradict the identification of the conformal
limits of both XXX and HS chains with the SU(2), Wess-
Zumino-Witten (WZW) conformal field theory. Whereas
the conformal limit of the XXX S matrix precisely coin-
cides with the WZW result of Ref. 22 (with trivial LR
scattering), the HS result (2.11) corresponds to soft
scattering in the WZW model only (the conformal mo-
menta are taken to be very small).

Like in the case of the XXX antiferromagnet the result
(2.11) is a priori exact up to a possible overall constant
factor, which stems from the fact that there are no one-
spinon states and we thus cannot determine the one-
particle phase shift directly.

Form (2.11) of the dressed S matrix indicates that the
spinons behave like an ideal gas as the S matrix is both
momentum independent and proportional to the identity.
Furthermore, if we believe that there is no additional
constant phase factor for the S matrix, the phase i can be
interpreted as exhibiting the semionic character of the
spinons as it is in between the phase shifts for ideal Bose
and Fermi gases.

From the above discussion the following relation be-
tween SU(2) HS chain and XXX model emerges: the
quasiparticles in both models are spin- —, spinons, and the
SU(2) representation content is identical in both models.
The difference is that the spinons in the HS model are
noninteracting, whereas the spinons in the XXX chain are
interacting. This follows directly from the form of the S
matrices, and agrees with the picture previously put for-
ward by Haldane.

III. SU(N} HALDANK-SHASTRY CHAIN

—irgmin(n, m) sgn(k"'" k&
'—),

mP

irgmin(n, m) sgn(k' '" —k&" )
mP

(3.1)

sgn(k'2'" —k( '
)

mP

The ground state is obtained by choosing M& =2%/3
and M(( ) =N/3 and filling all vacancies for the integersI"" and I' ", which corresponds to filling two Fermi
seas of spectral parameters k"" and k' " between —m

and m. In the thermodynamic limit we can describe the
ground state by densities of spectral parameters p i"( k )

and p', '(k) [like we did for the SU(2) case above] subject
to a set of two coupled integral equations. The solution
of these integral equations is straightforward as the in-
tegral kernels are again 5 functions. %'e find that both
densities are constant over the interval [ ir, ir]—

p(1)(k)p(2)(k)1 1

3m
' ' 6~

(3.2)

This extends straightforwardly to the general SU(N) case.
Excitations over this ground state can be constructed in
an analogous way to the SU(2) case above. One finds that
the only dynamical objects are holes in the two Fermi
seas of spectral parameters k"" and k' ", i.e., only these
holes carry energy and momentum, whereas longer
strings (described by spectral parameters k(~)", n ) 1,
j= 1 and 2) contribute to neither energy nor momentum
and are only counting degeneracies. All excited states
[for the SU(N) case] can be interpreted as scattering
states of X —1 types of quasiparticles subject to super-
selection rules. The quasiparticles are associated with a
hole in one of the X —1 Fermi seas, respectively, and
transform in the X —1 fundamental representations of
SU(N). The SU(N) structure of the excited states as well
as the superselection rules are the same as in the SU(N)
Sutherland model; we refer to Ref. 26 for a detailed dis-
cussion with proofs of our assertions.

In the SU(3) case there are a total of six quasiparticles,
three of which form the fundamental representations 3
and 3, respectively. The quasiparticles in 3 have energy
and momentum

e3(k) =
—,'(ir —k ), p3(k) =—', (ir —k),

whereas the quasiparticles in 3 have energy and momen-
tum

E-,(k) =
—,'(ir' —k'), p-, (k) =

—,'(ir —k)

The superselection rules are that the number of quasi-

tion2 and exact S matrix for the SU(N) Sutherland
model have recently been derived and can be used to ana-
lyze the SU(N) HS chain (the important equations deter-
mining the ranges of integers are identical). For simplici-
ty we only discuss the SU(3) case, the general case can be
treated analogously. The Ha-Haldane equations for the
SU(3) case read

