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An eight-band k-p model is developed for zinc-blende semiconductor alloys that exhibit spontaneous
CuPt ordering. Energy dispersions and effective masses are calculated analytically for the conduction
band and valence band as a function of the degree of ordering. All the effective-mass tensors are found
to be diagonal and the energy dispersions are ellipsoidal to terms quadratic in the wave vector when the
axis of quantization (the z direction) is chosen along the ordering direction. The change of effective
masses is found to satisfy a sum rule when ordering is weak. Numerical results are given for the ordered
GalnP, alloy. We find that, as the order parameter increases, along the ordering direction, m is un-
changed for the heavy-hole band, increases for the light-hole band, and decreases for the spin-orbit
split-off band. In the plane perpendicular to the ordering direction, m, for the heavy- and light-hole
bands decreases, whereas it increases for the split-off band. For the conduction band, both m and m,

decrease.

I. INTRODUCTION

Many semiconductor alloys have been found to form
ordered structures spontaneously, from which interesting
physical properties as well as potential device applica-
tions have emerged.! The GalnP, alloy is probably one
of the most extensively studied systems. Theoretically,
band structures of ordered semiconductors (very short-
period superlattices) have been studied for many years.
Most previous work has concentrated on the band edge
states.!~3 An interpolation method has been proposed for
obtaining the electronic states of a partially ordered semi-
conductor from those of the fully disordered alloy and
the perfectly ordered superlattice.* The conduction-band
energy dispersion, as well as effective masses, of a partial-
ly ordered CuPt alloy have been calculated by a
simplified theory.’ In this theory, the effect of ordering
on the conduction band was treated by a two-level model
in which only the interaction between the conduction-
band states near the Brillouin-zone center and states near
the L point was considered. This theory predicted that
the conduction-band effective mass always increases due
to the ordering effect, as L-point effective masses are gen-
erally believed to be larger than that of the I" point. On
the other hand, experimentally, the conduction-band
effective mass in a partially ordered GalnP, crystal has
been found to be slightly reduced from its disordered
value,® in contrast to the theory of Ref. 5. A possible
reason for the disagreement is the omission of interaction
with the valence band. Roughly speaking, due to the
ordering-induced band-gap reduction, the conduction-
band effective mass is expected to be reduced. Thus, to
be able to predict the change of the conduction-band
effective mass correctly, the contribution of the valence
band has to be considered. Moreover, the changes of the
valence-band effective masses due to ordering have not
been studied yet, and are important in understanding
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various experimental results, such as magnetolumines-
cence,’ the band structure of disorder-order-disorder sys-
tems,® and excitonic properties.

In this paper, we develop an eight-band (two conduc-
tion bands and six valence bands) k-p model for calculat-
ing the band structure and effective masses in a CuPt-
ordered alloy. The effects of the folded bands® can be in-
corporated into the current results perturbatively if they
are indeed significant, but are ignored in this paper. The
theory is applied to the GalnP,-type alloy, which has a
relatively large band gap, so a renormalization procedure
is employed to decouple the conduction and valence
bands. Then both conduction- and valence-band Hamil-
tonians are solved analytically. All the effective-mass
tensors are found to be diagonal, and the energy disper-
sions are ellipsoidal to terms quadratic in the wave vector
when the axis of quantization is chosen along the order-
ing direction. The effective masses are calculated numeri-
cally as a function of the order parameter, and nonpara-
bolicity of the valence-band dispersions is examined.
This paper is organized as follows. In Sec. II, we give a
brief discussion of the band-edge states. Section III is our
major effort, where we present the electronic states at
k0. In Sec. IV, we discuss the physical processes in-
volved in the results, and the possible effects of the folded
bands. Section V is a summary of this work. An Appen-
dix is attached which gives details of the derivations.

