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Mesoscopic mechanisms of the photovoltaic effect and microwave absorption in granular metals
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A theory for the photovoltaic current and microwave absorption in mesoscopic samples is developed.
The photovoltaic current is determined by the displacement of the center of mass of the electronic wave

function produced by inelastic electron transitions. At low frequencies the main contribution to the mi-

crowave conductivity of isolated mesoscopic samples is shown to be due to a relaxation mechanism

which resembles the Mandelstam-Leontovich sound-absorption mechanism in gases and the Pollak-

Geballe conductivity mechanism in doped semiconductors. A giant positive magnetoresistance in granu-

lar metals is predicted.

I. INTRODUCTION

The irradiation of a sample without an inversion center
by electromagnetic waves can cause a direct current How.
This is known as the photovoltaic effect. Random distri-
bution of impurities in mesoscopic samples leads to sym-
metry breaking' and to the existence of a photovoltaic
current. For the case of microwave irradiation, a theory
of this effect was given in Ref. 3, where the contribution
from direct photon absorption was taken into account.
The amplitude of the photovoltaic current Ipv found in
Ref. 3 was inversely proportional to the irradiation fre-
quency cu and negligibly small at high co. This is due to
the fact that the contribution to Ipv from transitions be-
tween electron states with different energies cancel each
other, and the effectiveness of the cancellation increases
with co. Another reason for the decreasing of Ipv with co

is that at large co transitions take place between electron
states with large inelastic broadening.

In this paper we consider a new mechanism which at
high cu leads to a frequency-independent photovoltaic
current and makes a larger contribution compared with
Ref. 3 to the current at high co, for example in the case of
laser irradiation. At low ~ this mechanism can also dom-
inate the photovoltaic current in the case of isolated
mesoscopic samples. Finally we will show that the same
mechanism can dominate the microwave absorption and
lead to a gigantic positive magnetoresistance in granular
metals.

II. PHOTOVOLTAIC CURRENT AT HIGH FREQUENCY
OF IRRADIATION

relaxation of the nonequilibrium electron distribution
created by the light leads to inelastic transitions between
states with different energies, and to shifts of the electron-
ic centers of mass in random directions. This leads to a
photovoltaic current Ipv, which Aows in a random,
sample-specific direction. In other words, a nonzero
value of Ipv arises only when nondiagonal elements of
the density matrix representing the transitions between
different energies are taken into account. This effect is
beyond the Boltzmann equation approximation. In crys-
tals with no inversion symmetry this effect was con-
sidered in Ref. 4;

To calculate the current we use the Keldysh diagram
technique, with matrix-type Green's functions

G, (r, r') G, (r, r')
G, (r, r ')= (l)

G,"(r,r'

Here G, ' ' '(r, r ') represent the advanced, retarded,
and Keldysh Green's functions, respectively.

The equation for the current density has the form

We consider the sample geometries shown in Fig. 1

with width I. , thickness L,„and length I. , and assume
that L„,L,L, ))l, where l is elastic electron mean free
path.

Using the second-order correction of the perturbation
theory for G, (r, r ') due to electron-phonon interaction,
which is given by the diagram shown in Fig. 2, we obtain
the expression for the photovoltaic current in the x direc-
tion:

Let us consider the situation when a nonequilibrium
distribution of electrons is created in metal due to light il-
lumination. In the absence of a magnetic field, the elec-
tron wave function can be chosen as real and representing
zero current. In a disordered system of finite size, the
wave functions which correspond to different energies
have centers of mass located at random positions. The

e(Vv)
Ipv = d e d e' W,, , [X,—X,.],

where

fdr v, (r)x
(4)
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(a) (b)

(c)

FIG. 2. The diagram describing G&. Solid and wavy lines
correspond to electron and phonon Green functions.

As we have mentioned, (Ipv ) =0. To estimate the
typical value of the current we calculate the variance of
the photovoltaic current,

fdede'de, de', W, , W
X

X(SX„,SX, ) .

