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Thermoelectric figure of merit of composite superlattice systems
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The thermoelectric properties of systems in the form of superlattices have been studied. First, the
electrical and thermal conductivities, the thermopowers, and the figures of merit of superlattice struc-
tures are given in terms of the bulk parameters of the two constituent materials for conduction both
parallel and perpendicular to the superlattice axis. Second, systems in which the layers of one of the ma-

terials become sufTiciently thin that their electronic properties become effectively those of a two-
dimensional quantum well are considered. Numerical calculations are given for such systems with

Bi&Te3 quantum wells separated by barriers having the parameters of bulk Pb075Sno»Te. It is shown
that heat and electronic conduction through the barriers has a pronounced effect on the thermoelectric
properties of the superlattice and that the figure of merit is decreased substantially for finite barrier
thicknesses.

I. INTRODUCTION

Recently there has been renewed interest in finding ma-
terials with desirable thermoelectric properties, in part
because of their potential for use in cooling systems and
as generators. ' The figure of merit' ZT provides a mea-
sure of the quality of materials for applications. To date,
alloys of Bi2Te3 have been of the greatest interest, but
only small improvements in their thermoelectric proper-
ties have been achieved in recent years. Both composite
systems and bulk materials are currently of interest in the
search for more desirable thermoelectrics.

An interesting proposal along these lines has been
made recently by Hicks and co-workers, who argued
that the thermoelectric properties of a material can be
enhanced considerably in a superlattice geometry as a re-
sult of an effectively two-dimensional density of states for
the electrons. They calculated ZT for model superlat-
tices with varying periods (well widths) in which the po-
tential barriers of the wells were infinite and the widths of
the barriers was neglected, and they found that ZT in-
creased monotonically for decreasing well widths. On the
other hand, physically we expect that nonzero barrier
widths in realistic superlattice systems will significantly
affect the thermoelectric properties of the superlattices,
especially for narrow wells, due to transport along the
barriers.

In the present work we include the effects of heat and
electronic transport through barriers of nonzero
thicknesses in realistic superlattices. First we consider
composite systems in the form of superlattices consisting
of two materials characterized by their bulk parameters.
Bergman and Levy have used a Geld-decoupling tech-
nique to show for general two-component composites
that the upper bound of ZT is given by the highest values
of ZT of the constituent materials. Here we derive expli-
cit results for the thermoelectric transport properties and
the figures of merit of superlattice systems as functions of
the layer widths for conduction both along the superlat-
tice axis and perpendicular to it. These results explicitly

give the thermoelectric transport parameters and the
figures of merit of composite superlattice systems.

Second, we consider superlattice systems in which the
electronic properties of one material become effectively
two dimensional. We calculate numerically the ther-
moelectric power, the electrical conductivity, and the
electronic thermal conductivity of the two-dimensional
layers in the form of quantum wells with infinite barriers.
The effects of nonzero thickness of the barriers between
these layers on the values of ZT are obtained here, and
they are shown to modify significantly the thermoelectric
properties of the superlattice as compared to systems
which have zero barrier thickness. In this case, ZT is less
than that of the quasi-two-dimensional system with zero
barrier widths for all well widths. On the other hand, we
show that ZT of such a superlattice can exceed the
figures of merit of each of the bulk materials character-
ized by bulk parameters.

These numerical calculations have been made for su-
perlattices consisting of quasi-two-dimensional layers of
Bi2Te3. The qualitative features of the effects of the
nonzero barriers widths are not expected to depend on
the choice of the barrier material. For the purpose of dis-
cussing this effect we choose barriers characterized by the
bulk parameters of Pbo 75Sno 25Te. Such superlattices are
of current practical interest, ' and the parameters for
them are known relatively well.

In Sec. II the equations for thermoelectric transport
are summarized. In Sec. III the thermoelectric transport
properties of composite superlattice systems are derived
in terms of the bulk properties of the materials. In Sec.
IV the properties of superlattices consisting of layers with
two-dimensional electronic properties and barrier layers
having nonzero widths are calculated.

II. THERMOELECTRIC TRANSPORT EQUATIONS

The macroscopic transport equations for thermoelec-
tric materials relate the electric current density J, and
thermal current density J, to the electric field E= —VP
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and temperature gradient V T, where P is the electric po-
tential. It is convenient to write these equations in a ma-
trix form in which all of the Inatrix elements have the
same units:

to represent the greater of the values of a given parameter
in the two bulk materials A and 8.