Nk'"" =27TI'""+ir~~t sgil(k"'" —k'" )

mP
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particles of type 3 plus twice the number of quasiparticles
of type 3 must be a multiple of (the integer number) 3.
That means that the only two-particle states are given by
33=8@1. In the three-particle sector only the states
3(3 3(33 and 3 3(33 are allowed. It can be shown that all
excited states are scattering states of quasiparticles sub-
ject to the superselection rules. I.et us now turn to the
evaluation of the phase shifts for the octet and singlet
states in the two-quasiparticle sector. The octet is
characterized by choosing M',"= (2N /3 ) —1 and
M(( ) =(N/3) —1, which leads to one hole in the sea of
k""s and k' " with spectral parameters kh" and kh ',
respectively. The Ha-Haldane equations read

2N/3
Nk())( 2 1(1)1+ ~ (k(1)1 k(1)1

)
P=1

N/3

p= 1

—m. sgn(k"" kh(")+—m. sgn(k"" —k)( '),

i.e., the singlet phase shift is the same (constant) as the
octet phase shift. The phase shifts for scattering of quasi-
particles of type 3 (3) on quasiparticles of type 3 (3) can
be extracted from the three-particle states 3(3 3(3 3
(3g 3(N 3), with the result that the phase shifts for scatter-
ing of 3 on 3 and 3 on 3 are also equal to vr/3. This im-
plies that the quasiparticles are an ideal gas with fraction-
al statistics 7r/3. For the SU(N) case we conjecture the
phase to be ~/N. The interesting phenomenon is the
decoloration of physical excitations: the superselection
rules force the quasiparticles to combine to either mesons
(33) or baryons (333 and 33C33). In this way the
SU(3) HS chain [as well as the SU(3) Sutherland model ]
is reminiscent of an ideal one-dimensional (1D) gas of
(confined) quarks. As for the SU(2) case, the constant S
matrix found for the HS model is precisely the limit

p —+(x) of the corresponding S matrix of the nearest-
neighbor Sutherland model, where p is the difference of
the spectral parameters of the two scattering quasiparti-
cles.

2N
3

(k(2)1 k(1)1
)sgn a p

P=1

(3.3) IV. CALOGERO-SUTHERLAND MODEL

The Calogero-Sutherland model ' ' is given by the
following Hamiltonian:

N/3=2~1('"+~y sgn(k.""—k,'"'
)

P=1

+m'sgn(k ' kh(' ) —ms—gn(k —k)', ) .

Now, as for the case of the Hubbard model, ' we have
to deal with two shift functions
F (k' ")=(k' "—k'j")/(k'j" —k'j" ) J =1 and 2,
which in the thermodynamic limit are found to obey a
system of two coupled integral equations. The solution of
these integral equations is elementary due to the oc-
currence of 5-function integral kernels:

Fi(k) =
—,'[sgn(k —kh ') —sgn(k —k)', ")]

= —F2(k) .

The dispersion for the octet states is found to be
E e3(kh ')+e3(kiI ') and P =p3(kz")+p3(kz '), in ac-
cordance with the quasiparticle interpretation. The octet
phase shift is

8 + 2A, (A, —1)

j 1 ()xjj(k(xkxj)2+ 2
(4.1)

Ground state, excitations, and thermodynamics for the
CS model are all constructed from the following set of
asymptotic Bethe equations:

exp( ik L ) =Q—S (kj, k, ),
1%j

(4.2)

where S(k)= —exp[ —iver(A, —1) sgn(k)] is the bare S ma-
trix describing scattering of two bare particles over the
bare (trivial) vacuum. Following the logic of the Bethe
ansatz, Sutherland used (4.2) to construct the true ground
state and dressed excitations over it, by filling the Fermi
sea. By this we mean the following: taking the logarithm
of (4.2), we arrive at the set of equations

Lk =2~I, +(A.—1)~g sgn(k, —k(), j+1, . . . , N,
1&j

(4.3)

5s= 2mF((k)', )+2m'—F (k )+vr=—2 h

where we have used that kh"'&kh ' for scattering to
occur. The SU(3) singlet in 3C3)3 is obtained by choosing
M', "=(2N/3) —2, M(2" =1, Mp) =(N/3) —2, and
M2 = I. The energy and momentum of the singlet are(2)—
the same as for the octet. The shift functions can be
determined analogously to the octet case, although the
computation is slightly more di%cult due to the presence
of 2 strings. The result is

