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Second-order optical susceptibility of biased quantum wells in the interband regime
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We develop a theory within the effective-mass approximation of the second-order susceptibility of a

quantum well subject to an applied electric field. %'e show that close to the midgap of the structure it is

possible within that approximation to reduce the normally derived triple sums over subbands to a simple

sum over all the optically allowed transitions. We have demonstrated that in realistic structures,
higher-energy transitions play a strong role for quantitative results. This strong inQuence of the higher-

energy transitions on the second-order susceptibility has the consequence that it is not generally possible

to define a quantum-well susceptibility independent of the structure in which the well is inserted. Nu-

merical results indicate that the quantum wells should not lead to spectacular enhancements of the
second-harmonic-generation susceptibility.

INTRODUCTION

In an ever increasing body of work, the nonlinear prop-
erties of intersubband transitions (ISBT's) in quantum
wells (QW's) have been explored. ' Strong second-order
optical susceptibilities have shown, due to large asym-
metry of bound states within a given band, huge optical
dipole moments and double resonance effects. Inversion
symmetry is usually broken by using asymmetric coupled
quantum wells, growing asymmetric composition gra-
dients of Al (Ref. 7), or biasing a symmetric QW electri-
cally. Previous works have concentrated on processes
whose energies are limited by the energy difference be-
tween two subbands in the conduction band, i.e., mostly
dealing with midinfrared radiations. Therefore, the em-
phasis has recently been put on phenomena that should
permit us to achieve frequency conversion in a wider
range of frequencies, especially in the near infrared re-
gion where optical integration could be really completed.
This means considering band-to-band transitions. In his
pioneering work, Khurgin suggested that large second-
order susceptibility in the near infrared could be obtained
in asymmetric QW's by using virtual ISBT's. Among
the different sources of asymmetry, electric-field biasing
of quantum wells is of particular interest both from a fun-
damental and application point of view. As far as the
fundamental aspects are concerned, it is a way to study
the inhuence of a growing asymmetry. For applications,
the possibility to monitor the second-harmonic-
generation coe@cient with a bias opens the way to new
devices, such as, e.g., electrically controlled quasiphase
match.

The purposes of this paper are the following. We shall
present a compact and very illustrative formulation of the
second-order susceptibility near midband gap in asym-
metric quantum wells. In particular, we will use a sum
rule to get rid of the unnecessary intersubband transi-
tions, which complexify the work of Khurgin. The obli-
gation of having at least two subbands to obtain second-
order effects is, for instance, hfted. Moreover, the contri-
bution of levels in the continuum above the barriers,

which was neglected in the previous works, ' " is
shown to significantly reduce the nonlinearity relative to
the contribution of confined levels. The analysis of our
simple expression will give us a way to study the
inQuence of different parameters on second-harmonic-
generation coef6cients and, thus, optimize the structures.

THEORY

We shall focus on a two-band Kane semiconductor
Inodel. ' We shall not consider here light holes since
their calculated contribution happens to be negligible.
This stems from the fact that the ratio of the light hole
and electron effective masses is very close to the
conduction- to valence-band offset ratio. ' Besides, in
the frame of the two-band approximation, the transitions
between light holes and heavy holes have vanishing opti-
cal matrix elements so we shall not consider those in the
following. We also neglect excitonic effects. This is
justified considering that the excitonic contribution to the
nonlinearity is narrowly peaked" around excitonic reso-
nances, while for applications some detuning is necessary
to avoid linear absorption at the fundamental and
second-harmonic frequencies.

The wave functions of the bound states in a QW for
such a two-band system are then

~e„,kll e (z)u, (r)e

where u, and u„are the periodic parts of the Bloch func-
tions in the conduction and valence bands, respectively,
at k =0, and k~~ and r~~ are the wave vector and the posi-

-tion in the xy plane, respectively.
The electron e„(z) and heavy hole hh (z) envelope

wave functions are solutions of the one-dimensional
Schrodinger equations in the growth direction z:

H, e„(z)=e„e„(z),
H„„hh (z) =hh hh (z),
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where e„(respectively, hh ) is the transverse energy of
the nth conduction subband (respectively, mth valence
subband) and the z parts of the Hamiltonian are

gy has been taken at the top of the heavy-hole valence
band.