II. BAND-EDGE STATES OF ORDERED GalnP,

The energy levels of a perfectly CuPt-ordered GalnP,,
(GaP),/(InP), [111] superlattice have been obtained at the
Brillouin-zone center by Wei and Zunger’ from first-
principles calculations. It was found that the results of
the first-principles calculation for the valence-band max-
imum can be described by a perturbation model®?
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E,=Ac/3,
Ej3=—3(Ag+Acp/3) (1)
i%[(Ao‘*‘ACF)Z"%AoACF]I/2 ’

where A, is the spin-orbit splitting of the disordered
GalnP, and Ay is the crystal-field splitting of the heavy-
and light-hole bands in the absence of spin-orbit cou-
pling. E, and E, ; represent the heavy-hole, light-hole,
and split-off bands, respectively, with strong mixing
among them due to CuPt ordering. The energy reference
is the top of the valence band of the disordered GalnP,,
and the energy toward the conduction band is chosen to
be positive. For perfectly ordered GalnP,, by fitting the
calculated results to Eq. (1), Ay and A were found to be
105 and 200 meV,? respectively. The corresponding
band-gap reduction was found to be 320 meV.2

On the other hand, it has been shown that® purely from
the point of view of symmetry, the Hamiltonian of or-
dered GalnP, has the same symmetry as that of a cubic
crystal subjected to a [111] uniaxial stress. Thus, by em-
ploying the theory for strain,!® the perturbation part of
the Hamiltonian for CuPt-ordered GalnP, can be written
more generally as follows:

h.=a, , (2)
hy=a,+d[(L,L,+L,L,)+c.p.], (3)
hy=a,(L-0)+d,[(Lyo,+L,0,)+c.p.], 4)

where L is the angular momentum operator, o is the
Pauli matrix vector, and c.p. denotes cyclic permutation
with respect to the indices x, y, and z. The quantity a, is
a constant which represents the absolute shift of the con-
duction band, h; describes the variation of the valence
band without changing spin-orbit coupling, and 4, de-
scribes the change in spin-orbit coupling. The parame-
ters a; and d;, in Egs. (2)-(4) are functions of the order-
ing parameter 1 (Ref. 4) which varies from O (fully disor-
dered) to 1 (perfectly ordered). According to the theory
of Ref. 4, the leading term of the 7 dependence is ? for
these parameters. The meanings of constants a;, a,, d,
and d, can be seen clearly from the solutions of Egs. (3)
and (4) in a Luttinger-Kohn-type basis:!!

e, =a—d ,
e;3=+a+a')—LA—d) (5)
+1[(Ag+d+a —a’)*+8d"*]'?,

where a =a;+a,, a'=a,—2a,, d=d,+2d,, and d’
=d,—d,. Without considering the rhombohedral dis-
tortion (associated with quantities d; and d,), the heavy-
and light-hole bands are shifted by an amount @ =a,; +a,
and the split-off band is shifted by a’=a;—2a,, which is
equivalent to increasing the spin-orbit splitting by 3a,.
As in the case of the strain problem,!® the change in
spin-orbit coupling due to the ordering is small according
to Wei and Zunger’s calculation,? since A, in Eq. (1) is
very close to the spin-orbit splitting of 103 meV obtained
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experimentally for the disordered GalnP,.'? Ignoring the
small quantities a, and d,, we can simplify Eq. (5) to

elzal""dl
(6)

ey3=a;—HAg—d)EL[(A+d,)?+8d2 ]2 .

1
2
Except for a, Eq. (6) is the same as Eq. (1) with the sub-
stitution d; = —Acg/3. The quantity a, represents a rig-
id shift of the valence band due to the interaction with
other bands. The quantity d; describes the effect of
rhombohedral distortion on the valence bands. If
Ay>>d |, the heavy- and light-hole splitting can be shown
as e, =e;—e,=2|d,|. In the first-principles calcula-
tion,” a; has been included in the band-gap reduction.
The total change in band gap is AE, =a.—a; +d,. Since
many experimental results'> have shown that the heavy-
hole-like state e, is the topmost valence band, we know
that d, <0. As the band-gap reduction is larger than
|d,|, we know that a,—a,; <0 as well. Thus, the total
band-gap reduction is |a, —a,;|+|d,|. Furthermore, due
to the repulsion from the folded L-point conduction
band,? the conduction-band minimum of the ordered
GalnP, is lower than that of the disordered alloy, that is
a. <0. However, the shift of the valence-band maximum
is a; —d, and the sign of this shift is yet undetermined
either from experimental studies or theoretical calcula-
tions. If a; >0, the shift is upward and we have a type-I
band offset for disorder-order-disorder quantum-well
structures; if a; <0 and |a1f> |d1|, we have a type-II
band offset.>’ Because of d; <0, the ordering effect is
equivalent to that of a [111] tensile stress in terms of sym-
metry.

