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Reasons for the reduced electron-phonon relaxation arising in the conduction band of zero-
dimensional quantum-box (QB) systems when level separation is of the order of 1 meV or larger are ex-
plained. Relaxation rates are calculated using approximations of the electron-phonon interaction matrix
element between two given levels. A threshold QB energy-level separation and a threshld QB size for re-
duced relaxation are then deduced. To deal with the multilevel situation encountered in flat square
boxes with two dimensions much larger than the third one, it is shown that the energy-independent den-
sity of states in a given subband translates into a Poissonian distribution of the level separation. This sta-
tistical approach is developed to predict the occurrence of relaxation bottlenecks along a cascade of lev-

els in intra- and intersubband transitions cases.

I. INTRODUCTION

Semiconductor quantum boxes (QB’s) have been de-
scribed as promising for applications in optical and op-
toelectronic devices owing to their quantized atomlike
levels.! ™3 Although their discrete levels are undoubtedly
advantageous for optical purposes, they might consider-
ably hinder carrier relaxation for level separations AE as
small as ~1 meV.* This is a major issue since energy
separations AE ~25 meV are required to take advantage
of discrete levels at room temperature.® This issue was
addressed in Ref. 5, suggesting that reduced relaxation
could provide an intrinsic mechanism for the poor
luminescence yields of boxes as large as 150X 150 nm?
compared to the 30X 30 nm? needed to reach AE ~25
meV between box levels in the same system. Owing to
continuous progresses in nanostructure fabrication and
increased elimination of extrinsic nonradiative recom-
bination mechanisms, a more complex picture has
emerged. On the one hand, some experiments have clear-
ly pointed out the presence of ordinary luminescence
from excited levels in a single-box system, a clear signa-
ture of reduced relaxation.®” On the other hand, some
alternative relaxation mechanisms have been proposed in
specific situations: interaction with specific phonons,®
plasma-assisted relaxation,’ electron-hole interactions.!®
This last channel is difficult to evaluate quantitatively ow-
ing to the complex valence-band structure. In this paper,
we shall therefore focus on hole-free situations, a situa-
tion which makes relaxation through acoustic-phonon re-
laxation the predominant relaxation channel.

Intraband radiative transitions (e.g., intersubband tran-
sitions) are now a growing field of interest where the
valence band, being filled, cannot help electron relaxa-
tion. Electrons are just neutralized by dopants, whose
energy levels do not allow the few-meV relaxation needed
among quantum-box levels of interest here. Therefore re-
laxation in this situation clearly relies on acoustic pho-
nons only.

It is thus attempted here to describe properly, and with
some generality, reduced electron relaxation among a
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plurality of box levels, for which only examples had
been treated in Ref. 5. The aim of this paper is twofold:
(i) to detail and clarify the origin of the reduced
electron—acoustic-phonon interaction, giving analytical
expressions appropriate to electrons’ relaxation rates be-
tween QB states; (ii) to extend the analysis of the model
multilevel box of Ref. 5 using a statistical approach in-
stead of a single box to predict on a more general basis
the appearance of bottlenecks on the relaxation path of
electrons. As will be discussed elsewhere!! such relaxa-
tion bottlenecks can greatly improve the efficiency of im-
portant optoelectronic systems (e.g., infrared) relying on
intraband transitions (e.g., intersubband transitions).

The organization is as follows. In the next section (Sec.
II), basic assumptions on box dimensions and materials
allowing one to focus on electron—-LA-phonon relaxation
are presented; reduced relaxation is then outlined from
energy and momentum conservation rules. In Sec. III,
electron-phonon scattering rates between box levels are
calculated. Section IV is devoted to a statistical ap-
proach based on the distribution of QB level separations;
appearance of relaxation bottlenecks is predicted and
their specific distribution law discussed; application to in-
trasubband and intersubband transition cases is finally
presented. Mathematical aspects of the statistical ap-
proach are to be found in the Appendixes.

II. BASIC ASSUMPTIONS

A. Carriers and phonons

We will in the following concentrate on electron relax-
ation, as hole levels, due to their typically ~10 times
heavier mass, have correspondingly smaller energy sepa-
rations than electron levels for given box dimensions. As
outlined above, we consider the valence band to be filled,
the electron population being controlled through doping,
a common situation in intersubband-transition-based de-
vices.

In a usual two-dimensional (2D) system, excited elec-
trons lose their energy to both optical and acoustic pho-
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nons.*'>!3 The former are very efficient in polar com-
pounds of interest here through the dipole-coupled LO
mode. However, these branches are dispersionless near
zone center, which implies a separation AE matching the
optical phonon energy E,, about 30 meV in typical ma-
terials. The same remark holds for the possible excitation
of neutral donors to an excited level: the first excited lev-
el for most donors lies at a well-defined energetic height,
typically ~20 meV, above the ground state.

Therefore, already for large box sizes (~ 100 nm diam-
eter) and AE ~1-5 meV <<E,, relaxation throughout
the numerous levels towards the ground state by LO-
phonon emission might be somewhat diminished, due to
the difficulty of finding an energy-matched final level. We
will, however, concentrate here on the last steps of relax-
ation towards the ground state, within an energy range of
E b which then relies on acoustic-phonon emission only.

For narrower confinements ( < 50 nm) and larger sepa-
rations, the probability that AE matches E,, surely van-
ishes and carriers above E also have to relax through
acoustic phonons. Finally, in the low-temperature limit,
the two-phonon processes involving acoustic phonons
(e.g., LO+LA, etc.), whose energy requirements are less
stringent, are also very weak, leaving acoustic phonons as
the only relaxation channel.

For the sake of simplicity and since we study the I val-
ley of a cubic crystal, we approximate the various
acoustic-phonon branches by a single isotropic branch,
using a single averaged sound velocity c¢,. Also,
piezoelectric scattering is ignored because it is known to
be only ~ 10% of deformation potential scattering.'*

B. The quantum-box system

We consider a system consisting of a quantum well of
lower-band-gap material of thickness L,(~2-35 nm) epi-
taxially grown in the z direction between layers of
higher-band-gap material (a type-I quantum well is as-
sumed). For typical III-V systems with low effective
mass m*, such as GaAs/Ga,;_,Al,As and
Ing 53Gag 47As/InP, this leads to ~0.1-1 eV barrier
heights at I'-band edges. The nth envelope wave function
¥, in the z direction has the well-known sin(k,z) shape in
the well with k, ~nw/L,, k, being the solution of an im-
plicit equation,'® and decaying exponentially in the bar-
riers. The corresponding energy is written

#2k?

PR

E=E,,+E,=E, ,+ (1)

2m

If such a layer is patterned in lateral x,y directions with
dimensions L,,L,>>L,, the infinite-barrier approxima-
tion can be applied to the wave function in the x,y direc-
tions, yielding

v=1., ¢, =(L,L,)” " *sin(k, x)sin(k,p), )
with k, =Ilm/L,, k,=mm/L,. The energy is then

2 m?