5 =—=57T
1 3 8 ~

where I- are all integers of half-odd integer numbers,
which can be chosen as a set of quantum numbers that
completely determines an eigenstate of the Hamiltonian.
The ground state is characterized by filling all vacancies
for the kJ's symmetrically around zero in the interval
[ —kF, kz]. The Fermi momentum is kF =&@, where p
is the chemical potential. In analogy to the 6-function
Bose gas, ' ' dressed (particle hole) excitations can be
constructed by removing one particle with rapidity kh
from the Fermi sea and placing it on a vacancy k outside
the Fermi sea. The energy and momentum of a particle-
hole excitation are given by E ),=(k —p)+ [()M

—k), )/
A, ] and P h=(kz —kz)+[(kF —k&)/X]. Equations (4.3)
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can also be used to determine the phase shifts for scatter-
ing of dressed excitations over the ground state. The
computations are completely analogous to the ones for
the 5-function Bose gas, ' ' so that we will only give the
results here. It is again straightforward to show that all
phase shifts are momentum-independent constants,
which proves the ideal-gas nature of the quasiparticles.
In determining the constants we follow Ref. 20 (where
the 5-function Bose gas was treated; see p. 23) and change
the boundary conditions for one-particle and one-hole ex-
citations (the situation here is quite analogous to the Bose
gas case). We then find that particles do not receive any
dressing through the ground state; i.e., they still behave
like bare particles, which scatter off each other with the
bare phase shift 5pp

—m.A, . This is in agreement with the
results previously obtained in Ref. 2 by means of different
methods. Particles scatter off holes with phase shift

5pb 'PTER which means that to the scattering particle a
hole is nothing but the absence of a bare particle. Last
but not least, the hole-hole phase shift is 5„„=m/A. .

We note that we recover the correct scattering phases
for free fermions e "'=e ""=—1 for A, =1 and free bo-

'PV—sons e "=0 for A, =O (in this limit there are no holes but
only particles).

V. OTHER 1/sin~(r)-TYPE MODELS

Other candidates for applying Korepin's dressed S-
matrix method would be, for example, the gl (n, 1) super-
symmetric t-J models with long-range exchange interac-
tions, 3 3 or Kawakami's hierarchy of SU(X) electron
models. The asymptotic Bethe equations (ABE's) (Refs.
33—35) have to be complemented by a squeezed-string
prescription' in order to give the correct degeneracies of
the spectrum. If we take into account only the states
given by the ABE's we find that all phase shifts will be
constants, and the states described by the ABE's will thus
describe mixtures of ideal gases with fractional statistics.
This can be seen as follows: from the computations above
it is clear that the ideal-gas character of the quasiparticles
is caused by the 5-function kernel in the integral equa-
tions, or alternatively the sgn(x) kernels in the asymptot-
ic Bethe equations. The occurrence of sgn(x) kernels in
the ABA equations is generic feature of models with
1/sin (r)-type interactions, so that by analyzing only
ABA states we conclude that all these models describe
mixtures of noninteracting quasiparticles.

However, there are a number of open problems con-
cerning the supersymmetric models: the squeezed-string
prescription seems not to be available, but more impor-
tantly the ground state will in general not be a gl(n, 1)
singlet and thus not a Y[gl (n, 1)] Yangian singlet. This
is easily seen for the case of the long-range supersym-
metric [gl(2, 1)] t Jmodel: in the 3 --dimensional Hilbert
space without doubly occupied sites there exists no
gl(2~1) singlet. Thus, very much like the case of the
nearest-neighbor model, the ground state will belong to
a larger gl(2, 1) multiplet. This raises the question of
how to interpret the other states in the multiplet contain-
ing the ground state in terms of a quasiparticle picture,
which is necessary for identifying the model as a gas.

VI. INTERACTING QUASIPARTICLES:
1/girth ( p) MODELS

Let us now demonstrate that not all models with long-
range interactions describe noninteracting quasiparticles.
To this end let us consider the 1/sinh (r) CS model,
defined in terms of the Hamiltonian (A. & 1)

a' 2X(X—1)H +
j=$ ~Xj j(k xk x)

sinh

(6.1)

In the limit a ~~, (6.1) reduces to the CS model with
coupling 2A(A, —1)a . The ABA as well as ground state
and excitations were constructed in Ref. 37. The ABA
equations are

I-k =2mI~.++8(k. kI),—j+1, . . . , N,
1&j

where a has been set to 1, and where

(6.2)

