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Theoretical investigation of the effect of a magnetic field on the Landau-level structure
of a modulation-doped single heterojunction having two occupied subbands
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We have theoretically investigated the effects of a magnetic field on the Landau-level structure of a
modulation-doped GaAs/(Al, Ga)As single heterojunction having two occupied subbands at zero field.
Self-consistent calculations show that the population of the second subband and the energy gap between
a Landau level of the second subband and another from the first subband reveal nearly periodic oscilla-
tions in the inverse magnetic field. The effect of population oscillations is important for the analysis of
magnetotransport data or magnetoluminescence spectra from these structures.

I. INTRODUCTION

In the past several years a considerable amount of ex-
perimental and theoretical effort has been devoted to the
investigation of electronic properties of a two-
dimensional electron gas (2DEG) in modulation-doped
single heterojunctions (MDSH's). GaAs/(Al, Ga)As
MDSH's with only one occupied subband, in particular,
have often been given the most attention, because these
structures can attain high mobility property by
suppressed scattering at higher subbands. However, in
monitoring the signature of a 2DEG, optical techniques
such as photoluminescence utilizing interband transition
have suffered a fundamental disadvantage that the oscil-
lator strength of the interband transitions is small com-
pared to those of bulk excitons. ' This is because a large
portion in the wave function of a 2DEG in the growth
direction is spatially separated from that of a photogen-
erated hole in the deep buffer layer.

On the other hand, in a MDSH having two occupied
subbands at zero-magnetic field (8 =0), the overlap be-
tween a 2DEG in the second subband (E2 ) and a photo-
generated hole can be made large enough so that the PL
peaks associated with this transition can be readily dis-
tinguished from other emission peaks from the bulk. Re-
cently, the magnetophotoluminescence of MDSH's hav-
ing two occupied subbands showed pronounced oscilla-
tions in the luminescence intensity of the hybridized exci-
ton recombination, as well as in its peak energy and peak
width. Oscillations in the luminescence intensity was
explained by the combination of population effects of E2
and a many-body interaction between the E2 exciton
and the Fermi edge resonance ' of Landau levels from
the first subband (E, ). The many-body interaction,
known as the optical Shubnikov —de Haas (OSdH) effect"
was found to be largest when the Fermi level lies within
the extended states, i.e., at odd-integer filling factors.

However, it should be noted that the population of E2
in a 2DEG system with two occupied subbands at B =0
is sensitively dependent on B fields. The potential energy
of a 2DEG at the heterojunction is sensitive to the
change in the spatial density distribution of a 2DEG.

This means that the effect of oscillations in the popula-
tion of E2 on the Landau-level structure of a MDSH
structure is considerable. Therefore, it is important to
consider this effect in the analysis of magnetotransport
data, such as Shubnikov —de Haas (SdH) oscillations.
This effect must be taken into account before oscillations
in optical spectra can be ascribed to oscillation s in
many-body interactions. Though a qualitative discussion
on this effect was addressed by Skolnick, Simmonds, and
Fisher' no rigorous calculations for population effects of
Ez on the Landau-level structure of MDSH's have been
reported even to date, to the best of our knowledge.

In this work, therefore, focusing on the effect of popu-
lation in E2, we investigate the B-field dependence of
Landau levels in a MDSH, with two populated subbands
at B =0. A schematic subband structure of a MDSH is
plotted in Fig. 1. The paper is organized as follows. The
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FIG. 1. A schematic subband structure of MDSH with two
occupied subband at 8 =0. The open and closed circles
represent ionized and neutral donors, respectively. The thick
solid line, the thin solid lines, the dotted curves, and the dashed
line denote the potential profile, subband energies, the squared
wave functions of two subbands, and the Fermi level, respective-
ly.

0163-1829/95/51(19)/13315(5)/$06. 00 51 13 315 1995 The American Physical Society



13 316 KYU-SEOK LEE AND EL-HANG LEE 51

theoretical framework is detailed in Sec. II. For Landau-
level structure, we consider a self-consistent numerical
method, which takes into account many-body effects in-
cluding the Hartree and exchange-correlation potentials.
A few selected results of a model GaAs/(Al, Ga)As
MDSH are presented and discussed in Sec. III, followed
by a summary in Sec. IV.

II. FORMALISM

In our formalism, we consider the effects of E2 popula-
tion on Landau-level structure of a MDSH with two oc-
cupied subbands at B =0, and take the following assump-
tions: (i) the dispersion of the conduction band is para-
bolic so that the effective mass of an electron is indepen-
dent of its energy and wave vector, and (ii) both the elec-
tronic g factor of a 2DEG and the total carrier density
are independent of the B field. These assumptions may
not represent a real semiconductor heterojunction, but
simplify both the formalism and calculation without a
considerable modification of a real system. The tempera-
ture of a 2DEG is set to be T =0 K for further simplici-
ty.