L} L

#?
2m*

#wk;
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2
5 2m
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We shall now explain the basis of the reduced relaxation
between such levels below a critical size, focusing on the
square box (L, =L,) z ground state (n =1), and infinite-
well approximation (k,=w/L,).

C. Basic reason for reduced relaxation

The basic reason for vanishing relaxation when L, is
reduced is the impossibility of satisfying simultaneously
energy and momentum conservation during an
electron—acoustic-phonon scattering event. We will first
evidence a maximum, size-independent, level separation

(AE),,, for allowed scattering. Then, using the
confinement energy, we translate (AE),,, into a
minimum threshold box size.

We consider the energy range

E | ,=1<E;;,1<<E{|,=2, to ensure E, 6 <<E, and
k, <<k,. Let us denote the phonon wave vector q and in-
itial and final electron levels |i) and |f). Momentum
conservation takes place through interlevel matrix ele-
ments {i|e’dT|f) of the form*

fez(k”+kz),.-reiq.rei(k”+kz)f-r )

This tells us that for phonons leading to significant
scattering rates, g, is at most (k) +(k;), <<27/L,.
For g,, the localized character of the n =1 level
translates into a momentum distributed from O up to
2w/L,, but rapidly vanishing above this value. As
g, <<2m/L,, if q exceeds g,  ~27/L,, the matrix ele-
ment and the scattering probability vanish. The max-
imum phonon energy E°™ associated with q,,, is
E‘"i‘=ﬁcs(kp}l Jmax ~ hey /L, irrespective of L,. For typi-
cal materials and L, =100 A, E™" is quite low, of the or-
der of 1 or a few meV. Hence, due to energy conserva-
tion, a scattering event involving AE > E crit — 1 meV be-
comes extremely unlikely.

Turning to the effect of box size, the lateral
confinement energy E . =#m*/(2m*L2) gives a con-
venient order of magnitude of a typical separation AE be-
tween two neighboring levels E, ,, | and E . ;, albeit un-
derestimated (see Sec. IV). Writing E ;= E " gives

ﬂ‘thz 172

crit
Lyt~ |—
4m*c,

4)

It is of the order of 1000 1&, a large value compared to the
required size to obtain room-temperature 3D quantum
effects (=200 A), due to the rather low value of E“"~1
meV. For smaller sizes, relaxation will be strongly re-
duced for most significant electronic transitions.* We
now calculate in detail the matrix element in k space.

III. ELECTRON-PHONON RELAXATION RATES
BETWEEN LEVELS OF A BOX

The transition rate w;, between two lateral levels
i=(,m),f=(',m') of the same subband n, separated by
E;;, due to acoustic phonons can be written from the Fer-
mi golden rule as a sum on phonon modes:*
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#
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q
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’

nB(Eq )+ l(]j }

(5)

where D, the deformation potential, gives the strength of
electron—acoustic-phonon coupling, E, is the phonon en-
ergy, p is the crystal density, and  is a normalization
volume. The 8 function accounts for energy conserva-
tion. The upper signs hold for phonon emission and the
lower for absorption; ng(E,) is the Bose-Einstein phonon
occupancy number and we will note ng(E;)=ng(E )+1
for phonon emission. Bulk acoustic phonons are a very
good approximation because their reflection coefficients
at layer interfaces are quite low.

The squared matrix element, denoted M (q), reflects
momentum conservation. It is of order unity if there is a
noticeable q Fourier component in 1/;}1&[ and vanishes
otherwise. M is separable, that is,

M(q)=M,(q,)M,(q,)M,(q,)=M (q,)M,(q,) .

In the infinite-barrier approximation, the particular form
of, say, M, , between levels [ and /' is

sin[(q, L, +vm)/2] 2

SV (gL, tvm) /2 ©

Mg )=7| X
v==xIl+I

with the signs s, given in Appendix A, Table II. With
finite barriers, namely, for M,, a small barrier contribu-
tion has to be added but the overall behavior, in particu-
lar at large g, is unchanged (see Appendix C). M, is seen
to consist of four peaks located at Q, =(x/x!')m/L,.
This recalls the usual 8(k, —k, + Q, ) selection rule, look-
ing at each level as a sum of (k,, —k,) running waves.
Each peak has a width 27 /L, due to localization. Keep-
ing these modifications in mind, quasiconservation of
momentum amounts to selecting the regions where M is
~1. As previously, if we restrict ourselves to energies
below E,;, =E,, we have (k,,k,)<k,. Then the q re-
gion where M ~1 is most extended along g,, reaching
about K,=37w/2L,, which is larger than
K,=(1+I")ym/L, and K,=(m +m')w/L, along g, and
g,- The M ~1 region is schematized by the dashed ellip-
soid in Fig. 1, of width K, ,K, and of height K, ignoring
the detailed structure of the peaks at Q,,0Q,. Notice that
K, grows when going to narrower lateral confinements
[from Fig. 1(a) to 1(c)], remaining smaller than K,, how-
ever.

Turning to the energy conservation requirement, the
phonon energy is

Ey=E—E =T (k2= k>
iy =B By =2k =k )
_ ﬁZ 77.2 12_112+m2_mr2 . (7)
2m* L} Lf

This in turn determines the phonon momentum to be
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FIG. 1. Picture in the g space of the energy-conserving
sphere of radius g;r and of the region of momentum conserva-
tion M ~1 for transition between levels of a square box of di-
mensions L, XL, XL,. gq; scales like L. ? while the q) extent
of M scales like L, ! and the g, extent is constant. (a) Large L, :
the M ~1 region intersects the sphere; (b) smaller L,: inter-
mediate case, g;r =37 /(2L,); (c) small L,: the sphere intersects
only regions of vanishing M.

fiq;y=E;s/c,. Thus we can replace E 8(E;;—E,) by
q8(q —gq;r). Next, we carry the discrete sum of Eq. (5)
into a continuous one in spherical g coordinates using the
g solid angle element d(},:

1 D?

= 2d dQ +iq-r ) 2
RUARNTYST 2pﬁcs2fq 740 [Crle ™50

X ng(E))+ {5 | |a8lg =) -

(8)

Using the 8(q —g;,) function, we are left with a sum on
the sphere of radius g, (see Fig. 1):

1
w,f (277—)2 2pﬁcs2 nB(E,f)+ {0]
X [aQ,[Ceple iy ©)

If this sphere intersects the dashed M ~ 1 region, relax-
ation takes place as in an infinite 2D electron gas (2DEG)
[Fig. 1(a)]. When L, is reduced [Fig. 1(b)], K, grows ac-
cording to L, ! but g;, grows faster since E;; <L, . In
Fig. 1(b), ¢, =K, is the threshold situation. On further
reducing L, [Fig. 1(c)], the sphere becomes so large that
it does not intersect this region, that is, if ¢;;>K,, M
vanishes in Eq. (9) and w also vanishes. The threshold
for reduced relaxation is thus accounted for by q;;=K,
[Fig. 1(b)] and corresponds to a separation

Et=t#ic K,=3hc, /4L, =3mhc, /2L, ,

1 D?
ql'sf

of the order of 1 meV for usual materials and L, =100 A.
Possible consequences of this value much lower than the
thermal energy for the interband properties of quantum
boxes have been suggested in Ref. 5.