A. Current in the growth direction
J=SVQ,

where

—J, /e
—J, /k

t
v(ep)

V&= V(kT)

o'

2

(2)

(4)

In this case the current J Aows perpendicular to the
planes of the layers, and it is uniform through the system.
The potential drop between x =0 and x =a +& is from
Eq. (1):

f vfdx= f S, 'Jdx+ f Sb 'Jdx

=J(S, 'a +Sb 'b) =JSC '(a +b) . (11)

Thus the inverse of the effective thermoelectric transport
matrix Sc of the composite system is given by

S, 'a+Sb 'b
C

Here the electrical conductivity o., the thermal conduc-
tivity at zero electric field r, and the thermoelectric
power a are in general 3X3 matrices in the Cartesian
coordinates. They satisfy

J, =oE for VT=O,

E=aV T for J,=0,
r —K+ To (x

From Eq. (12) for the transport coefficients we obtain

O gKg (o, +qob)W,

O gKg
(y. +„b)W,

a

0 g o.'g +q o b cx bAC= Q~ o

0g+qo b

(13)

(14)

where K is the usual thermal conductivity at zero electric
current.

The thermoelectric figure of merit ZT is defined as

&2 6 oo TS
detS 1 —6

The parameter 6 is given by

T(o,a +qobab)
(y, +qyb )(Cr, +qCrb )

(Qb., +Qh hrb. b)

(1+h )(1+h )

where

2S12 O-A2T

S»S22 r
b (detS, )

q=-
a(detSb )

bO. ,K,

aO'bKb

8'=(a +b)[(y, +qyb )(o, +qo b )

Here aM is the greater of the thermopowers of the two
bulk systems (a„ab ). The parameters q, W, and h are

detS=
2 2keT (10) T(a a +qcTbab ) j

Note that ZT is a monotonic function of parameter 5,
and thus either quantity may be used as a quality factor
for thermoelectric materials.

and

ob rb
h =q , h =q

III. COMPOSITE SUPERLATTICK SYSTEMS

Here we obtain the thermoelectric transport properties
of composite systems which have the form of superlat-
tices composed of layers of materials 2 and B with layer
thicknesses a and b, respectively, in terms of their corre-
sponding bulk parameters. The superlattice growth
direction is taken to be the x direction. For simplicity,
we assume that both materials are isotropic, and there-
fore in each material o., n, and r are constants. We use
the subscripts a, b, and C to label quantities in the ma-
terial A, in material B, and in the effective composite su-
perlattice system, respectively. The subscript M is used

B. Current perpendicular to the growth direction

& J&=s,&vy&=s, vq. (20)

In this case the current Aows along the planes of the
superlattice in a direction that we denote as y, and care
must be taken to define properly the thermoelectric trans-
port matrix S for the composite system. Here the current
density is a function of position x along the superlattice
axis. We seek the average of the current density & J &

over a large cross-sectional area perpendicular to the
direction of the Aow:
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The second step in Eq. (20) results because each cross sec-
tion perpendicular to the current How is an equipotential
and isothermal plane.

Because the potential drop in materials 3 and 8 be-
tween positions y =0 and yp is independent of x,

f 7'Pdy= f S, 'J, dy= f Sb 'J„dy (21)

component composite systems.
We note that in both current directions ZT depends on

the layer widths only through the ratio b/a. In addition,
we find explicitly for both directions that the following
interesting relations holds between the thermopowers for
the composite system and those for the two bulk systems:

Yb

Jb =SbS, 'J, .

Thus

(22)
(XC CXb

CX Qb

C b

Xg
(33)

aJ, +bJb (aS, +bSb )Vg
a+b a+b (23) which was obtained earlier for general two-component

composite systems.

(J) aS, +bSb
M

Here S~ is the greater of the values S, and Sb corre-
sponding to the two bulk materials, and the relation
holds for each of the matrix elements of S. From Eq.
(24), for transport coefficients with current in the y direc-
tion, we obtain

ao ~ +So'boc=
+&

ay, +byb
VM

(25)

ao, a, +ho. blab (O!~ .
a o'

a +b o'
b

From these results, we find

(QA, +Qf fybb)
(1+f )(1+fr )

ho.
bf.:=

aors

) b

ap
(29)

and thus the figure of merit is

~c
ZcT (Z~T

C
(30)

(QZ, T+(/'f f ZbT )
Zc T

(1+f )(1+f )+(Qf Z, T Qf,Zi, T )—
(31)

where

b~
f

1 —bb

1 —b,,
We see from Eqs. (16) and (30) for current Sow either
along the superlattice axis or perpendicular to it that ZT
of the composite superlattice system is always less than
the maximum of (Z, T, Zb T), the figures of merit of the
bulk materials A and 8, as shown earlier for general two

IV. NUMERICAL CALCULATIONS
FOR QUASI-TWO-DIMENSIONAI SUPERI.ATTICES

Here we consider the e6'ects of the nonzero widths of
the barriers separating the quasi-two-dimensional elec-
tronic layers of realistic superlattices. "We give numerical
calculations for the thermoelectric properties of a model
superlattice system for the two directions of transport.
For transport perpendicular to the superlattice axis, we
consider systems in which the layers of material 3 are
thin enough so that their electronic properties behave as
efFective two-dimensional quantum wells. In order to fa-
cilitate comparison with previous results, we take the
quantum-mell material to be Bi2Te3.