Let us write

H, = + V, (z),Pz

2m

PzH„„= +Vi(z) .
2m hh

Here V, (z) [respectively, Vh(z)] represents the profile of
the conduction-band potential (respectively, valence-band
potential). The eigenenergies of the Schrodinger equation
in the effective-mass Hamiltonian approximation are
given by

fico;~(k~~) =E, EJ—

as the difference between the energies of the ith and jth
subband states of whatever bands are concerned. We take
the dipolar interaction Hamiltonian as

WD(t) = E re'"'+c. c.
2

The electronic second-order susceptibility g;~i, (2co) of the
material is defined by

E(e„,k~~) =e„+ +E
2me

Ak
E(hh, kii)

= —hh
2m hh

(4)

where m, and mhh are the conduction and heavy-hole
band effective masses and Eg the band gap of the bulk
well material; the second terms represent the kinetic en-
ergies of motion parallel to the interfaces. The zero ener-

I

P;(2co) =so g yj&(2co)E E&, .

jk

where P;(2co) is the second-harmonic polarization along
the i direction, co is the vacuum permittivity, and E and
Ek are components of two electric fields at frequency co

along the j and k directions, respectively.
The second-order susceptibility of such a two-band sys-

tem can be derived by using the density-matrix formalism
as14, 15

3

X;,~(2~)=-
EOV „ i (2fico+ fico „ifiy „)(fico—+fico&„ifty &„)—

(Ni N„)—
(N Ni)+ j~k- ,(2fico+fico „ifiy „)(fico+—fico i ifiy —i)

where r„ is the position matrix element for direction i, XI is the lth subband state occupation, and the different line
broadenings y I„have been included.

Keeping the gauge, and allocating the levels between the two bands, one can compute the second-order susceptibility
for the bulk

3

y; &(2co)= — QN, (k)r„', [(rj, rj, )r,",+j~k]—
c,oV

X
(

(2fico fico,„ifiy )(fico —%co,„—iii—iy )

1

(2fico+ iiico,„—i stiiy )(fico+ fico,„ifiy)—
where the index c is for the electrons of the conduction band and the index U for the heavy holes of the valence band. In
this approach, the second-order susceptibility stems from the different symmetry of the conduction and valence Bloch
states, i.e., the differences between rvv and rcc terms.

The result is difFerent in QW s. If we apply the result of (8) to a quantum well, taking the scalar potential interaction
and considering the conduction band empty and the valence band completely filled, we obtain

3

XN„(k„)
so V q

" ",„(2fico+fico, i fiy, )(f—+icof„icoi fiy, „) (2fi—co+fico, i fiy, )( %co+fico„—i fiy „,)—+

i j k i j k
rmv rcm rvc rvm rmc rcv+ +j~k,(2fico+ fico„ifiy „)(fico+—fico„, i fiy „,) (2fico+ f—ico, i fiy, )(fico+ —fico,„—iA'y„)

(10)

where N„(k~~ ) =2 is the number of electrons in each level of the valence band. Note that now the indices c and u vary in
the conduction and valence band, respectively, while m varies in both bands.

Assuming that the light propagates in the y direction and using the polarization selection rules, we can easily derive
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3

g„,„(2co)=+ N, (k )
s V ' ", (2%co f—ico, , —ifiy )(fico Ac—o„—i Ay )

11' 7

cv'~v'v ~vc

(2A'co —A'co,„—i A'y )(A'co —%co„—i Ay )

where we have neglected the nonresonant terins [that is the (co+co„) and (2co+co„) terms] and have considered the
same linewidth y for the different transitions. The y' ' tensor has also y, -type components, but we do not consider
them because they are not resonant at midgap.

We now explicitly consider the midgap frequency region. For Aco=E, we can perform a 6rst-order development in
power of ~„.and co„„,respectively, in the two parentheses, according to cu„=co„+su„,=co, , +m„and using the fact
that co, co„»co„,co, ,

A swap of the indices gives the following expression:

x,„p„N,(kii)
y„,„(2co)= +

soV i, ) „, (2Aco —A'co„if—iy )(A'co —%co„ifiy—)

where

x,„p„N,(kii)
(2A'co —fico,„iA—y )(A'co —A'co„i A—y )

(12)

Pp„=gz. ..x„.=gz„,,x...= (hh„ lz le, )
m pcog

(13)

P is the volume valence to conduction-band momentum matrix element, and here we have again applied the effective-
mass approximation, so that the matrix elements are written as the product of envelope functions and the Bloch bulk
wave functions at the center of the Brillouin zone. Further simplification has been achieved by using the completeness
of each of the two-band envelope wave-function bases. Thus, the two terms in the parentheses of Eq. (12) are equal so
that the optical second-order susceptibility is equal to zero (Ref. 3) to the first order in co„and co„„.