We now present a useful approximation for w;, based
on the fact that the main contributions of M to w;, are
found whenever M, ~ 1, whatever the magnitude of M,.
This is straightforward when g;; <K, and M ~ 1 regions
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do intersect the g, sphere. Then, the intersection region
at g, ~*gq;, gathers the only noticeable contributions of
M to w;, in the sum of Eq. (9), around the g, poles of the
g;r sphere at values of q; where M,(q;)~1. More pre-
cisely, this corresponds to the vicinity of the peaks of M I
at the quasi-selection-rule values qn=k“—k|’|, with the
tm/L, and =*w/L, spreading around them. The
effective area of the intersection region around each pole
is defined by

S=g} [do,M ~ [dqM = [dg.dg,M .M, .

The g,,q, sums are calculated in Appendix B using the
Bessel-Parseval theorem. The exact result matches the

(10)

H. BENISTY 51

Replacing x by z and (/,/’) by (1,1), this result further
justifies the choice of K,=3w/2L, as the limit of the
M, ~1 region because the similar sum of M,(g,) from
— o to + o yields 2K,.

The approximated value of w;; is obtained (i) by con-
verting the surface S into an effective solid angle
Q=S /q,-zf for each pole, i.e., by assuming that the inter-
section is almost horizontal, and (ii) by replacing corre-
spondingly M,(q,) by M,(q;/)=M,(—gq,,). This is writ-
ten

[do M@ =M, (g, [do,M M,

o e — 1
2w /L, intuitive one, exceptif [ =I/"orm =m": zZMz(q,-f)g qu“M”(q”) , (12)
1
I T
quxMx (g,) L, (248, . (1n so that finally the approximation to w; is
|
D? 1] | 9rM.(q;)
= E . )+ 2+, + .
w,f 2pﬁcS2 nB( if ) [O ‘ LxLy ( 811 6mm )
DZ 1 Eisz(Eif/ﬁcs)
- _ E..)+ — (24§, + .
zphch:; nB( ,f) 0 LxLy ( i Smm )
212 M.(q.;) [12_12 2 n
m°D 1 2\qir ! / m
= E + ’ ’
2pm el ng(E;r) 0 L.L, L2 Lyz (2+8,;+6,,.) » (13)

where the second line makes use of E;s=fic,q;, and the
last line makes use of Eq. (7).

We claim that this approximation focusing on M ~1
regions is still valid when g,, > K, and M, <<1. This is
because M (g) vanishes much faster than M, (q) at large g
and this is far from being compensated by the larger
effective solid angle spanned by M,,M,, for example,
around the “equator” (g, =0), compared to the solid an-
gle spanned by M around the poles. At large g, the M’s
are powers of (1/gL), so L,,L, >>L, ensures a faster de-
cay of M| compared to M,.

How strongly relaxation is reduced at large separations
is determined by the large-q (¢ >>K,) behavior of M,, a
very steep one indeed. Appendix C shows that
M,(q) < 1/q° at large q for n =1, even for the finite well.
Assuming low temperatures and ng=1 (phonon emis-
sion), Eq. (13) tells us that w;, is proportional to q,-stf
for a square box. For a given box, w,, is thus proportion-
al to E,}S. For different boxes (i.e., different L,’s), g,/
scales like L. 2,  therefore w;r  scales like
(L;2)73/L2=L}, a very steep behavior when L, is re-
duced to get additional confinement.

For a finite well, threshold energy and momentum are
decreased with respect to an infinite well, as if it had a
larger effective thickness. These quantities closely follow
the decrease of k, below its m/L, value for infinite bar-
riers. As the large-gq behavior of M, remains
M, (g)<q 5, the overall behavior is unchanged and only

the threshold lateral size for reduced relaxation is dis-
placed toward still larger values. Another way to de-
scribe this result is to remark that the effect of well finite-
ness is to smooth the wave function, thereby diminishing
its high-g Fourier components and therefore the relaxa-
tion rate.

To apply this two-level transition rate to the multilevel
situations in a relaxation cascade, one should use the to-
tal rate from the ith level to all the others, w* =3 rw;,.
But when the level neighboring the ith one is separated
by more than E°™, it is very likely that it achieves the
only significant contribution to w;*, due to the very steep
w;s °<E,»;5 relationship. Hence the separation between
neighboring levels is needed to describe the reduced re-
laxation regime properly. Except for the unique case of
the perfect parabolic well, the separation between neigh-
boring levels is a quite distributed quantity (see Ref. 5 for
examples). To deal with this aspect, we evidence in the
next section a statistical distribution of these separations
with a broad range of validity. We concentrate on the
largest separations which are shown to limit electron re-
laxation.

Before going into this aspect, a safe check of Eq. (13)
can be made with respect to the infinite 2DEG limit (i.e.,
large box size) where many final states significantly con-
tribute to w* =3 w;,. In Appendix D, we show a sim-
ple way to achieve the final state summation, thus recon-
ciling the L, * behavior of w;; when L, — o with the
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classical L, -independent 2DEG results.!® It is thus seen
that w;* is well suited to describe evolution from the
infinite 2DEG regime to the reduced relaxation regime in
a QB. This total rate is further discussed in the next sec-
tion.

IV. STATISTICAL APPROACH AND BOTTLENECKS

The simplest way to get an order-of-magnitude calcula-
tion for relaxation in a multilevel quantum box in the
n =1 case makes use of the average level separation
E,,=g !, g being the energy-independent density of
states of a 2DEG. As shown in Appendix E, E, is of the
same order as the lateral confinement energy E . (i.e.,
7 #/2m*L?), familiar to practitioners in the field,
namely, E,, =(4/m)E . E o Was indeed compared in
Sec. II C to the threshold energy E ™ for reduced relaxa-
tion to get the order of magnitude of the threshold lateral
size L™ for reduced relaxation.

But separations AE =E,, significantly larger than E,,
(and E_ ;) obviously exist between neighboring states in
the cascade and act as bottlenecks, since their rate, w;r
are the smallest. To quantify these separations, we intro-
duce a reduced energy

u=E;;/E pp=*+m?)—(1"?*+m")

for a square box (u =4/7 for E,;,=E,,). The critical
value L™ at which a given level pair separation
E;f=uE . reaches E crit depends on the particular pair
chosen through u. From E ;<L ? it follows that
Lftey /2, For example, in Ref. 4 [i=(2,1) and
f=(1,1)], u=3 yields Lf™*~160 nm, whereas the
higher values u ~6 from the more realistic model of Ref.
5 yield L&~230 nm. To get more generality in this
respect, we introduce in Sec. IV A a statistical approach,
developed for the largest separations in Sec. IV B, and we
focus on averaged transition rates and their significance
in Sec. IVC.