FIG. 1. Sample geometries.

is the x coordinate of the center of mass of the electron
wave function at energy e, V is the sample volume,
v,(r)=ImG, (r, r') is the local density of states at the
point r, v, =[f v,(r)dr/V], and v=(v, ). Here the

brackets ( ) represent the averaging over random poten-
tial realizations, and 8', , is the rate of inelastic electron
transitions between states with energies e and e'. Both
electron-electron and electron-phonon scatterings con-
tribute to 8', , We neglect the mesoscopic fluctuations

7

of 8', ,

Here 6X, , =X,—X,
In the weak-scattering limit pFl &)1 (p~ is the Fermi

momentum), the correlation function of (X„X,. ) can be
calculated with the help of the diagrams in Fig. 3 which
have been used to calculate the fluctuations of the density
of states in mesoscopic metals in Ref. 5:

(X,X, ) = ( Vv) f f dr dr 'xx'Re[P, , (r, r ')

+P. ..(r, r '}'j (6)

Cooperons and diffusions P, ',.(r, r') are described by
equations'

ico+ie[U'(r) —U(r')]+D ibid, —[A(r)+A—'(r')] +I/~, .P ' (r, r')=Air —r') .
C

Here U(r) and A(r) are scalar and vector potentials, respectively.
As a result, in the absence of a magnetic field we have

(x,x,, )= y y, Re
n =1m m m =0

x x' y' z

L 2+2

(n, —m„) E, +m E, +m, E„+i(e—e')+—

m„E,„+m E,~+m, E„+i(e—e')+—

5X, ,. —
L

Go+
(9)

Here Go; =G;h/e -E„/4, and G; is the conductance

Here we introduce E„=D/L;, where L; is the size of
the sample along the i direction with i =x, y, and z, D is

the diffusion coefBcient, 6=1/vV is the level spacing,
and w, is the electron energy relaxation time. It follows

from Eq. (8) that the typical 5X, , vanishes when

~e —e'~ &&1/~„and saturates when e—' e)&1/~, at the
value

of the sample when an external voltage is applied along
the i direction. In the dielectric regime, where G„«1
and the electron wave functions are localized, the typical
distance in the x direction between the centers of mass of
two arbitrary eigenstates is of the order of L„. This is in

agreement with Eq. (9), which also gives ~x, —X, ~-L„
at Go„—1.

In this paper we consider the simplest case, in which

the laser illumination of the sample leads to overheating

of the electron subsystem with respect to the phonon.
This happens when ~, &«ph, where ~p 7 ph are the

electron-electron and electron-phonon relaxation times
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x'

FIG. 3. The diagram describing (5X,5X, ). Solid lines cor-

respond to the electron Green function, and dashed lines corre-

spond to impurity scatterings.

[1«,=(1«, )+(I/&~h)]. In this case, nonequilibrium
electrons are created with large energies and then, due to
a cascade of electron-electron scatterings, they are
transferred into the region of energy of order T* and
finally emit phonons. We assume that the phonon mean
free path is larger than the sample thickness, and that the
phonon subsystem has an equilibrium distribution func-
tion X, with the same temperature as the temperature of
the bath To. In this case the electron subsystem can be
characterized by an effective temperature T* which does
not depend on co and is governed by the energy conserva-
tion equation [T*(T*—To ) V] /w h

=Q, where Q is the
energy dissipation rate of the sample. Typically at heli-
um temperatures the overheating (T*—To) is of the or-
der of 1 per 1 W/sm .

Due to detailed balance, the electron-electron scatter-
ing does not contribute to 8', , in this case, and we have
the standard expression for the electron-phonon-
scattering integral

n, (1——n, )[1+N, , ]J, (10)

Here Ipv means averaging over the oscillation period
of the external field, y is the constant of order of unity,
and r,(T ) is the relaxation time at the temperature T".
Equation (11)holds, provided L,=+Dr, &)L, L, L, .

In typical situations the photovoltaic current [Eq. (11)]
turns out to be smaller than measured in ' equilibrium
persistent current. We think, however, that it can be ob-
served experimentally.

In a bulk isolated mesoscopic sample the total current
through the sample is zero, but the magnetic moment
generated by the local photovoltaic current densities
should be of the same order M -L,L~ t/ ( Ipv ) as of the
ring geometry case Fig. 1(b). Equation (11) does not de-
pend on co (while resonant photon absorption makes a
decreasing contribution to Ipv with increasing co), and
makes the main contribution to Ipv at high frequencies
co &)T*. The physical reason for the m independence of
Eq. (11) is that it j.s determined by electron-phonon relax-

where z... is the mean electron transition time from e to
e' due to electron-phonon interaction. As a result, we
can estimate the variance of the photovoltaic current, for
example, for the ring geometry shown in Fig. 1(b),

1/2

(11)
E, r,(T*)

ation processes with a typical energy transfer of the order
of T

The magnetic-field dependence of the photovoltaic
current exhibits the usual random oscillations for rneso-
scopic samples, ' which can be calculated using Eq. (7).
The characteristic period of these oscillations, for exam-
ple, in the case of the ring geometry Fig. 1(b) is

H, -@o/L, (@o is the flux quantum). We assume that
the magnetic field is applied in the z direction.