8(k)=i ln

1+ ~k I- ~ ik
2 2

L

lk ~ ~+ lk
2 2

(6.3)

In terms of the variables k the effect of a is recovered by
a rescaling kj ~ak . Excitations over the ground state
are (as in the CS case above) of particle-hole type. Their
energy and momentum are E i, =e(k ) —e(kz) and

&pp pk
—pk, where k~ and k„are the rapidities of the

p h

particle and hole, respectively, and where e(k) and p(k)
are given in terms of the integral equations

e(k) =k —p — f dk'e(k')8'(k —k'),2' —B

p (k) =k — f dk'p (k')8'(k —k'),] a
2& —B

The S matrix for particle-hole scattering
(k~ & B, B~kz ~ B, th—e constraint k„&B is only a
matter of convenience) is given as

Similarly particle-particle and hole-hole S matrices are
found to be

where 8'(x) =(d/dx)8(x). Here p is the chemical poten-
tial, and the integral boundary 8 is determined as a func-
tion of JM through the requirement that e(+B)=0. The
computations of the S matrices for scattering of particles
on holes, particles on particles, and holes on holes are
again completely analogous to the ones for the Bose gas
(see p. 23 of Ref. 20). The result is that all phase shifts
can be expressed in terms of a function 5(A, ,p) subject to
the integral equation

5(k, k )+ f dk 8'(k, k)5(k, k )—
2& —B

=rr+8(ki —k~) . (6.4)
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S (k ~, k~, )=e the CS model with inverse square exchange. ' '* ' The
AHA equations for (6.5) are

k„&k„&a,
—&6(kh, 2, hh, 1 )

S„i,(kh z, kh i) =e

8 ~ kh ~& kh, ~ —8 .
ik.LJ

i(k —ki)
I 1—

i (k —ki)
I 1+

i (k —ki)
I A, +

i (k —ki)r k—
As noted above the CS limit is obtained by rescaling

k ~ak and then taking a —+ ~, keeping
2X(A, —l)a =:2g(g —1) fixed. In this limit one obtains
8(ki —kz)~tr(g —1) sgn(ki —kz), and the expression
for the S matrices reduces to the ones found for the CS
model in Sec. IV (if g is identified with A. of Sec. IV), as
can be seen directly from (6.4). In general the integral
equation (6.4) can only be solved numerically, the result
being a nontrivial function of k, and k2.

Physically our results for the S matrices imply that the
quasiparticles in the 1/sinh (r) CS model are interacting,
as the S matrices are momentum dependent and nontrivi-
al. In the 1/r limit they become noninteracting.

A very interesting extension of the 1/sinh (r) CS mod-
el is the 1/sinh (r) CS model with exchange. The
Hamiltonian of the model is '

g2 tv (g —gQ.k )H= —g, + g~'
=i Bx k slnh [(xk xj )K]

(6.5)

where Pzk is a permutation operator exchanging the spins
of the particles at positions x and xk. We wi11 consider
only the simplest case of SU(2) spins. % is the number of
particles in a box of length I., and we are interested in the
limit I.—+ ~ keeping the density X/I. fixed. In the in-
verse square limit &~0 the interaction becomes
gj «[A(A, —Pik)]/(x~. —x& ) ), and the model reduces to

Ni

s=i

a, —k. +ik

kJ as +EX.

k —a —iA.J S

Nl a, —a, +2iz
as at 2l k,

(6.6)

0=2trJ," +
(m, t)&(n, s)

an m
S t

where I~ and J" are integer or half-odd integer numbers,
9(x) is given by (6.3), 8(x)=2arctan(x), and

Here a has been set to 1, and the effect of ~ corresponds
to a rescaling k —+k /ir and a, —+a2/v. All k 's are real
[complex k's do not lead to bound states in the bare
scattering amplitudes on the right-hand side of the first
equation in (6.6)], whereas the a, 's can form bound states
of the form a,"'~=a, +i (n +1—2j)A, with a,"E1R. This is
not surprising as the second set of equations in (6.6) is
nothing but the set of Bethe equations for an inhomo-
geneous Heisenberg model. Inserting this string hy-
pothesis into (6.6) and then taking the logarithm, we ob-
tain

[k, —a,"
Lk =2mI +QH(k ki) —g6—

(6.7)