A. The Poissonian distribution of separations

We show in Appendix E that the distribution of AE be-
tween neighboring levels of a finite 2DEG (and conse-
quently of flat boxes) obeys a Poisson law of the form
p(AE)=E_'exp(—AE /E,,) with not stringent assump-
tions, which make it relevant to boxes with quite arbi-
trary shapes, different from the square box. Going to rec-
tangular boxes of high aspect ratio (pseudowires) would,
however, require a different treatment. The case of a per-
fect parabolic well with separations AE =n#w, does not
obey this Poisson law either, but it is quite unique in
many respects. For the exact square box, two minor
adaptations of this law are also needed, as discussed in
Appendix E: (i) how to lift its accidental twofold degen-
eracy and (ii)) why E,, is slightly increased above
(4/7)E ¢ when very few of the lower levels are con-
sidered, an adaptation which links to nonstatistical calcu-
lation.

As explained above, we focus on levels within one opti-
cal phonon energy (E,,=~30 meV) from the ground
state. The number of such levels is
N=gE =E,/E, <L} Neglecting a correction of
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order 1/N, we assume N to be also the number of separa-
tions. Relaxation properties are governed by those sepa-
rations which exceed the threshold energy E° and how
much they do so. The statistics of the ith smallest sepa-
ration (counted from the smallest) and its expectation
value E; are detailed in Appendix E. We will show that
the Nth largest separation E, dominates bottlenecking
effects.

B. Bottlenecks in a single subband

The essential result of Appendix E is that the average
(expectation) value E of the largest of N separations is
given by

Ey/E,=(1+L1+1+4 -+ +1/N)=(InN +C)

for large N (C =0.577. .. is Euler’s constant). Thus, if N
is large, Ey is significantly larger than E,,. For example,
for N =150 corresponding to L,=240 nm,
Ey/E,, =5.6, a large value indeed. The average separa-
tion is then as low as E,,=E,, /N~0.2 meV, but still
Ey=1.1 meV lies in the vanishing relaxation regime.
Thus bottlenecking phenomena can occur for E,, as low
as 0.2 meV, that is, E_ r~0.15 meV. We find in particu-
lar that E, is considerably larger than the separation
AE =3E ~2.36E,, used in Ref. 4. In terms of thresh-
old size, these higher Ey/E,, values mean smaller E,,
values to reach Ey=FE crit and thus larger threshold box
sizes L by a factor > 1.5 to reach the reduced relaxa-
tion regime.

To get the N transition rates {w;} between neighboring
levels, a first approach (to be refined in the next subsec-
tion) is to inject separation expectation values
{E;}i=1...x into Eq. (13), using q;,=E; /#ic;. The
slowest, bottlenecking, transition rate is of course wy and
it determines threshold size and overall evolution of
bottlenecking phenomena. Notice, however, that, if Ey
were not to play its role as a bottleneck due to some in-
cidental peculiarity in the cascade Ey _; is close enough
to Ey to act so for a close L, value (the E;’s scale like
L?). Hence the onset of bottlenecking phenomena is
well defined in terms of lateral size.

However, there is no analytical expression in the sta-
tistical framework for the value L™ of this onset: equat-
ing Ey and E° gives the following Eq. (14) of the form
InN =aN +b:

Ey=(InN +C)E,,=E,(InN +C)/N
=E°it=4c K,=3hc,/4L, . (14)

Let us recall that L, and N are not independent: N being
the number of levels below E, is essentially proportion-
al to L?2. Tt is interesting, however, to write L ™t using
only In(N) (and not N) to compare to Eq. (4):

7#L,(InN +C) |'”?

crit
Lt~ -
3m*c,

(15)

To discuss the evolution of wy in the vanishing regime
of Fig. 1(c) we make use of
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FIG. 2. Log-log plot of averaged transition rate (full lines)
and other transition rates (dashed lines) in a square box with N
levels under E,,~30 meV, the optical-phonon energy, as a
function of L, or N«<L2, in the infinite well limit. Curve g,
small-N simplified behavior of Eq. (15); curve b, rate using the
expectation value (InN+ C)E,, of the bottlenecking separation;
curve c, rate using the two first (1,1) and (1,2) levels as in Ref. 6;
curve d, averaged rate wy at the bottleneck; curve e, average of
summed rate to all lower-lying levels at the bottleneck wj .

q <Ey <(InN +C)E,,=(InN +C)N " 'E

opt °

One finds, injecting M,(g) < ¢ ~® (see Appendix C) and ¢
in Eq. (13),

wy < gM, L2 <q 3L < L¥[In(L})+C]

< N¥InN +C)~°. (16)

The behavior of wy is illustrated on curves a and b of
Fig. 2 as a function of L, for an Ing 5;Gag 47As box based
on an L, =10 nm well and assuming infinite barriers. Pa-
rameters used in the calculations!’ are in Table I. Curve
a (bold dashed line) represents the simplest approxima-
tion to Eq. (16) for wy in the vanishing regime, first
replacing M,(q) by its asymptotic
7*[sinX (gL, /2))(gL,/2)"% form (see Appendix C) and
next averaging the oscillating factor to 1, a helpful way
to visualize asymptotic behavior. When N is large, the
N* (.e., L?) power law dominates wy behavior. When
fewer levels are considered, the effective N exponent
(slope of lnwy vs N) departs below 4 because the InN
variation is no longer negligible (this deviation from N* is
partly compensated by the low-N correction to E,, de-
tailed in Appendix E). Curve b (thin dashed line) of Fig.
2 represents the exact wy, well matching curve a below
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L, ~160 nm. For larger L, values, the behavior of M, at
lower g shows up, particularly in the abrupt drop around
200 nm. The L™ value [Eq. (15)] is about 250 nm here,
corresponding to Ey~1 meV. The interest of the statist-
ical approach can be seen by comparing curves a and b
with curve ¢, where we only consider a two-level model
between the ground and first excited states (I,m)=(1,2)
and (1,1) (meaning just that u =E;;/E ,, =3 as in Ref. 4)
restoring an exact L envelope in the small-L  limit [mul-
tiplied by sin%(gL,/2)). It is seen to give a lower ~ 150
nm threshold size whereas for this range Ey ~2-3 meV
is more than twice as large as E ™,

Another important conclusion which stems from Eq.
(16) concerns the respective strength of the possibly
numerous bottlenecks: the largest (Nth) separation dom-
inates all the others even though E,y_,
[=(InN +C —1)E,,, cf. Appendix E] is not much small-
er than E because w;s < E ,-175, an exponent large enough
to ensure that wy_;>>wy for the N <1000 values we
deal with.