At low frequencies we can distinguish two cases. (a)
The mesoscopic part of a sample is connected to the bulk
by leads which are used to measure the photovoltaic
current. The oscillating electric field is applied between
the leads as in Fig. 1(a). In this case, the theory
developed in Ref. 3 accounts for the dominant contribu-
tion to the photovoltaic current. (b) The sample is electri-
cally isolated [Fig. 1(b)], and the photovoltaic current is
measured by measuring the magnetic moment associated
with the photovoltaic current, similar to Refs. 6 and 7.
In this case, the mechanism presented above will dom-
inate the current even at low frequencies. The same situ-
ation will also arise in case (a), when the oscillating elec-
tric field is applied perpendicular to the direction between
the leads to the direction of the photovoltaic current. In
Sec. III we consider this situation in more detail.

III. THE MICRO%'AVE ABSORPTION
AND PHOTOVOLTAIC CURRENT

AT I.OW FREQUENCY

We start with a discussion of microwave absorption in
a system of isolated disordered metallic grains at low
temperature. (We will assume, however, that b, ((1/r, ).
This situation has been considered in many papers (see,
for example, Refs. 8 and 9), which concluded that the
dominant mechanism for microwave absorption involves
resonant transitions between electron levels. In the limit
b, )&1/r„ this leads to the classical expression for the
conductivity rr, &=co /0~ where o D =e vD is the Drude2 2

conductivity. The contribution from this mechanism was
calculated with the help of the Kubo formula, which cor-
responds to resonance transitions between one-particle
electron states in an oscillating electric field.

We show below, however, that the relaxation mecha-
nism can dominate the microwave absorption in
mesoscopic samples. This mechanism resembles the
Mandelstam-Leontovich sound-absorption mechanism
and second viscosity in gases, ' and the Pollak-Geballe
microwave absorption mechanism in doped semiconduc-
tors. "

A qualitative picture of the mechanism is as follows.
The density of states v(e) of an isolated disordered metal-
lic sample exhibits sample-specific fIuctuations as a func-
tion of energy. These fluctuations are sensitive to the
external electric field. This is because different electron
energy levels are moved by external field in random direc-
tions. As a result, at low co the density of states oscillates
in time with the same frequency as the external electric
field. The population of the energy levels in this case adi-
abatically follows their motion. As a result, a nonequili-
brium distribution of electrons is created. Relaxation of
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the nonequilibrium distribution due to inelastic processes
leads to entropy production and to the absorption of the
energy from the external field.

In this case the equation for the distribution function
of electrons is

B,5f ( e, t ) = &f( E—, t ) /r,

+B,n(e, t)f '
de'B, v;(U(t)) . (12)

Here v,(U(t}) is the density of states at time t, and U(t)
is the voltage applied in the z direction:
5f (e, t)=f(e, t) f, (—e, t), f (e, t)=v,(U(t))n(e, t), and

f (e, t),q=v, (U(t))nF(e), where nF(e) is the equilibrium
Fermi distribution function. The second term in Eq. (12)
describes the creation of a nonequilibrium distribution of
electrons due to the motion of the energy levels in the

external electric field. This equation neglects the possible
nonuniformity of f as a function of r, and holds if
E, »(I/r, ), co. It can be derived by using Keldysh dia-
gram technique and calculating the diagram in Fig. 2.
We assume that the electric field is parallel to the z direc-
tion.

It is important to note that the inelastic transitions
that relax the nonequilibrium distribution function corre-
spond to the energy transfer of the order of e itself, in
spite of the fact that the electron energy levels are shifted
by the external electric field only by small amounts. This
is because (r, , ) -(e e'), a—nd transitions with small
~e e'~ —have small probabilities. That is why we can use
the relaxation-time approximation in Eq. (12).