(x)=
+28- +. . . +28

ln —ml ln —ml+2

26 —+26 —+. . . +28 +8
2 4 2n 2 2n

ifn=m .

n+m if num

The range of J" follows from (6.7) to be

oo

2
(6.&)

where M is the number of a strings of length m.
The construction of the ground state and excitations is

rather similar to the less than half-filled Hubbard mod-
el. The ground state is obtained by filling two Fermi
seas of spectral parameters k and a,'. In the thermo-
dynamic limit it is described in terms of two densities (of
spectral parameters) p(k) and o (a) subject to the coupled
integral equations

p(k) = — f dk'8'(k —k')p(k')1 1

2& 2'
2X+ da o(a),

A, +(k —a)

o(a)= f dk
2A,

2 p(k)
A, +(k —a)

1 ~, 4A,da' o(a'),
4A, +(a —a')

where J zdk p(k)=N/L, and where the integration
boundary A is a function of the chemical potential p.
The ground-state energy density is given by
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Eos= f" dk p(k)k (p=dEos/dN, which fixes A as a
function of ]L],). We note that for v&0, cr(a)&0 on the
whole real axis (the sea of a's is completely filled),
whereas in the inverse square limit ~~0,
o (a ) =09

~
a

~
& A. This is in agreement with Ref. 35.

There are two classes of low-lying excitations over the
ground state: particle-hole excitations in the Fermi sea of
k's, which are very similar to the excitations in the
1/sinh (r) CS model (see above; the only difference is
that now there will be a dressing through the second Fer-
mi sea of A. s), and spin excitations in the second Fermi
sea. We will constrain ourselves to a discussion of the
spin excitations here. Inspection of (6.8) shows that the

situation for v)0 is very similar to the one for the HS
chain treated in Sec. II: the simplest low-lying excita-
tions are a spin-triplet [M, =(N/2) —1] and a spin-
singlet [M] =(N/2) —2, M@ =1] two-hole excitation. In
the inverse square limit the Fermi sea of a's is not com-
pletely filled, so that the simplest spin excitations are of
particle-hole type. We consider only the case ~)0, as it
is the far more interesting one. As in Secs. II and III we
describe the excitations in terms of shift functions F, (k)
and Fz(a) (the construction is very similar to the one of
spin excitations in the Hubbard model, which was treated
in detail in Ref. 27). After some manipulations we find,
for the triplet,

T =1F, (k)= g 2arctan e
2&

m(k —ah )2A,

2 J dk'F, (k')e(k —k'),
(6.9)

T 1 L

F2 (a)= —— g ln
2 2 IT

1

a ah1+i
2A,

a —a h, p

2i,

a ahpI 1—i

a —ah
I 1+i

F, (k)

cosh (a —k)
2X

1 1 . xe(x) =Re ]II —+i
2A, 2 4A, 2A, 4k

.X . X+0 A+i ——% 1+i—
2 2

where ah p are the rapidities of the two holes and where where F, 2 are given by (6.9). From the first equality in
(6.10) it follows immediately that the energy and momen-
tum of the triplet and singlet are identical (as they must
be). The singlet scattering phase shift is found to be
5s(a], „ah 2)=2]rFz(ah ]). The resulting two-particle S
matrix describing scattering of spinons in the 1/sinh '"'

CS model with exchange is

Here ]P(x) is the digamma function. The energy and
momentum of the spin-triplet are given by

A

EsT(a], ],a], p) = y dk 2kF] (k),

1
F~z(a) =F2 (a)+ —arctan 1

2

PsT(a], »ah z) = f dk F] (k) .

The scattering phase shift is given as
5T(ah ],ah 2)=2]rFz(ah ]), with ah ]

—a], 2&0. For the
spin singlet we find

F (k)=F (k)
(6.10)

ah )+ah 2

2miF2 &h 1S(a, „a,,)=e id+ I'
V+ l V+1

ah, 2v= ' ' )0,
2A,

(6.11)

where P is the 4X4 permutation matrix and where F2 (a)
is given by (6.9). The result we obtain is extremely similar
to the spinon-spinon S matrix of the Hubbard mod-
el: ' ' the rapidities are renormalized by a factor of 2A,