One may now continue the development to the second order and obtain

3

y„,„(2co)= g Ni (k~~)
EOV i, „, (2%co fico, „ifiy )—(fico —fico... i A—y )—

(2%co fico,„ifiy )(fico—Aco„——i Ay )— (14)

where

v. ..=yz„.x„A~„,= —
& 1 b. IP'le, , ),P I, A

mp~ m
(15)

where from now on the sum is only over transitions be-
tween subband extrema, i.e.,

fico; =A'co;~. (kii=0) .
Pv„=gz„,x„fico„,= +

m co
(hh, IP'le, ),

p g mv'

3P2g,„(2co)=
irsom ()L (%co) (%cod )

Xg iA'(e, lhh, ) (hh, lP'le, )

A'co —Ace,„—iA'y
Xln

2%co —Ace„—i fiy
(16)

have been computed using the hermiticity of H, (respec-
tively, Hhh), the commutator of H, and z (respectively,
Hhh and z), and the sum rules over the two bases. Here
we have assumed that the matrix elements are indepen-
dent of the wave vector k11, as are the energy separations
between subbands. We then perform the integration,
keeping only the terms that are resonant near midgap

The terms no longer cancel each other. The formula-
tion of Eq. (16) avoids a triple sum in Eq. (14) and assures
a reliable convergence of a reasonable number of (mainly
continuum) levels in the numerical calculations. In our
formulation, the need for asymmetry is manifest in the
second matrix element (hh, lP'le, ), which would be zero
for allowed interband transitions in the symmetric case.
According to this expression, the second-order suscepti-
bility near midgap has its physical origin in the transition
between a ground electron of the conduction band and a
ground heavy hole of the valence band. Therefore, on the
contrary to Khurgin, who uses virtual transitions within
one band, a QW with only one subband in each band can
be of use. The sum rules effectively include all virtual
transitions, also to the continuum states.

If we consider a two-band model with only one sub-
band in each band contributing to the second-order sus-
ceptibility, we derive the very simple expression
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g,„(2'�)= P 'A

m Eom oL (A'co ) ( A'ui )

Ace —Ace, hh
—iAy

Xln
2AQ) @CO hh igp

(17)

RESULTS

In order to obtain quantitative results, we first need the
wave functions in order to evaluate the relevant matrix
elements. These are found by solving the Schrodinger
Eqs. (2) and (3) numerically for a potential representing a
single quantum well between two large barriers subjected
to an external electric field I'. We are interested in study-
ing the effect of the QW on the nonlinear susceptibility.
As we shall see, the logarithmic dependence on frequency
in expression (16) is quite weak, so transitions between
states above the well give an important contribution to
the susceptibility even for frequencies close to and below
the lowest transition co, hh /2. Rigorously speaking, this

1 1

means that the polarization depends not only on the mell
but on the mhole structure. On the other side, under ap-
plied bias, the barriers contribute an effective second-
order nonlinearity, which comes from odd-order non-
linear coefficients (the adopted model does not take into
account the quadratic susceptibility of the bulk). To dis-
tinguish between the two contributions and to obtain a
convenient operational definition of the susceptibility due
only to the quantum well, we recall that the physically
meaningful entity, from a microscopical point of view, is
the total induced dipole. The polarization is then ob-
tained by dividing by the interaction volume, which in
our case is given by the product between the area of the
sample and the total length of the system well barriers (L
in the preceding expressions). To compare the contribu-
tions of the well and of the box, we assume that the in-
duced dipole per unit area Ds can be written as
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bulk. To overcome this difficulty, we shall subtract from
the total susceptibility of Eq. (16) the same expression
calculated in a big box without the well. We emphasize
that the y', „' (QW) so defined is the appropriate one in a
structure composed of many quantum wells, where each
well occupies a minimum length L.

We now show results for symmetric wells of GaAs and
barriers of Alo 4Gao 6As, for which we have taken the
conduction-band offset AE, to be 334 meV and the
valence-band offset AE, to be 167 meV. The electron and
heavy-hole effective masses are taken equal to 0.067 and

D D Qw+PBULKL Box
S S

-20 I

600
I

700 900 1000

where P " and L are, respectively, the polarization
contributed by the barriers and their total length. We
again stress that, since the well is a two-dimensional sys-
tem, its contribution to the polarization is best expressed
by the dipole per unit area Ds, while the same is not
true for the bulk. An effective second-order susceptibility
for the well g' ' (QW) can then be defined, following the
definition (7), by dividing DsO by the product of the elec-
tric fields, by co, and by an interaction length L, which is
the sum of the well width and the length of barrier, which
is necessary for the isolation of the well. We assume L to
be given by L /f, where L is the well thickness and f
is a filling factor, taken equal to —,

' and independent of L
We, therefore, define y' ' (QW) as

40

30- (c)
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(DQW)
x.",' ( Q (19)

This quantity differs from what is directly calculated
from Eq. (16) for the contribution P L due to the

FICx. 1. (a) Absolute value of the calculated second-order sus-
ceptibility for second-harmonic generation vs pump frequency
with and without a 3-nm quantum mell in a 20 kV/cm field per-
pendicular to the QW interfaces; (b) the susceptibility contribu-
tion of the quantum well; (c) the susceptibility contribution of
the quantum well using Eq. (17).