Note that even though the parameters a; and d; in the
Hamiltonians have a 7%? dependence, due to interband
coupling, the energy level will not have a linear depen-
dence on 7? in general. For instance, E, ; given by Eq.
(1) does not obey the 5* dependence, as pointed out in
Ref. 3. Thus the interpolation theory of Ref. 4 should
only be applied to parameters in the Hamiltonians. As
can be seen in Sec. III, the conduction-band and heavy-
hole energy dispersions follow the % dependence, which
is due to weak interband coupling, so that the energy lev-
els are proportional to a; and d; as a result of a first-order
perturbation. On the other hand, the light-hole and
split-off band dispersions show strong nonlinearity on 7>
due to strong interband coupling.

III. ENERGY DISPERSIONS AND EFFECTIVE
MASSES OF ORDERED GalnP,

The next step is to calculate the energy dispersions
near k =0 and effective masses using a k-p perturbative
approach. We will treat both disordered and ordered
GalnP, in an eight-band model.

The k-p Hamiltonian for the disordered GalnP, can be
directly taken from a previous publication by one of the
authors (Zhang'®) for zinc-blende structures, but the
effect due to the lack of inversion symmetry has been ig-
nored for simplicity as usual. The Hamiltonian has the
following form:
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H, H,,

Hdis= H:- H
P

, v)

v

where H, and H, are 2X2 (diagonal) and 6X 6 matrices
for the conduction and valence bands, respectively, with
the interaction with the higher bands accounted for by
renormalization. Hy , describes the coupling between
the conduction and valence bands. The matrix elements
of Eq. (7) are given in the Appendix [Egs. (A1) and (A2)].
For ordered GalnP,, adding the matrix forms of Eqgs.
(2)-(4) to Eq. (7) as perturbations, the Hamiltonian is

h, 0

Hord:Hdis+ 0 hu

, (8)

where h,=h,+h,. In Eq. (8), the change in the renor-
malization caused by the ordering-induced change in the
coupling to the higher bands is not considered. Hy., is
assumed to be unchanged with the ordering because the
ordering does not change the lattice constant (in the case
of the strain, H, ., does change'). For the explicit forms
of the matrix elements see the Appendix [Egs. (A3) and
(A4)].

Considering the relatively large band gap (E, ~2 eV),
we have renormalized the 8 X8 Hamiltonian matrix to
2X2 for the conduction band and 6X6 for the valence
band by using the same method which was applied to the
strain problem in Ref. 13. The coupling between conduc-
tion band valence bands is considered to terms quadratic
in wave vector k. The renormalized 6X6 matrices are
given in the Appendix [Egs. (A5)—(A9)]. For the conduc-

tion band, the 2X2 matrix is diagonal, and the
conduction-band dispersion is given as follows:
2 2 2E, |2a.,—a) (a.—a’)
E(=q+ 2 | K | 288 B 2] N2
2 m(')‘ 3mc Eg Ed
2B, | d | 2d
3m, |E} E}
X(k1k2+k1k3+k2k3)) , )

where m§ is the conduction-band effective mass in units
of the free-electron mass m,, and E, and E; =E, + A, are
band gaps, all for the disordered alloy. Explicitly,