(2U in the Hubbard model) as compared to the pure XXX
scattering matrix (2.12), and the common overall phase
receives an additional contribution from the dynamical
degrees of freedom (i.e., the Fermi sea of k's). We can
rewrite (6.11) in terms of the XXXS matrix Sxxx given by
(2.12) as

2+iS(a], ],a], 2) =Sxxx(v) exp ~
dk

4A,

F (k)

cosh (a], i2i,
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where v is as in (6.11). In the limit v —& ~ this reduces to
the Haldane-Shastry result (2.11). We see that in (6.11)
there are two distinct contributions: one from pure spin-
spin scattering [given by Sxxx(v)], and one from coupling
of spin and dynamical degrees of freedom (given by the
second factor).

As was noted by Sutherland, Romer, and Shastry, it is
possible to freeze out the dynamical degrees of freedom in
(6.5) by taking the limit A,~ ~. In this limit the parti-
cles freeze into an equidistant lattice x =jld (recall that
d =N/L is the fixed density of particles), and the Hamil-
tonian (6.5) separates into Hd„„+2AH),«, where Hd„„ is
of the form (6.1) with coupling A(A, —1), and where

d Kp(k') go(k —k'»

0=2vrp(g) —f dg'y(g')g()'(g —g')

+f dk'p(k') g'(k —0') —f
(6.14)

0=2m(r(P) —f dip(g)—a I+4(g —P)

+ d '(r( ')
1+(/3 —/3')

1+P.k
1

latt

~ k J'
slnh

(6.12)

Lg(0) —yg (g(0) g(0))

()—2~I yg'(g(0) g(0))g())

Ground state and excitations of the lattice model (6.12)
can be obtained by rescaling and expanding the spectral
parameters in (6.7) according to k =2k,g )+gz")
+(I/2A, )g '+. . . and a,"=2AP,"+ . , and then ex-
panding the ABE's in inverse powers of k. This pro-
cedure yields

where a is a function of the fixed density d, and where
cr(/3) and y(g) are the infinite volume limits of the densi-
ties I/[N(P,',—P,')] and g"/[N(g ', —g ')]. In or-
der to describe only the ground state of (6.12) it is neces-
sary to decouple the dynamical degrees of freedom by
hand. We note that for the excitations no such decou-
pling has to be carried out because the structure of (6.14)
is such that the dynamical degrees of freedom decouple
automatically. Equations (6.14) and (6.13) are all we need
to determine the 5 matrix. Let us start with the spin-
triplet phase shift. The spin-triplet excitation is obtained
by taking M, =(N/2) —1 and all other Mk =0. There
are two holes with corresponding spectral parameters
p), , j=1 and 2 in the distribution of p's. The ABA
equations (6.13) read (our convention is J, —J, =

—,')

0=7rI —yg'(g' ' —g' ')p"
I

(g' ' /3") —+gg—(g' ' —g' ') (613)
(n, s) yy[2(g(o) P )]+yg (g(o) g(o))

s I

2

+ +8[2(g ' —
/3), )]—m. ,

j=1
0=2m', —+8[2(/3, —g() '))++8(/3, —P, )

I

2

+~—g 8()(3, —/3„) .

0=2~J,"—ya —(P,"—g(o) )
2

I (6.15)

+ g &„(2(P,"—P, )),
(m, t)W(n, s)

Subtracting the corresponding ground-state equations
from (6.15), we obtain coupled equations for the shift
functions F2(/3 )=(P —P )/(P +i —

/3 ) and F, (g )

=(g"—g~")/(g~+, —
gJ '), which in the thermodynamic

limit turn into coupled integral equations

F2(p) = 1 — f d p' F2(/3')
2m —m I + (P—P')2

1 g &(P—Ph, ),
2K

d 4'F) (0')go(4 —0')

+ d, F()
1+4(P—g)

2

sr+ g 8[2(g /3), ,—)] . —

(6.16)

where go(x)=(x/2) in[1+(1/x )]+(i/2) ln[(1 ix)/-
(1+ix)] and gi(x)= —(m/2) —(i/2) ln[(1 ix)/(1—+ix)].
The first set of equations (6.13) is of order A, , and leads in
the thermodynamic limit to an integral equation for the
ground-state density of the dynamical part p(x)
(defined to be the limit N ~ ~ of p(gj ')
= I /[N ( g+) i