C. Averaged bottlenecking rate

Experimentally evidencing the value of W) as plotted
above, including oscillations, is meaningless because, the
approach being statistical, any particular realization will
exhibit a scattering rate differing from the average by
some sizable amount. We can preserve the virtues of our
approach by applying it to an ensemble of boxes, a more
realistic and feasible situation. It is easy to predict how
the Ey’s of such an ensemble are distributed from the law
Pn(E) (see Fig. 8 in Appendix E). They are seen to
spread significantly around their average. In actual sys-
tems, such sizable changes between given levels
(I,m),(I'ym') can originate from quite minor size or
shape variations. It is indeed certain that a change of
only a few percent in the box aspect ratio changes the ac-
tual bottleneck pair level. Another possible effect of such
box-to-box variations could be to change N itself. In our
statistical framework, the absolute value of the Nth level
fluctuates by N 172 in relative terms, being the sum of N
Poissonian variables. Such a fluctuation has only a
minute effect on the characteristic In(N) factor for the
largest separation. As for the other expressions where
powers of N appear, they just stand for powers of L, or
better L2, the box surface which gives the basic scaling of
level separations. We want to account for fluctuations in
box level separation which can occur at constant box sur-
face and large lateral quantum numbers. This is the case
when superimposing a weak random potential to the per-
fect box one: only the box shape is affected at first order,

TABLE I. Material parameters used in the calculation.

Parameter Symbol Ing 53Gag 47AS GaAs Units
Effective mass m* 0.0412m,, 0.067m, mg is the free-electron mass
Sound velocity <, 3400 5150 ms™!
Optical-phonon energy E,. 30 36 meV
Density p 5500 5360 kgm 3
Deformation potential D 7.2 6.8 eV
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and through the shape the largest separations. Changes
in area and confinement are of second order. It is thus
consistent to average wy against py(E), but not against N
itself.

We thus claim that a physical measurement on an en-
semble of boxes involves

wiY= fomw(E)pN(E)dE 17

rather than wy=w (Ey). In other words, the rate aver-
age has more physical significance than the rate at aver-
age bottleneck energy, w[ f pn(E)E dE]. Using the rate
average, we also wash out wy’s rapid oscillations which
stem from M, and could not be measured on an ensem-
ble. This is because E,,, the distribution characteristic
width, covers many oscillations when E,, >> E ",

As for departure from the infinite 2DEG limit
(Ey~E®™, the drop leading to the first zero of M,), it
fortunately corresponds to E,, being only a fraction of
E®it, 50 that the abrupt drop in M, between the main
maximum (g =0, M,=1) and the secondary one
(g =5k,, M,<1073) is preserved in this average. On
Fig. 2, curve d is the averaged rate wj’ from the
bottleneck level to its first lower-lying neighbor, at 0 K,
for the same 10-nm-thick Ing 53Gag 47As box with infinite
barriers. It coincides with wy (curve b) at large N, but
significantly exceeds it at low N. This is due to the con-
tribution of the distribution’s low-energy tail, where rates
proportional to E ~3 considerably increase and compen-
sate the small weight of py(E) in wg'.

One more step to go continuously from the 2DEG to
the box case stems from the number of final levels accessi-
ble from a given level: the number of significant final lev-
els for scattering in the 2DEG limit is roughly the large
number of levels within E°, and reduces to a single level
in the bottlenecking limit. Thus the meaningful quantity
describing energy relaxation from the 2DEG limit to the
small-box limit is the scattering rate from level i to all
final levels f, denoted wj'* and named hereafter the total
rate.

To calculate this total rate wj'*, one has to sum first
w(E)py(E) for the  bottleneck itself, plus
w(E +E,, )py(E) for scattering to the next lower-lying
level because it lies on the average E,, below the previous
level, plus w(E +2E,,)py(E) for the second neighbor,
and so on, yielding

wive= 0°° _ py(E)E . (18)

j=

> w(E +jE,,)
0

We expect wi'* to stick to wj’ for small boxes where

the second neighbor w(E +E,,)>w(E) around E =Ey.
Conversely, in the infinite 2DEG limit, many levels with
comparable rates are summed, simply resulting in the
well-known 2DEG acoustic scattering rate (see Appendix
D).

On Fig. 2, curve e corresponds to the averaged total
rate wi'* from bottleneck level to all lower-lying levels,
which, unlike curves a —d, tends at large L, towards the
infinite 2DEG limit [Eq. (D3) in Appendix D]. Curves e
and d exhibit a steep portion between L, =~ 100 and 200
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FIG. 3. Log-log plot of the averaged bottlenecking rates wy
and wy (sum on all final states) as a function of L, or N < L2,
for a finite well of Ing4;Gags;As lattice-matched to InP of
thickness L, =10 and 20 nm.

nm, with an effective exponent close to Lf, just after re-
duced relaxation onset. This preservation of a steep drop
in spite of the averaging procedure further justifies the
idea of a threshold for reduced relaxation.

Going to finite barriers has, in the Inj 53Gag 47As/InP
system, little effect on w§’ and wy'™* for L,=10 nm, as
shown in Fig. 3. For L,=20 nm, the curves shift more
clearly to still larger lateral dimensions. Thresholds L™
are 300 nm for L,=10 nm and 420 nm for L,=20 nm.
The 300 nm L,ﬁ'“ value, larger than its infinite-well coun-
terpart (Fig. 2), is connected with the lower k, wave vec-
tor in the well due to barrier finiteness. Both curves are
seen to be similar, except for the higher threshold value
of the wider 20 nm well. )

The detailed dependence of this threshold value L™
for reduced relaxation as a function of initial well thick-
ness L, is plotted on Fig. 4 for (curve a) the
Ing 53Gag 47As/InP  system and (curve b) the

500} /\
300

= | Ing 5438, 47 A/ InP
£ Je @
x Z
—1 200} ]
- GaAs/ Ga , Al jAs
8
=
G 100F W — ]

O\ 5

50 . M . —
1 2 5 10 20 50
L, (nm)

FIG. 4. Log-log plot of the critical value L™ for reduced re-
laxation as a function of the thickness L, of the initial well, for
(curve a) the Ings;Gager;As/InP  system; (curve b) the
GaAs/Gag ;Aly 3As system. The asymptotic trends are like
L '? for large L, and determined by the mere barrier height
for the infinitely narrow well. The z wave function and band
profile are schematized in both limits.
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GaAs/Gag ;Alj 3As system. It is determined by Eq. (14),
equating the largest L, -dependent separation E, to the
L,-dependent threshold separation for reduced relaxation
E°it=4jc K,. Barrier finiteness is most felt at low L,
where K, saturates at the value kp determined by the
conduction-band offset AEC=ﬁ2k§/2m*, the n =1 level
reaching the barrier top. Conversely, the large-L, limit
yields L« L 172 as in Egs. (4) and (15). This is responsi-
ble for the different shoulder locations in Fig. 3 by a fac-
tor ~(2)!/2. The (InN +C) factor in Ey has little effect
here. Notice the largest L, values for the In-based ma-
terial (curve a), following the (m*c,)” /2 scaling of Eq.
(4). Here, the larger effective mass and sound velocity of
GaAs determine an LI value smaller by a factor of
~ 1.6 than in In; 53Gag 4,As.