m, E, | 2 1
=1+-2 | = +— |+C, 10
me 3 |E, E, 10

where E,=2|p,,|*/m,, p,,=(S|p,|X) is the interband
transition matrix element, and C is the contribution from
coupling to other bands outside of the eight-band mani-
fold. Cis normally considered as a constant in k-p calcu-
lations, but it is more complicated when dealing with the
ordering effect. In the perfectly ordered case, i.e., a [111]
(GaP),/(InP), superlattice, the dispersion curves of the
disordered crystal along the [111] direction (from I" point
to L point) will be folded to a smaller Brillouin zone, and
the L point will be folded to the Brillouin-zone center.
Because of the zone-folding effect, the folded A4, band
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could have a significant interaction with the first conduc-
tion band, and a repulsion between them is expected.” !4
The interaction may change the conduction-band
effective mass in two ways: one way is to reduce the
effective mass through reducing the band gap,® which has
been taken care of in Eq. (9); the other way, because the
interaction with the folded band is k dependent in gen-
eral, the interaction affects the dispersion near the zone
center.>® It is not trivial how to treat the second effect in
the same framework of the normal k-p theory. However,
the second effect can be treated separately, for instance,
as was dene in Ref. 5, and its contribution may be added
to Eq. (9) if it is not negligible but can be treated pertur-
batively.! We will come back to this problem in Sec. IV.
Here we will still treat C as a constant, as in Ref. 6.

Note that Eq. (9) is given in a coordinate system with
the x, y, and z axes along the [100], [010], and [001] direc-
tions. By rotating the coordinate system to have z’ along
the ordering direction [111] and (x',y’) in the plane per-
pendicular to the ordering direction (for instance, x’
along [112] and y’ along [110], we can simplify Eq. (9) to
an ellipsoidal form:

E@=a,+ =T (gt +gd)+ =gt , an
¢ ¢ 2m, 2m,

where m, and m, are effective masses for wave vector q
parallel and perpendicular to the ordering direction, re-
spectively. The transformation between k and q can be
found in an early paper by Luttinger,!> where ¢, q,, and
qs are along x’, y’, and z’, respectively. m and m. can
be expressed as follows:

m E E |2a ag
L [ I C ) —+—
mcl 3 Eg Ed 3 Eg Ed
E 2d’
e 4, 2| (12)
3 |EX E,E,
m E E, | 2a ag
i =1+ -2 L+.._1__ +C+=2 _;’ _2
me 3 |E, E, 3 | EX B}
2E, | 4 2d’
+—F =+ , (13)
3 | B E.E,

where ap=a—a.>0 and aj=a’'—a,>0. We see that
the rhombohedral distortion of the valence states re-
moves the degeneracy of the conduction band along the
parallel and perpendicular directions. This effect was ig-
nored in Ref. 6.

For the valance band, symbolic results for the energy
dispersion curves have been obtained by solving the 6X 6
matrix (see the Appendix), although it is very complicat-
ed. In general, all the valence bands have ellipsoidal
dispersions to the order of terms quadratic in q, as long
as 0. However, due to the strong interband coupling
(Ag is relatively small), significant nonparabolicity in the
dispersions is expected for the valence bands, as will be
discussed below. The energy levels to terms quadratic in
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q can be written as
2

E Q=+ —(g3 +q2)+ g2 (14)
i\q)=e; 2‘,,‘11 q93 2,43,

il m;

where i =1, 2, and 3, corresponding to the three levels of
Egs. (5) or (6). Here the positive direction of the hole en-
ergy has been changed to be downwards. The effective
masses of the topmost band (heavy-hole-like) are very
simple:

e byt 20 D5 (15)
m}‘:hl Y1TY3 2Eg2 ’

me

Y17 2Y3, (16)
M by

The results for the other two bands are too cumbersome
to present here. However, if we ignore the contribution
from the change in coupling to the conduction band
(which is relatively small for the light-hole and split-off
bands, compared to the coupling between them), the re-
sults are much simpler (ignoring the contribution of 4, as
well):