In the effective mass approximation, the envelope func-
tion of electron states in the presence of a B field applied
in the direction parallel to the growth axis, B=Bz, may
be represented by the solution to the following
Schrodinger equation:

[p+e A(r)] + V (z)+ VH(z, B)
2m*

where a=(4/9')'~, and x =r, (z)/21. r, (z) is the radius
of a sphere containing an electron, and is defined in the
unit of the effective Bohr radius a ' as follows:

r, = [ ', era —* p, (z) ]
4~@0~5

m*e

E; k, (B)=E,(B)+ (2k+1)+sg*p~B,AeB
(4)

where E, (8) represents the effective subband edge in the
presence of a B field and satisfies the following one-
dimensional Schrodinger equation:

1 + Vq„(z ) + VH (z,8 )
2 Bz m *(z) Bz

+ V„,(z, B) P;(z) =E;( 8)P;( z) . (5)

We use boundary conditions that the amplitude of P(z)
and (1/m *)(B/Bz)P(z) are continuous at the heterointer-
face. VH and V„, are calculated from Eqs. (2) and (3)
after the density of a 2DEG is obtained by

%*=e /Sneoaa* is the effective Rydberg constant of
y 0

14electron in the 2DEG channel. Stern and Sarma' also
used Eq. (3) for the calculation of energy levels in
GaAs/(Al, Ga) As heteroj unctions.

The energies of Landau levels for k =0, 1,2. . . from
the ith subband (i =1,2) may be written by the following
form:

+ V„,(z, B)+sg*p~B E'g(r) =0, —(1) p, (z) =yN; ~y;(z) ~' . (6)

d2 2

~ VH(z) = [pd(z) p, (z) p, (z)],— —
dz2 eK

(2)

where pd is the density of ionized donors in the barrier
layer, and p, and p, are those of ionized acceptors and
free electrons in the 2D channel, respectively. The
dielectric constant ~ is assumed to be the same in both
the barrier layer and the 2DEG channel. V„,(z) can be
formulated using the local-density-functional approxima-
tion. We use the following parametrized formula intro-
duced by Hedin and Lundqvist, '

V„,(z) = — [1+0.7734x ln(1+x ')]%~,
mar, z

(3)

where r=(x,y, z) is the position vector, A(r) = —r XB/2
is the vector potential, m *(z) is the effective mass of an
electron, s =+—,

' denotes spin-up/down states, and e, g*,
and p& are the absolute electronic charge, the electronic
g factor in the 2D channel, and the Bohr magneton, re-
spectively. The eff'ective mass of an electron, m*(z) and
the quantum-well potential, V, are assumed to change
abruptly at the interface between well and barrier layers.
VH and K„are the Hartree potential and the exchange-
correlation potential, respectively, and depend implicitly
on the B field as the population of each subband is depen-
dent on the B field. V~ satisfies the Poisson's equation,

At T=O K, N;, the areal density of electrons at E, , is
given by

m*
(Ef E, )B(Ef E; ) fo—r 8 =—0;

N Be
8(Ef E; k, ) for 8—%0,

k, s

(7)

where Ef denotes the Fermi energy of a 2DEG, and 8(x)
is 1 for x & 0, 0 for x (0, and for x =0 a real number be-
tween 0 and 1, to be determined from the condition that
N, =gN;.

In the numerical calculations, first, we determine the
total electron density, N, =g, N, (B =0), confine. d at the
heterojunction at B =0, by self-consistent numerical pro-
cedures using Eqs. (2), (5), (6), and (7). For a MDSH with
two occupied subbands at zero field, we carry out a series
of calculations for E&(8) and Ez(8), using Eqs. (5) and
(6) as a function of Nz(=N, —

N& ) for O~Nz (N, /2.
With (N& Nz) and (E&,Ez), we finally calculate 8-field
values satisfying the condition that a set of (N&, Nz) cal-
culated from Eqs. (4) and (7) is equivalent to the given set
in the previous step.
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III. RESULTS AND DISCUSSION

We consider a model MDSH that consists of a thick,
nominally undoped GaAs buffer layer, followed by an un-
doped A10 35Ga0 65As spacer layer with a width of 6 nm, a
thick, Si-doped A10 35Ga065As layer and, finally, a GaAs
cap layer. Donor impurities at a density of 2.0X10'
cm are uniformly doped in the barrier layer, except in
the region of a spacer, and electrons are released from the
donor impurities to the two-dimensional (2D) channel of
the GaAs layer. The barrier height and the ionization
energy of a Si-donor in the barrier layer is chosen to be
305 and 100 meV, ' respectively. The effective mass of
electron in the well and the barrier layer is given by
0.0665m, and 0.0957m„respectively. We use the same
values of dielectric constant ~=12.58 and the g factor
g* = —0.44 for both GaAs (Ref. 15) and (Al, Ga)As.