D. Bottlenecking and higher subbands

We present in Fig. 5 adaptations of averaged rates to
the intersubband case, i =(/,m,2) and f=(l',m’,2) or
f=WU',m’,1) for a large initial well L, =30 nm patterned
into boxes, still in the Iny 53Gay 47As/InP system. In this
well, E, .,—E, -;~25 meV, an ideal value for infrared
applications below the optical-phonon energy, namely, at
50 um.!! As for the validity of such calculations, which
violate the initial g, <<q, assumption, we checked nu-
merically on Eq. (9) that, in the second subband bottom
where these rates are relevant, the dominant contribution
still comes from the poles of the depicted g sphere, mak-
ing Eq. (13) still valid. The 2-2 transition has a smaller
threshold size than the 2-1, and this latter is still smaller
than the 1-1 of the same well, due to larger momentum
and larger phonon energies available through higher K,
in n =2 subband states. The 2-1 level-to-level transition
rate decreases faster than L * at large L, because M>!
vanishes at ¢ =0. The 2-2 rate does not vanish at ¢ =0
but at g =27 /L, before its noticeable secondary max-
imum, and this is preserved through the averaging pro-
cedure.

N
10 100 1000
T T T
ks Ey(meV)54 3 2 -1 __05
10° [l s 8
108 [l 5, 1
2=30nm
finite well
= 107 F b
)
\ 108
-
5 L .
10 LS
104 | 1
10° ! 1 L I L]
20 50 100 200 300 500 1000

Ly (nm)

FIG. 5. Log-log plot of the averaged bottlenecking rates wy
and wy as a function of L, or N < L2, from the n =2 pseu-
dosubband of a finite well of Ings3Gag 47As lattice-matched to
InP of thickness L, =30 nm to the n =1 pseudosubband (inter-
subband) (curve without dip) and the n =2 pseudosubband (in-
trasubband) (curve with a dip at 250 nm).
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Finally, the essential features of reduced relaxation
found in the first subband should hold for higher sub-
bands, still in n-doped semiconductors, provided the ab-
solute energy remains below quantized excitations such
as optical phonons. It is not the aim of this paper to de-
scribe the many complex phenomena arising far from
conduction-band minima, such as nonparabolicity, etc.
Similarly, if some very-low-energy excitations (e.g., local-
ized phonons, . . .) interact with carriers, due to impuri-
ties at surfaces, an additional relaxation channel appears.
Our discussion should, however, hold for properly buried
quantum boxes with clean interfaces and acoustic pho-
nons very close to bulk ones. The essential point to re-
tain is that for moderate confinements relaxation through
a level cascade may be reduced more than calculated by,
e.g., Ref. 4, because, as quantified in the statistical ap-
proach, level separations significantly larger than the
average show up in such cascades.

V. SUMMARY AND CONCLUSION

The electron-acoustic-phonon scattering rate between
box levels has been calculated analytically, in particular
for separations larger than E“'~1 meV where it van-
ishes rapidly, causing strongly reduced relaxation of elec-
trons. Crucial to envisioned applications of boxes is this
low value of E° much lower than the usual criterion of
leading to @ ~25 meV separation necessary to get true
0D behavior at room temperature.

We developed a statistical approach to predict, among
a cascade of N square-box levels situated under the opti-
cal phonon energy E,,, the magnitude of the largest,
bottlenecking, energy separation Ey. Expressed in the
familiar units of E ., this magnitude u =Ey /E_, ; is of
the order of (4/7)(InN +0.58). It turns out to be
significantly larger at the onset of reduced relaxation
than the value u =3 used in Ref. 4. This is because a
confinement energy of 0.16 meV and an average separa-
tion of 0.2 meV (i.e., N ~150), making u of the order of
~7, allows reaching the E°™~1 meV threshold separa-
tion in examples studied here.

Furthermore, statistics yield averaged rates wy and wy
with a true physical meaning for an ensemble of QB’s.
These rates exhibit a well-defined threshold size L™ for
reduced relaxation, of the order of 250 nm for a typical
10 nm Ing 4;Gaj s3As/InP well. The behavior of these
rates for L, just below L™ is as steep as L or N*. For
smaller sizes, Eq. (16) yields a slightly smaller effective
exponent.

The statistics also allows us to tell that the number of
bottlenecks in the cascade increases rapidly when sizes
are decreased below L™, The exact location of the first
or the second bottleneck along the cascade is therefore
not crucial: for a small change in size, another
bottleneck comes in, and sooner or later the crucial part
of the cascade undergoes reduced relaxation. This means
that the threshold L™ is effective in predicting relaxa-
tion properties of the whole cascade.

Still, we predict that, bottlenecks being in series, the
strongest of them dominates the overall behavior, due to

the steep behavior of M,(g)«<q 5. Therefore not only
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the threshold size but also the vanishing behavior of wg’
do describe the cascade relaxation properties under E .

Extensions of these results to the two intersubband
cases (1,2) and (2,2) in the z direction have also been
presented with similar conclusions.!!

Finally, we have considered so far acoustic phonons
and neglected LO phonons, mostly focusing on energies
lower than E,. But it can be seen that our predictions
are essentially valid for acoustic phonons if z-subband in-
dices are reasonably low. At low temperatures especially,
multiphonon processes are expected to be weak. Then
monochromaticity of LO phonons allows for a typical
~1 meV spreading around E, to induce a transition
rate > 1 ns~ ! between electronic levels. Therefore, when
E,, becomes larger than 1 meV, presumably in the 2-5
meV range, the probability of LO transitions should de-
crease extremely steeply, falling even below acoustic-
phonon rates. Therefore, except for a moderate reduc-
tion of the threshold size L{™ and a steeper behavior
around this size, the low-size tail of the results presented
here still retains its significance for the whole energy
range as a first-order result, of interest for infrared de-
vices.!!

ACKNOWLEDGMENTS

This work has been partly supported by ESPRIT No.
3133 “NANSDEV.” The author would like to thank C.
Weisbuch for invaluable discussions and critical reading
of the manuscript, and also B. Vinter, J. Pian, and M.
Kanehisa for useful discussions.

APPENDIX A:
THE ONE-DIMENSIONAL MATRIX ELEMENT
BETWEEN [/ and /' ENVELOPE WAVE FUNCTIONS

Taking the origin at midwell, envelopes are of the form
cos(lm/L,) for I odd and sin(/7/L, ) for ! even. From
the products of / and !’ envelopes, one has the signs of
Table II for the coefficient of exp{i[(XIx!")r /L, +qlx},
which turn out to be the factors s, of Eq. (4).

APPENDIX B: g summation of M,

Dropping x indices and using Q =g¢L /2 and the re-
duced length u =2x /L, the matrix element M, (q), for
example, in the case of / and !’ both odd, can be written
as a Q Fourier transform

(lexpligx)|1")
=f_llcos(l7ru /2)cos(l'mu /2)exp(iQu)du . (B1)

Hence, turning to the squared matrix element M (q), we
have
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JM(@ag="% [ Migig
= [dQIF{cos(Imu /2)cos(I'Tu /2)

XO0(1—u)8(1+u)} >, (B2)

where F is the Fourier transform and 6 the usual Heavi-
side step function [6(x <0)=1,0(x >0)=0]. Then the
Bessel-Parseval theorem tell us that this latter sum is also
the sum of the squared initial function:

L _ 1 ,
?fM(q)dq—(Zﬂ')fﬁlcosz(l‘rru /2)cos?(I'mu /2)du .