me ’ ’
oy —y) ey tasys, (17)
my,
me ’ ’
=y F2y)—ayyi—2a3y;3 (18)
UG
m, ' '
— =Bw1— B3t Biv1—vs) (19
shl
m, ' '
—=B1v1t2Bv3t By +2v3) , (20)
M shy
with
(2d;x +2Ayd, +6d?)
a =
b x2—(8p—3d)x
a,= ,
2 x2—(Ag—3d)x
4A0d1 —'4d1x'—'12d%
a;= ,
3 xz—(A0—3d1)x
_ A2+3d?2+(Ap—d)x
L X2 (Ag—3d)x
_ —4Ad,;—12d7—4dx
2 x2+(Ag—3d)x
P x24(Ag—3d)x
where x=[(A,+d,)*+8d2]'/2.  The parameters

a,,a,,a4 and By, 3,,8; are so defined that they are all pos-
itive when |d;| <A,. 7, and y; are Luttinger parameters
which appear in the 4X4 block for the heavy and light
holes. 7y}, corresponding to ¥, appears in the 2 X2 block
of the split-off band. ¥3, corresponding to ¥ 3, appears in
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the matrix elements between the 4X4 and 2X2 blocks
(see the Appendix for their definitions). In Egs. (17) and
(18), yi- and y3-related terms are from the coupling to
the split-off band, and in Eqgs. (19) and (20) y3-, ¥;-, and
vs-related terms are from the coupling to the light-hole
band. When |d,|<<A, we have a;—1, a,—0, a,
— —4d, /Ay, B1—1, B——4d, /Ay, and B;—0, which
are the results of the first-order perturbation in which
only off-diagonal terms with y3 contribute to the cou-
pling between the light-hole and split-off bands.

The effective masses can be calculated numerically
from the derived symbolic formalisms as functions of two
parameters: d, and a,. However, when plotting experi-
mental data AE, versus d, [d, is obtained by solving Eq.
(6) for e,,] for a set of samples with systematic variation
in the ordering parameter,'? we find a linear relationship
between AE, and d; (see Fig. 1), as expected by the
theory.* The ratio r=|AE,|/|d;| is found to be
6.120.4, which corresponds to |AE,(1)| /Acg(1)=2 [the
theoretical result is 1.6 (Ref. 2)]. Thus the effective
masses can be plotted as a function of a single parameter
d, by using a;=(r —1)|d,|. Figures 2(a)-2(d) show the
eight effective masses as a function of the degree of order-
ing using parameters given in Table I. E,, E,, and m,
are taken from Ref. 6, A, is taken from Ref. 12, ¥, and y;
are the averaged values of GaP (Ref. 16) and InP.!” For
the valence band, the results both with and without the
change in conduction-band-valence-band coupling are
shown. As expected, the contribution of the conduction
band is relatively small (maximum 20% in the perfectly
ordered crystal).

We have mentioned that the energy dispersion curves
are ellipsoidal to terms quadratic in q. However, strictly
speaking, the effective-mass tensors are not always diago-
nal. We will now briefly discuss the anisotropy, as well as
to what extent the parabolic dispersions are valid for
each band.

For the heavy-hole-like band, to terms quadratic in q,
its effective-mass tensor is exactly diagonal; for the other
two valence bands, their effective-mass tensors have off-

0 5 10 15 20
|d| (mev)

FIG. 1. Band gap E, of partially ordered GalnP, as a func-
tion of the crystal-field splitting parameter d. Dots are experi-
mental results of Ref. 12, and the line is a linear fit to the data.
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TABLE 1. Band-structure parameters for the disordered
GalnP, alloy.

E, (V) A (meV)
1.991 103 26

E, V) mg(m,) v, Y2 Y3

0.092 455 1.05 149

diagonal terms 1/m, <E,d 2/ (Engd) in the specific
coordinate system we have used. However, they are
negligibly small for ordered GalnP, (typically in the or-
der of 10™* of the diagonal terms). To terms higher or-
der in q, all the valence bands become slightly anisotropic
in the (g,,q,) plane. The nonparabolicity is more
significant in the (g,,q, ) plane than along the g,. Figures
3-5 show the computed dispersions, compared with the
corresponding parabolic dispersions, for the three valence
bands in a partially ordered GalnP, crystal with |d|=15
meV (which is a typical case corresponding to a heavy-
hole-light-hole splittings e;; =25 meV or order parame-
ter 7*=0.23). In general, the ordering effect makes the
dispersions more isotropic, as we know that strong warp-

0.095

(a)

0.085 z

m*

0.075

0 0.01 0.02 0.03 0.04 0.05 0.06
|d] (ev)

0.5
0.45
0.4

0.35

0.25
0.2

0.1

0 0.01 0.02 0.03 0.04 0.05 0.06
|d] (ev)
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ing of the valence-band dispersion exists in the III-V
semiconductors with zinc-blende structures.