We are interested in the qualitative e6'ects of the
nonzero barrier widths, and for the present purposes we
will take the barrier material to be characterized by its
bulk parameters for all well widths. That is, we will
neglect the modifications of the properties of the barrier
layers for small widths. Further, we expect that the quali-
tative features of the nonzero barrier widths do not de-
pend on the choice of barrier material. For the present
discussion we choose the barrier material 8 to have the
properties of Pbp 7gSnp 25Te, because Bi2Te3/
Pbp "75SDp $5Te superlattice systems are being grown and
are of practical interest, and also their thermoelectric
transport coeKcients are relatively well known. The
thermoelectric transport coefficients of Pbp 75Snp 2gTe are
taken from the bulk room-temperature measurements of
Rosi, Hockings, and Lindenblad, and are
crb =1.176X 10 /II cm, a'i, =2.046 W/m K, ab =108
pV/K, and ZbT=0. 20. The corresponding values for
bulk Bi2Te3 are o a 0.588 X 10 /Q cm, Ka 1.8
W/m K, a, =240 pV/K, and Z, T=0.56.

For later comparison, we first calculate the figure of
merit ZT of the superlattice for the case in which the
current is in the direction parallel to the axis of the super-
lattice. For this case the quantization of the carriers in
the BizTe3 layers should not have a significant e6'ect on
the transport properties, and we will assume to erst ap-
proximation that the transport parameters are given by
the bulk values for both materials. That is, physically this
situation is taken to be the same as that described in Sec.
III. The results for ZT for this case are shown by the
solid line in Fig. 1 as a function of the ratio of layer
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FIG. 1. The thermoelectric figure of merit Z&T of the super-
lattice system BizTe3/Pbo 75Snp z5Te as a function of ratio of the
layer widths b/a for the case in which current Bows along the
superlattice growth direction. Here both materials in the super-
lattice are characterized by bulk transport parameters. The dot-
ted lines indicate the figures of merit of the two bulk materials,
with the upper line corresponding to BizTe3 and the lower to
Pbo. 7s Sno. zsTe.

thicknesses b/a. The dotted lines are for the bulk ma-
terials Bi2Te3 (upper) and Pbo 7&Sno 25Te (lower). The
solid curve lies between the dotted lines, indicating that
the ZT of the composite system for transport in this
direction is less than the greater of the values of Z, T and
ZbT for the individual bulk components for all well
widths, which is a concrete example of the analytical re-
sult in Eq. (16).

Next we consider the situation in which the current
Aows perpendicular to the superlattice axis. In this case
we take the layers of Bi2Te3 to behave as ejective two-
dimensional quantum wells for electronic transport along
the wells. As a first approximation we calculate the
values of o.', o. , and y for the Bi2Te3 layers from the two-
dimensional density of electronic states, as done in Ref. 2.
That is, the electronic states are taken to be those ap-
propriate for the lowest subband of a quantum-weil sys-
tem with infinite potential barriers, and n, o, and y are
evaluated at the chemical potential (i.e., the density) for
which the figure of merit of the quasi-two-dimensional
layer is a maximum. The lattice thermal conductivity K „ph

of the quantum-weil layers is taken to be the bulk value
for Bi2Te3 (1.5 Wm ' K ') for well widths larger than
the thermal mean free path I = 10 A, and for well widths
less than 10 A it is taken to be

Kph 3 Cv VI (34)

with I =a, the well width. Here C is the heat capacity,
and v the velocity of sound. This estimate of ~„h for
small well widths is used in Ref. 2 to represent in an ap-
proximate way the increased scattering from the inter-
faces of the quantum well.