(B3)

Thus we have, generalizing to any envelope (cos or sin)
and using classical properties of sin and cos functions,

= [M@ug=m [ [4+tcostimu)]
X[+x1cos(l'mu)ldu
=Q2m)($+18,), (B4)
which amounts to Eq. (11) of the text.
APPENDIX C: LARGE-¢ BEHAVIOR OF M,

For the n =n’=1 case, we have, with Q =q,L, /2,
2

_ | sin(Q) | sin(Q +7)  sin(Q —)
M; Q + 2(Q +r) + 2(Q —m)
? 2
=sin’Q m (C1)

Since Q =g, < L%, when Q >>m, we have, averaging the
sin®Q factor to 1,

4e: 2
M,= 1&52 ~

20
This behavior also holds for a finite well because the wave
function is smoother in such a well, which means lower

high-spatial-frequency amplitudes in the Fourier trans-
form M, (q).

L}, (C2)

APPENDIX D: SCATTERING RATES
AND ENERGY-LOSS RATES FOR LEVELS
IN THE LARGE-SQUARE-BOX LIMIT

We calculate here the scattering rate w* =3 ; w;, from
one level i to all the others f, in the very-large-L, case
E,, <<E°' (~1 meV in our system). We use the average
separation Eav=g_‘, where g is the density of state; of

TABLE I1. Coefficients of the £/’ terms in the matrix element M, .

Case Type of envelope Coefficient s,

) I l I (1+1) —(I+1) I'—1 1=
odd odd cos cos 1 1 1 1
odd even cos sin 1 —1 1 —1

1

even even sin sin

1 —1 —1
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the same order as the confinement energy E
[E,,=(4/m)E ., see Appendix E].

The matrix element M, is of order unity only for the
N,=E°/E,, levels | f ) on each side of |i ) which conse-
quently achieve the main contribution to w;*. This
infinite-2DEG limit amounts to Kawaji’s'® classical result
for elastic scattering of electrons by phonons. In fact,
scattered electrons do suffer small but nonzero energy
change because, due to the finite extent of ¥,, phonons
can take momentum from electrons up to ~ A /L and en-
ergy up to E°t,

If one is in the equipartition regime for phonons (high
temperature), then np~ng~kgT/fic,q;; in Eq. (13).
Consequently, the 2N, levels | f) lying within E it of |; )
have the same E;-independent scattering rate w;,

D% kgT

Wy, = — 2| (D1)
T phc} L}

conf

since M, ~1 (I71]' and mm' for a general case). Multi-
plying by 2N, gives

3m*k,TD?
2p7°c2L,

Ecrit
lf E

w* =2w; (D2)

which is Kawaji’s result.!6

At low temperature where ny <<1 and np =1, w;r <gq;,
and thus w;, < E;,. Then averaging E;, over the N, levels
yields E'/2 and a size-independent rate w* is again
found,

«_ 9mm*D?

wi*~ R (D3)
' 4p#Pc,L}?

still in the usual nanosecond range.

Therefore Eq. (13) and its L, * factor are reconciled
with the infinite 2DEG. Also energy-loss rates obtained
by weighting w;, with E,; before summing on [f) levels
are L, independent when E,, <<E°, No difference be-
tween the high- and low- temperature regimes is needed
because, if all the final levels surrounding the initial level
are assumed to have the same zero occupancy, the bal-
ance between phonon emission and absorption at a given
E;; is (ng—ng)E;;=E,, independent of the tempera-
ture. In the w;E;r product, a factor EZ ;s appears, whose
expectation value in the [0,E°"] interval is now
[(E°%)2] /3. Multiplying by N, gives

QE _ 97’m*D*?

D
o = ALl (D4)

APPENDIX E:
STATISTICS OF THE LEVEL SEPARATION
IN A GIVEN SUBBAND OF A BOX

Unlike the case of a continuum, relaxation studies in
realistic quantum boxes have to take into account the de-
tailed distribution of level separations. It is most instruc-
tive to introduce the basic concepts dealt with here from
an example. Figure 6 shows a histogram of the level sep-
arations in a square box with infinite barriers, in the first
subband (n =1 set), for (a) the N =1500, (b) the N =160,
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FIG. 6. Histograms of the separation distribution in a square
box (first z subband) for the first N levels as a function of
x =E/E,, (bottom) or E/E . ,=(m/4)x (top), compared with
the exp(—x) Poissonian law (solid curve). (a) N =1500; (b)
N =160; (c) N=14. Arrows outline the largest separation in
each case, scaling like x =InN. The average separation shifts
slightly but significantly above the x =1 (N =) value as N
vanishes.

(c) the N =14 lower levels. It is expressed in reduced
units of the average level separation x =E/E,,. E,, is
just the inverse 2D energy-independent density of states
E,, =g '=(4/7)E ., as will be seen below. The box is
actually slightly rectangular (by a few percent at most)
keeping the L, L, area constant, in order to lift the ac-
cidental twofold degeneracy of the perfect square box
El,m :Em,l

The main features that appear are the following. (i)
The Poissonian distribution of the separations
p(x)=exp(—x), as indicated by the dashed curve. (ii)
The largest separations x_,, of each distribution, out-
lined by an arrow, which are in the (c) <(b) <(a) order.
The correlation with x =In1500 (a), In160 (b), and In30
(c) (see the figure) suggests that x . scales like InN. (iii)
Looking more carefully, the (b) and (c) histograms decay
more slowly than exp(—x). This due to a small but non-
negligible increase of the actual average separation above
g ~1 for small N values, as indicated on the figure and as
will be explained below from the way the levels fill the k
space. In the next subsections, a theoretical basis is given
for the above features, aiming to introduce finally the dis-
tribution law of the largest of N separations.

1. Poissonian distribution of level separations

Let us consider a collection of N levels uniformly dis-
tributed on a [0,E,, ] interval. Physically, levels in this
interval cannot undergo scattering by optical phonons.
The uniform energy distribution corresponds to the clas-
sical energy-independent density of states of a 2DEG
within a single subband and assuming a parabolic disper-
sion relation. The density of probability to find a level
between E and E +dE is thus
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(dpo/dE)=N/E =g =1/E,, , (E1)

where E,, is the average energy separation and g (=g,p)
the (energy-independent) density of states. To get the
separation distribution between two neighbor levels, we
assume that there is a level at a given energy. Then, the
probability p,(E +dE) that the separation is larger than
E +dE is the product of the probability p,(E) that the
separation is larger than E by the probability (1—g dE)
that there is no level between E and E +dE. Thus

p(E +dE)=p(EX1—gdE) (E2)
and therefore
dp\(E)/dE = —gp,(E), p(E)=exp(—gE), (E3)

where p,;(E =0)=1 is achieved. The distribution law p
of the separation is hence

p(E)=—dp,(E)/dE =g exp(—gE) , (E4)

which is a Poissonian law.

2. The case of the rectangular box

In a square box of side L, if we do not consider spin de-
generacy, we have in the large-N limit
_2m* L? _4 # 7

7 an BT g (3!

g

For this particular case, the Poissonian law was well
verified above, lifting, however, the accidental twofold
degeneracy (E,,, =E,, |).