IV. DISCUSSIONS

In this section, we will offer some general remarks
about the effect of ordering on the effective masses within
the k-p model. We will also briefly discuss the effect of
the folded L bands on the effective masses.

First, we examine Egs. (12) and (13) for the
conduction-band masses. In both, the second to the last
term corresponds to an isotropic reduction in band gap,
thus reducing the effective mass of the conduction band;
the last term in Eq. (12) or (13) is due to rhombohedral
distortion, which increases the mass along the ordering
direction and decreases the mass in the plane perpendicu-
lar to the ordering direction according to the sign of d;
(d=d'=d,).

For the valence-band masses, the situation is rather
complicated, in general, because of strong interband cou-
pling among the six bands. However, the results for the
heavy-hole-like band, Eqgs. (15) and (16), are rather sim-
ple. Because the ordering potential does not cause the

HH

(0] 0.01 0.02 0.03 0.04 0.05 0.06
|a] (ev)

0.1 R

0 0.01 0.02 0.03 0.04 0.05 0.06
|d| (eVv)

FIG. 2. Effective masses m * as functions of the crystal-field splitting parmaeter d (a) for the conduction band, (b) for the heavy-
hole band, (c) for the light-hole band, and (d) for the spin-orbit split-off band. z stands for the mass along the ordering direction, and
x-y stands for the mass in the plane perpendicular to the ordering direction. The isolated dots in (b) and (c) are the in-plane masses in
the disordered GaInP,. Dashed lines in (b)—(d) are the results without the contribution of the ordering-induced change in the

conduction-band-valence-band interaction.
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heavy-hole states along the [111] direction with k70 to
couple to either the conduction band or the other valence
bands according to symmetry considerations, the effective
mass my;,, does not change. For my,, the isotropic
band-gap reduction tends to reduce the mass and the
rhombohedral distortion to increase the mass, which is
similar to the case of the in-plane mass of the conduction
band. For the light-hole and split-off bands, to see the
physical process more clearly, we consider the case of
weak ordering, i.e., d; <<A,. In this case, their masses
can be given analytically without much difficulty:

me 4d1 aoEp
= — —_ '+
mh Y17 V3 A, Y3 6Eg2
d\E, 12 _ 2ayd,E, 21
6 Eg E,E, 3EgEdA0 ’
0.07
0.06 HH
0.05
50.04 (q)
M 0.03 4
0.02
0.01
0
-0.1 -0.05 0 0.05 0.1
qg (2 7T/a)
0.3rs 5
0.25} a
0.2 ‘., HH n

g (2 7/a)

FIG. 3. Exact solutions (lines) and parabolic approximations
(dots) for the energy dispersions in a partially ordered GalnP,
with the crystal-field splitting parameter |d|=15 meV, (a) for
the heavy-hole band with the wave vector along the ordering
direction, and (b) with the wave vector in the plane perpendicu-
lae to the ordering direction. @ =5.66 A is the lattice constant
of the GalnP, alloy.