The transport coefficients of the quasi-two-dimensional
Bi2Te3 layers calculated in this way are shown in Fig. 2 as

FIG. 2. The electrical conductivity o., the electronic thermal
conductivity ~„and the thermoelectric power e of a BizTe3
quantum well as a function of the well width a calculated as de-
scribed in the text.
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FIG. 3. The thermoelectric figure of merit ZCT of superlat-
tice systems composed of quasi-two-dimensional quantum wells
of BizTe3 and barriers having the properties of bulk
Pbp 75Snp» Te as a function of ratio b /a, where a is the thick-
ness of the BizTe3 layers, and b is the thickness of the
Pbp 75Sno»Te layers for the case in which current Aows PerPen-
dicular to the superlattice growth direction. The dotted lines
indicate the figures of merit of the two bulk materials, with the
upper line corresponding to BizTe3 and the lower to
Pbo 7sSno zsTe.

functions of the well width. The decreases of the electri-
cal conductivity o and electronic thermal conductivity ~,
for a (10 A shown in Fig. 2 are due mainly to the
change of the chemical potential in well widths. The
chemical potential is evaluated at the density which gives
the largest figure of merit of the layer, and it is influenced
by the modification of the phonon thermal conductivity
for well widths a (10 A given in Eq. (34). The ther-
moelectric power e is found to increase continuously as
the width decreases.

The ZT of the superlattices is calculated in Eq. (31) by
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using the values of o., y, and o. calculated in this way for
the Bi2Te3 layers and using the bulk parameters u, y, and
o. for the Pbo75Sno25Te barriers, and the results are
shown in Fig. 3 as a function of a for several b/a. The
dotted lines correspond to the bulk BizTe3 and
Pbo 75Sno 25Te materials. In the case in which the barrier
layers have zero thickness, b/a =0, we recover the re-
sults of Hicks and Dresselhaus, which neglect the bar-
rier widths in determining ZT and which give a dramati-
cally increasing ZT for decreasing well widths. For finite
barrier thicknesses b/a, on the other hand, the figure of
merit is considerably reduced from these values. Physi-
cally, this reduction occurs because for nonzero barrier
widths thermal and electrical currents Aow along the bar-
riers as well as the wells. The thermal current through
the barrier constitutes a kind of parasitic channel with
respect to the quantum wells, and decreases ZT. For
large barrier widths and b/a &)1, ZT goes over to the
value for the bulk barrier material.

In the calculations done here ZT develops a weak max-
0

imum for well widths near 10 A. The origin of this max-
imum is the same as those for o. and ~, in Fig. 2. These
features result from the modification of the phonon
thermal conductivity given in Eq. (34) for small well
widths to account for interfacial phonon scattering. It
should be noted that this modification is a rather crude
approximation for real physical systems. We have also
done calculations in which the phonon thermal conduc-
tivity in the quantum wells is taken to be its bulk value
(I~ h= 1.5 W m ' K ') for all well widths, and in this case

0
the weak maximum does not appear for a & 10 A. Thus
ZT in the region of 10 A is sensitive to the choice of the
a. h, which is not well understood for superlattice systems.

From the results in Fig. 3 we see (i) that ZT for a com-
posite superlattice system can be increased modestly
above that of the maximum of the constituent bulk ma-
terials as a result of the two-dimensional character of the
electronic properties in one of the materials for small well
widths, and (ii) that ZT of the superlattice is substantially
less than that of the quasi-two-dimensional material with
zero barrier thicknesses for all well widths. We see that
the nonzero barrier width has a significant effect in deter-
mining ZT of superlattice systems. The precise value of

ZT for a given well width a and ratio b ja depends on the
choices of materials in the superlattice.

For clarity of comparison with previous results, the
calculations above have used infinite potential barriers for
the quasi-two-dimensional electronic properties of the
quantum-well layers in the superlattices. In realistic sys-
tems with finite potential barriers, however, for thin
enough layers electronic carrier tunneling between the
layers begins to become important. The effects on the
thermoelectric power of superlattices of such carrier tun-
neling have been studied previously. ' '" These effects
are not included in the results given here for ZT. In gen-
eral terms, we expect that such carrier tunneling will
smooth out the two-dimensional steps in the density of
states of the quantum well, and will further reduce the
figure of merit from that obtained here. See the "Note
added in proof. "

In summary, we have first given explicit results for
thermoelectric transport properties and figures of merit
of superlattices which have layers that are thick enough
that they can be characterized by bulk transport parame-
ters. We find that for transport either along or perpen-
dicular to the superlattice axis the figures of merit of such
composites are less than the maximum of those for the
two bulk Inaterials for both directions of transport.
Secondly, in the case in which the layers of one of the
materials are thin enough to show effectively two-
dimensional electronic properties, we find that the figure
of merit of the superlattice for transport perpendicular to
the superlattice axis can be enhanced to values above
those for either of the bulk systems, but that it is de-
creased below that for the two-dimensional system with
zero barrier widths due to heat and electronic transport
through the barrier layers.

Note added in proof. In subsequent work the eff'ects of
carrier tunneling on ZT have been considered. ' There
the layers of the superlattice are taken to be of the same
material with potential offsets between them.
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