In the low-N limit, the average separation E,, is found
to be systematically above the value of Eq. (ES) above,
the first factor (4/7=1.27...) reaching about 2. The
reason for this is made clear in Fig. 7 where the k, -k,
plane is represented with the quantized k,,k, values in
the box. The energy is proportional to k2. Hence a circle
arc corresponding to the E , limit has been drawn, the
enclosed area A being proportional to E,,,. In the large-
N limit (larger arc), we recover the constant density of
states because A is proportional to the number of levels
N, each level corresponding to the same 7%/L? area. Let
us examine more precisely the tiling of the plane by
squares of this 72/L? area on Fig. 7. This tiling covers
only the [ /2L, o [? region. At low N (smaller arc), a no-

k A
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...-\\-\- /L
IR ERNE
T - - N -
III\\III\\I

71:/21:_...-.... K

; . > X
/2L

FIG. 7. Quantized k values [7/L,,mm/L, of the square box
levels in the k plane and the tiling by squares of area 72 /L2.
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ticeable portion of A lies outside the tiled region. This
rarefies the density of levels and increases E,,, up to a
factor of about 1.7 for N =4, i.e., when only the first four
levels (1,1) (1,2), (2,1), and (2,2) are considered. As can be
guessed from the figure, the correction for the missing
surface scales like the arc radius and therefore as N'/%.
A good approximation of E_, is more precisely given by

1+ —2

Eavz(Eav)N:oo ‘/7TN

) (E6)

which fortunately matches the N =4 case very well. We
checked that this law is in good agreement with the actu-
al average for a square box.

3. Statistics for an ordered collection of spacings

We consider a collection of N separations, each obey-
ing independently the Poissonian law of Eq. (E4).
Rigorously, one should take N —1 spacings for N levels,
but this correction is of order 1/N, not as large as the
correction for low N in a square box above, of order
N 172, We assume that they are labeled in ascending or-
der and write them E,<E,< - <E;<---<Ey_,
<Ey. We deduce the distribution law of the ith smallest
separation from the Poissonian distribution of the separa-
tion as follows. If E; has a given value E, which has the
probability p (E), then we need to have (N —i) separa-
tions larger than E, whatever their order, and (i —1) sep-
arations smaller than E, whatever their order. The first
requirement is described by a p,(E)" ~9 factor and the
second by a [1—p,(E)]“ "V factor, so that the distribu-
tion law of the ith separation has the form

pi(E)<p(E)p(E)¥ " [1—p(E)]“™V . (E7)
Since p (E)=gp,(E), we have the distribution law
p(E)=gi [IIV exp(—gE)N~itDh
X[1—exp(—gE)]“ ™1, (E8)

The coefficient for normalization is found by iterative in-
tegration by parts of the probability product.

4. Properties of p;

The reduced variable x =gE will be used in the follow-
ing, and we denote j =N —i +/: the ith smaller separa-
tion is the jth larger. The law p;(x) peaks for
exp(—Xpeak ) =J/N, Xpex=InN—Inj. It has an
exp(—jx) behavior toward infinite x and an (i —1)
power-law behavior for vanishing x. It can be shown to

have an expectation value

x;=[1/N+1/(N—1)+1/(N—=2)+ -+ +1/j]

from iterative integration by parts of xp;(x), using a
primitive of x exp(—x) to decrease the exponent of
[1—exp(—x)].

The x; value can also be found with a heuristic argu-
ment. The N separations, with their Poissonian distribu-
tion law exp(—x), can be compared to N decaying parti-
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cles of lifetime 7. After a time 7 /N, on the average, one
of the N particles has decayed, and (N —1) are left. Then
an average delay T /(N —1) is needed for the second de-
cay (decaying particles do not ‘“‘age”), that is, a total time
T[1/N +1/(N —1)] from the beginning, and so on.

As for the variance of p;, it can be estimated by looking
at the inflection points of the distribution on each side of
the peak, since the law is bell shaped. They are expressed

: 0

5. Approximation for the larger separations:
large N, vanishing j /N

4jN

l'_.

(E9)

Xipg=—1In [ﬁ+% lli [1+

If N is very large, the above law is unpractical to han-
dle. Since the law for the jth larger separation has a rela-
tively narrow peak for vanishing j/N, a development
around the peak can be made using (1+a/n)"=exp(a)
for large n, and gives the following result:

p,~(x)~$ []IV exp(—jx")exp[ —exp(—x")] (E10)
with x’=x —InN. This law also peaks at x'= —Inj (that
is, x =InN —Inj). It has its inflections at

Xipg=—In[j+1£/j+1]. (E11)

For large j (but still with vanishing j/N), this law tends
to a_Gaussian of mean-square deviation 1/j (width
2/Vj).

6. Application to the bottlenecking relaxation rate: py(x),j =1

The largest out of the N separations has the law

py(x)=N exp(—x)[1—exp(—x)]¥ 1, (E12)
which is the derivative of the law
pLnv(E)=[1—exp(—x)]V. (E13)

From the above results, py(x) peaks at x ., =InN. Its
inflection points in the large-N limit are given by

3+V75
2

Xinfl =InN —In

_ (E14)
345

2

x;nﬂ= —1In
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FIG. 8. Distribution law py(x) of the largest out of N Pois-
sonian separations, as a function of x or x'=x —InN, in the
large-N limit. py(x')=exp(—x')(exp{—[exp(—x')]}). The
expectation value is (InN +C) where C=0.577... is Euler’s
constant. Behaviors for x >>InN and x <<InN are indicated.

which gives the order of magnitude of the variance. As
for the expectation value, it is exactly

xy=1/N+1/(N—-1)+1/(N—=2)+ --- +1+1.
(E15)

In the large-N limit, we therefore have xy~InN +C
where C =0.577. .. is known as Euler’s constant. This
difference xy —X ., =C reflects the contrasted behavior
of py on each side of the peak: py has a relatively *“slow”
exponential decay at large x, whereas at small x it has a
very abrupt exponential of exponential [“exp(exp)”’]
behavior. This is obvious if the approximation of Eq.
(E10) is written in this particular case j =1, as a function
of x'=x —InN:

py(x)=exp(—x")exp[ —exp(—x")], (E16)

which is the derivative of the function exp[ —exp(—x')].
py is plotted on Fig. 8 as a function of x and x’, in this
large-N limit, recalling its main features: peak at
x =InN, expectation value (InN + C), asymmetric shape
extending over a few units of x.
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FIG. 1. Picture in the ¢ space of the energy-conserving
sphere of radius g;; and of the region of momentum conserva-
tion M ~1 for transition between levels of a square box of di-
mensions L, XL, XL,. g, scales like L, while the g extent
of M scales like L, ! and the g, extent is constant. (a) Large L,:
the M ~1 region intersects the sphere; (b) smaller L,: inter-
mediate case, g;; ~3m/(2L,); (c) small L,: the sphere intersects
only regions of vanishing M.
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