Figure 2 displays bE(B)=Ez(B)—E,(B) as a function
of Nz for four different densities of electron gases at
N, =8.8, 9.0, 9.2, and 9.4 X 10" cm with ionized
donors at an areal density of Nd=9. 4X10" cm and
ionized acceptors at N, =Nd —N, . The dashed line on +
symbols represents the calculated results of bE (B =0),
while the solid lines represent those for given 1V, in vari-
ous B fields applied in the direction parallel to the growth
axis. For a given N„bE(B) increases monotonically as

Nz increases. As more electrons are occupied in Ez, the
electric-field strength in the 2D channel increases, and so
does b,E (B). The upper limit of each solid line
represents the maximum population in Ez. The dotted
line is an interpolation between two data at Nz=0 and
2.3X10' cm, below which a confined state of Ez was
not found by our numerical algorithm. b,E(Nz=0) was
obtained from the difference between the Oat band edge
in the bulk GaAs layer and the calculated E, . As N, in-
creases, b,E(B =0) and b,E(Nz=O) decrease, because
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the confinement effect of the potential energy is reduced
as the density of ionized acceptors decreases to increase
N, . For B =0, the calculated results show that this effect
is stronger than the contrary effect from an increase in
Nz.

To show the dependence of N, on the B field, the cal-
culated results for the case of Nd=9. 4X10" cm and

N, =9.2X 10" cm are plotted in Fig. 3. It is seen that
the population in Ez oscillates in a nearly periodic
manner as a function of the inverse magnetic field. The
oscillations of the Nz develop discrete group oscillations
as Ef moves from a Landau level at Ez to the next Lan-
dau level in the same subband. A node is made between
two oscillation groups at the B field, where the oscillating
Ef is effectively in the midgap of two Landau levels of
Ez, which will be shown in Fig. 4. The inset in Fig. 3

displays a plot in an expanded scale in high B fields. It is
clearly seen that the oscillation period is larger then two
units of the filling factor, v=N, h/eB. For this MDSH
model, the second subband is depopulated in a finite re-
gion of magnetic field starting from v=6 and 4 from the
larger values. For v&2, the second subband is depopu-
lated. In this plot, spin splittings in the population oscil-
lations are barely discernible in the oscillation peaks for
v & 4, because the g factor of GaAs is relatively small.

In Fig. 4, we display the calculated Landau levels as a
function of the B field for the same MDSH structure as
plotted in Fig. 3. With this figure, we choose the refer-
ence energy in such a way that the Landau levels of Ez
are linear in energy and have the zero offset at B =0.
With this choice, the slopes of Landau levels of E& are
changed when they cross a Landau level of Ez where Ef
resides. It is noted that the three levels have the same en-
ergies for a certain region of B fields, where electrons in
two Landau levels can exchange electrons, while keeping
Ef frozen to them. This peculiar property is due to the
sensitive response of potential energy of MDSH's to the
change of Nz. In other words, when a Landau level from

E& passes the Fermi level by giving up electrons to other
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FIG. 2. Calculated gap energy AE(B)=E&(B)—E&(B) as a
function of the population of the second subband at tempera-
ture T =0 K. The dashed line on + symbols represents the cal-
culated results in either N~ or N, at B =0, while the solid lines
are those obtained at arbitrary strengths of a magnetic field for
N, =8.8, 9.0, 9.2, and 9.4X10" cm . The density of ionized
donors is 9.4X 10"cm, while the density of ionized acceptors
is determined from N, =Nd —N, .