As a result, the conductance of the sample averaged
over random potential configurations has the form

6) V~

co ~ To+v f dE(B~np(6)) f f de)dE2r}Ur)U (v (U)v (U') )U,
E

(13)

Taking into account the penetration of the electric field
into the sample only up to the screening length ro, and
calculating the correlation function (BUv, (U)BUv, (U) )

2

with the help of the diagrams in Fig. 3, we obtain

(co rq) e'~ ro

1+(mi, ) &Goz L,
(14)

It is important to note that at low co the mechanism
considered above makes a larger contribution to G„ than
the classical one o,~(L„LY /L, ), provided

(EFr, )

r 2
rob »1.

pFL L,
(15)

6 (0)
G (H)= 1+

1+r,+E,„E,
0

(16)

Here 4 is the magnetic Aux through the sample in the z
direction. Equation (16) predicts that the characteristic
magnetic field required to reduce G by a factor 2 is of

As we have mentioned, Eqs. (14) and (15) hold when

1/w, ))A. In the opposite limit the calculation of G„
must be based on the Wigner-Dyson ensemble theory for
the electron-energy-level distribution. ' In this case, the
mechanism considered above also dominates the mi-
crowave absorption at low m. However, the quantitative
calculation of G in this case requires knowledge of
X,—X,. and the picture of the electric field screening in

the situation when 1/r, (( e —e'~ ((b.. In this region
the diagrammatic technique employed above does not
work.

It follows from Eqs. (13) and (7) that 6 exhibits a
gigantic positive magneto resistance which is due to
magnetic-field suppression of the mesoscopic fluctuations
density of states (see Refs. 5 and 12). For 4& ((4&o we ob-

tain

Q (,Ipv ) =—Q, (co)~,
To Go„rb,

(17)

which is larger than the corresponding expression for res-
onance absorption. Here Q~(co)=6 U (t), and we as-

sume that the external ac field is applied along the z
direction. Equation (17) gives (v/(Ip„)-to, which is

valid at arbitrary small co.

There are, however, cases when at asymptotically low

frequencies Q(Ipv ) —~co~. This occurs when the exter-
nal electric potential cannot be represented in the form
U(r, t)=F(r)G(t), where F and G are arbitrary func-
tions. The experimental realization of this situation can
be achieved, for example, by a disordered metallic ring

I

the order of H, . Note that this corresponds to the situa-

tion where the Aux through the sample is much less than
1. Furthermore for the mesoscopic ring case the conduc-
tance is a periodic function of a half-Aux quantum, with

the relative amplitude of the order of 1. Even if
(Ezr, ) (roh /p~L„L ) ((1 and the classical contribution
dominates the value of G„, the magnetoresistance can
still be determined by the effect considered above, provid-

ed (EFr, ) (hro/pFL„L ) Go, »1. We get this estimate

by comparing Eq. (16) with the weak-localization correc-
tions to o.a obtained in Ref. 12.

The sign of the magnetoresistance G„(H) considered

above is the same as the sign of the weak-localization
corrections to o.

D corresponding to the negative magne-

toresistance. ' We would like to mention, however, that
the nature of the giant magnetoresistance considered
above is different from the weak-localization corrections,
which are small at p~l &&1. The other difference is that

the sign of the magnetoresistance considered above does

not depend on the presence of spin-orbit scattering.
I.et us now turn to the case of the photovoltaic current.

As we have discussed above, the inelastic electron transi-

tions correspond to displacements of the center of mass

of electron wave functions. As a result, we have
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N= QAz (19)

Here we assume that the width of the gates in the Fig.
1(c) is of the order of L„,L; «LT. In the case when the
differences between the initial phases of U, and U2 is of
the order of m. and U, —U2 —Uo we estimate

[Fig. 1(c)] which is separated from the gates by a dielec-
tric, when voltages on the gates U, (t), and U2(t) are arbi-
trary periodical functions with the same period and
different initial phases. The requirement for the dc pho-
tovoltaic current not to be zero in this case is that the
area A U U which is enclosed by the path in

configuration space [U, (t), Uz(t)I is not zero. Solving
Eq. (12), we get

(18)

Here Ipv is the current along the ring averaged over a
period

2 U U
—( Uo(t) ) . In the case of disordered metallic

samples from Eq. (19) we have X«1. However, we
think that in the case of semiconductor ballistic quantum
dots it is possible to have X-1.

The origin of the current calculated above [Eq. (18)] is
similar to that in experiments on the electron pumping in
granular metals. '

The sensitivity of this effect to the magnetic field is the
. same as stated above [Eq. (16)].
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