13 196 FIORE, RQSENCHER, VINTER, WEILL, AND BERGER

40 - Well width
~ ~ ~ ~ e 3 nfl—10 nm

20-
E

40,

30

0
10

-20-

500
I

700 800 900

Frequency (meV)

FIG. 2. Calculated quantum-well second-order susceptibili-
ties (absolute value) vs pump frequency for two well widths.
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FIG. 3. Maximum second-order susceptibility (absolute
value) for a 3-nm quantum well vs applied electric field com-
pared with field-dependent part of the bulk susceptibility.

0.377 times the free-electron mass, respectively. All the
line broadenings are taken equal: y =3 meV.

In Fig. 1 we show results for a 3-nm quantum well in
an applied field of 20 kV/cm. We have used 50 electron
and 50 heavy-hole subbands. In accordance with the
definition Eq. (19), the length I. entering Eq. (16) has
been taken as I. /f. It can be seen in Fig. 1(a) that the
numerous continuum transitions contribute a large back-
ground volume polarization. In Fig. 1(b), the back-
ground has been subtracted. It can be seen that a peak
susceptibility of about 20 pm/V is found at the frequency
813 meV corresponding to half the fundamental hh1-e1
transition. If we use the simple Eq. (17) involving only
the fundamental well levels, we obtain the result shown in
Fig. 1(c). Comparing to the many-subband result, we ob-
serve that the transitions to and from continuum sub-
bands interfere destructively with the fundamental transi-
tion and reduce the peak susceptibility. The negative
well susceptibilities above the peak are an artifact of our
definition of the y' ~ (QW) as the difference between the
absolute values of the y' ' with and without well. The
spurious peaks in the high-frequency part of the spectra
are a consequence of the artificial quantization of the
continuum levels due to the finite box length.

If we increase well width, we obtain typical results as
displayed in Fig. 2. The 10-nm well contains three bound
electron levels, which give rise to three peaks and a more
complicated spectral dependence. As a function of well
width, the peak susceptibilities do not show a simple
dependence but remain of the same order of magnitude
between 3 and 20 nm.

Finally, if we study the field dependence of the suscep-
tibility peak, we find as expected the linear relation
shown in Fig. 3. Our model in which we assume all ma-
trix elements independent of k~~ yields a vanishing polari-
zability if the applied field is zero. On the other hand, we
can use our model to estimate the field-dependent part of
that susceptibility from the results without well. If we
take the peak susceptibility corresponding to the gap of
Alo 4Gao 6As seen on Fig. 1(a), we find the field depen-
dence of the bulk susceptibility shown in Fig. 3. The
same approximately linear increase as in the case of the
quantum well is found with the same order of magnitude
susceptibility.

CONCLUSION

We have developed a theory within the effective-mass
approximation of the second-order susceptibility of a
quantum well subject to an applied electric field. We
have shown that close to the midgap of the structure, it is
possible within that approximation to reduce the nor-
mally derived triple sums over subbands to a sum over all
the optically allowed transitions. This not only reduces
the number of calculations to perform, but also assures a
much better convergence rate with increasing number of
subbands taken into account. Moreover, this sum rule al-
lows us to get rid of the unnecessary intersubband transi-
tions, which complexify the work of Khurgin.

For very deep wells, our expression (17) only involving
the ground subbands is very compact and easy to study.
On the other hand, we have demonstrated that in reah'stic
structures higher transitions play a strong role for quanti-
tative results. It, therefore, seems that models as those of
Ref. 9 in which only three subband levels are included
and in which the sum rule (13) is not used lead to errone-
ous results.

We have pointed out that the strong inhuence of the
higher-energy transitions on the second-order susceptibil-
ity has the consequence that it is not generally possible to
define a quantum-we11 susceptibility independent of the
structure in which the well is inserted. On the other
hand, the results obtained by our operational definition
compared with the field-dependent part of the bulk sus-
ceptibility indicate that the quantum wells should not
lead to spectacular enhancements of the second-
harmonic-generation susceptibility.

It has been recently argued"' that the y' ' tensor
should have a nonvanishing (zzz ) component due to
light-hole —electron virtual transitions. However, away
from exciton resonances, an expression analogous to (16)
can be derived for the y,'„'. As it is easily seen, ' the
product (e, ~hh„) (hh„~P'~e, ) vanishes if the product be-
tween the effective mass and the well potential profile is
equal for electrons and holes. Since this is almost the
case for electrons and light holes, this cancellation effect
makes the light holes contribution to the y' ' negligible.
We, therefore, expect the y,'„' value to be negligible rela-
tive to the calculated g', ' values.
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