0
0

0
i

0.1 0.2
i

0.3
i

0.4

1 2 3 4

Inverse Magnetic Field (T ')

0.5—

FIG. 3. Calculated Nz as a function of 1/B for a MDSH with

N, =9.2X10" cm and Nd=9. 4X10" cm . The inset is a
close-up plot of the high B-field data.
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FIG. 4. Landau levels and the Fermi level of the MDSH as
was calculated in Fig. 3. Landau levels from E =1, 2 subbands
and the Fermi levels are plotted by the dotted, dashed, and solid
lines, respectively. (i, k) with k =0, 1,2. . . denotes the kth Lan-
dau level from the ith subbands. The reference energy is chosen
such that E2 Landau levels are linear and have zero offsets at
8 =0.

levels, the rate of this process as a function of 68, the
increase in the magnetic field, has a certain limit, beyond
which hE can be larger than 2A'eb B (kz —k, )/I *

+(sz —s&)g*pzbB, the energy difference of two Landau
levels from E2 and E, . The first subband Landau level
has its energy pinned at the Fermi energy when the above
two terms are balanced to be the same at a certain rate of
depopulation in this Landau level. In the inset of Fig. 3,
this B-field region is 1ocated at the right-hand side of each
oscillation peak. From Figs. 3 and 4, we find that the
population of E2 shows a local maximum when a Landau
level of Ei leaves E& to the higher energy side, i.e., at
even integers of v, =X,h/eB, which is associated with
the filling factor of Landau levels from E&. However, it
should be noted that v& is not isomorphic with B, as X& is
an oscillating function of 8 fields.

It is worth discussing some effects of the population of
E2 that can be revealed in SdH oscillations. Low-
frequency oscillations may be visible at low B fields when
v, is too large for the SdH oscillations for Ei to be
resolved. As the amplitude of %2 oscillations in this re-
gion is small, the periodicity of oscillations measures X2
with a small deviation. In higher 8 fields, the following
two cases are considered. First, when E& is in the
region between two Landau levels of E2, i e.,
E2 k 4 Ef (E2 k + ] the contribution of a filled Landau
level in E2 to the density of states is the same as that of a
filled Landau level from Ei ~ Therefore, the periodicity of
SdH oscillations are associated with v and measures X, .
In this region, local maxima of SdH oscillations may
occur at odd filling factors of v. ' Second, if E& resides in
a Landau level of Ez, the probability of elastic scattering
can be maximized when all the fermi electrons fill this
level, but depopulate the other level with the same energy
from E„and vice versa. Therefore, the maxima of SdH

oscillations may occur at integers of v& at both ends of an
interval where E&, one Landau level from E„and anoth-
er from E2 have the same energy. For MDSH's with a
small X2(B =0), the two maxima of SdH oscillations at
both ends of each interval merges into one peak. From
the inset in Fig. 3, it is seen that in high B fields all the
maxima of N2 reveal nearly the same value, slightly
larger than X2(B =0) at even integers of v, . This implies
that X& can be determined experimentally from the linear
relation of 1/B to even integers of v, at the maxima of Xz
oscillations, but the value of X2 determined in this way
may be slightly smaller than X, (B =0).

On the other hand, magneto-oscillations in lumines-
cence energy can be observed from a MDSH with a large
N2 at B =0, because the variation of the hE (B) increases
as 1V, increases, as was shown in Figs. 2 and 4. In the
presence of a photogenerated hole, the probability of the
recombination of a 2DEG in E2 with this hole will be
proportional to N2, if t'he hybridized excitonic effect is
not taken into account. In this approximation, oscilla-
tions of luminescence intensity show an oscillatory
behavior that is similar to that of the E2 population and
are nearly periodic in 1/B. Luminescence peaks occur
when a Landau level of E, is depopulated above E&, i.e.,
at integer filling factors of X&. It is noted that many-
body interactions such as the Fermi-edge singularity
in optical spectra, ' population-dependent exchange
enhancement of the g factor, ' and the coupling of E2 ex-
citon with the Fermi sea need to be considered for an
analysis of the luminescence spectra of MDSH's with two
occupied subbands. The consideration of these effects
will be the subject of further study.

IV. CONCLUSION

In summary, we have carried out self-consistent calcu-
lations for the Landau-level structure of MDSH's with
two occupied subbands at B =0. Both the population of
E2 and the energy gap between Landau levels from E2
and E

&
show nearly periodic oscillations in 1/B.

Magneto-oscillations in the population of E2 result from
the crossing of Landau levels from Ei with those of E2.
Positions of these maxima are related with the filling fac-
tor of X&, but not with integer filling factors of X,. When
a Landau level from E, crosses another level of Ez where
EI resides, their energies remain equal with each other
for a finite region of magnetic field. This phenomenon re-
sults from a sensitive response of the potential energy of a
MDSH to the variation in the distribution of 2DEG. In
this paper, it was emphasized that the effect of population
oscillations must be accounted for an interpretation of
both magnetotransport data and magnetoluminescence
spectra of MDSH's with two occupied subbands at B =0,
before other many-body interactions are introduced.
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