—g )
) ] ). The second and third sets of

equations (6.13) are of order 1 and can be used to con-
struct ground state and excitations of the spin model
(6.12). This has already been done [for the general
SU(N)] case in Ref. 39. Our goal here is to determine the
exact S matrix for the SU(2) case, for which we need to
construct all two particle excitations in the framework of
the F-function formalism. This is easily done as the in-
tegers J," are actually the same as in the dynamical model
treated above. Before we get to this let us review some
results of Ref. 39 that we will need later on. The ground
state of (6.5) in the limit A.~ ~ is obtained by taking
M1 =X/2 and Mk =09k & 1. In the thermodynamic
limit N~~ (d =N/L fixed) the ABA equations turn
into a set of three coupled integral equations
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Note that in order to obtain (6.16) we used the ground-state equations (6.14). The equation for F2 is readily solved by
Fourier techniques:

1 iF2(p)= —— g ln
2 2'

The triplet phase shift is 5z =2m'Fz(Pz, ) with

Ph, —
Pi, z) 0, and is identical to the triplet phase shift in

the nearest-neighbor XXX model. The excitation energy
of the triplet states is

Ez-= d 2 Fi—a

e(g)
—a 2 cosh[~(g' —

Ph ))

where e (g) is the classical ground-state energy density of
Sutherland, Romer, and Shastry. Repeating the above
steps for the spin singlet [Mi =(N/2) —2 and Mz =1] we
find that the excitation energy is the same as for the trip-
let, and the phase shift is 5s =5& +2 arctan(Ph i—

Pi, z) —m, which results in an S matrix identical to the
nearest-neighbor Heisenberg XXX S matrix (2.12) with
p, =Ph, —

Ph 2. This shows that the spinons in the
nearest-neighbor Heisenberg model and its 1/sinh (r)
analog are very similar: in both models they are interact-
ing with the same S matrix; the only difference is the
dispersion. Our result for the S matrix, furthermore,
leads to the conclusion that the conformal limit of the
1/sinh (r) model (6.12) is given by the SU(2), WZW con-
formal field theory.

VII. DISCUSSION

In this paper we have determined the dressed scatter-
ing matrices for several models with long-range interac-
tions by applying a method invented by Korepin for mod-
els solvable by (normal) Bethe ansatz. We would like to
stress that this method can be applied to any model for
which the asymptotic Bethe ansatz can be formulated.
Our result show very directly that models with 1/sin (r)
interaction are ideal gases with fractional statistics.
Long-range models with 1/sinh (r) interactions describe
interacting elementary excitations and are close in nature
to integrable nearest-neighbor models. Our analysis in

Sec. VII can readily be generalized from SU(2) to SU(N).
The structure of the ABE relevant for the spin degrees of
freedom is that of an inhomogeneous SU(N) Sutherland
model. On the basis of our results for SU(2) we conjec-
ture that the resulting dressed S matrix for the SU(N)
spin chain with 1/sinh (r) hopping is identical to the one
for the nearest-neighbor model. The fact that elementary
excitations in 1/sinh (r) models are interacting in basi-
cally the same way as in their nearest, -neighbor analogs
indicates that the evaluation of correlation functions may
be rather difficult than for the 1/sin (r) case, in which
elementary excitations are free.

Finally we would like to point out a close relation be-
tween fractional statistics and the fractional charge previ-
ously observed in many solvable models. As was first ob-
served by Kore in for the case of the massive thirring
model (MTM), elementary excitations over the true
ground state will in general carry a fractional charge.
Here the charge is the eigenvalue of the fermion number
operator defined in terms of the (fermionic) quantum
fields entering the Hamiltonian. The relation to fractional
statistics is most easily seen for the simple example of the
SU(2) XXX model: the analog of charge is the third com-
ponent of the spin. A one-particle excitation over the
bare vacuum corresponds to Gipping one spin, and thus
carries charge, i.e., spin 1. By construction this excitation
has bosonic statistics. From the discussion above we see
that fiipping one spin over the true (antiferromagnetic)
ground state leads to a two-spinon excitation, and that
one spinon thus carries charge —,', and carries fractional
statistics. Analogously we can deduce that the quasipar-
ticles with fractional charge in the MTM ought to be
thought of as objects of fractiona1 statistics as well.
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