13 167

0.2 LH

-0.05 0 0.05 0.1

qg (2 7m/a)

FIG. 4. Same as Fig. 3, but for the light-hole band.

q (2 m/a)

FIG. 5. Same as Fig. 3, but for the split-off band.
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2a,FE
e 1 ’ 0=p
=y11t2y3+——7;
My A 3E;
2d.E 4a,d E
TRt A — — )
3 E} E,E, 3E,E A,
m 4d a E d,E 2a,dE
=yt L2 %1% (23)
mk Ao 3E2  3E,E; 3E,E A,
m 8d a E 2d.E 4a,d E
Y et e e T g e Y
m, Ay 3B} 3E,E; 3E E A

From Egs. (21)-(24), we can see that the isotropic band-
gap reduction always reduces the effective masses, while
the rhombohedral distortion tends to decrease my,, and
mg,, and increase my, and mg, . Since Ay <<Eg, the ma-
jor effect is from the direct coupling between the light-
hole band and the split-off band, i.e., terms associated
with y3 in the above equations. Terms with I/Eg2 or
1/E} are related to self-coupling through the conduction
band, and terms with 1/E,E, are the coupling of the
light-hole and split-off bands via the conduction band.
The last terms are the combined effect of direct and in-
direct coupling. The ordering-induced coupling can be
understood simply as that, along the ordering direction,
the light-hole and split-off bands repel each other; in the
plane perpendicular to the ordering direction, they at-
tract each other. Note that Egs. (21)-(24) are not appli-
cable when d; is comparable to A,. If they were used for
the strong ordering cases, the effective masses (my,, and
mg, ) would become infinite or negative. In fact, when
d| <<A,, the six-band model for the valence band can be
renormalized to two blocks: a 4X4 block for the heavy-
and light-hole bands and a 2X2 block for the split-off
band. Equations (21)-(24) are then the solutions of the
renormalized four- and two-band modes which treat the
coupling between the light-hole and split-off bands per-
turbatively to the order of d, /A, The results for the
heavy-hole band are the same in both six- and four-band
models, since the heavy-hole band does not couple to the
split-off band.

The ordering-induced change in heavy- and light-hole
in-plane masses can also be understood as the result of at-
traction between the two bands. As soon as the ordering
effect sets in, i.e., from %=0 changing to %=0"%,
the effective mass my,;, decreases from an isotropic
bulk value [y,—(y3+3y3)"2]"! to an isotropic value
(ry+7;)7 ! due to coupling to the light hole. At the same
time, the coupling makes the light-hole in-plane mass in-
crease discontinuously from an isotropic bulk value
[71+(¥3+373)12]7! to an isotropic value (y,—y5) "L
The discontinuity can be understood as arising from the
fact that the treatment of the coupling between the
heavy- and light-hole bands switches from degenerate
perturbation to nondegenerate perturbation. Neverthe-
less, when 7 is very small, the effective masses obtained
only reflect the second-order derivative of the energy
dispersion curves at k =0 since, as one moves away from
k =0, the dispersion curves are essentially the same as
that of the disordered case.
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Another interesting observation is a sum rule for the
effective-mass change due to the ordering:

1
L
VB

<j

1
m*

) , (25)

vj

where j=|| and L, when d;/Ay<<1. This sum rule indi-
cates that even though the k50 states shift differently
from the k =0 states, the change in the center of gravity
of the eight bands is determined by the k =0 states. Note
that the external coupling among the six values bands
also satisfies a similar rule: the summation on the right-
hand side of Eq. (25) equals zero if only internal coupling
is considered. Also, in general, the effective-mass in-
crease along the ordering direction will accompany a de-
crease of the in-plane effective mass, and vice versa.

Next, we will briefly discuss the effect of the folded
bands with the wave vector along the ordering direction.
Qualitatively, for the conduction band, the crossing of
the folded part of the first conduction band and the first
conduction band itself will tend to increase the
conduction-band effective mass along the ordering direc-
tion, which gives an opposite effect to the coupling to the
valence band. Experimentally, it has been found by cy-
clotron resonance that the conduction-band effective
mass in partially ordered GalnP, is slightly smaller than
the disordered one; m, varying from 0.092+0.003m, in a
disordered GalnP, to 0.088+0.003m, in an ordered one
with a 56-meV band-gap reduction.® However, it was not
realized that the conduction-band effective mass was an-
isotropic and that the magnetic field was not aligned
selectively, and so the measured mass should be con-
sidered as an averaged value of the two directions. As-
suming the same amount of band-gap reduction, we have
m.=0.0905m,, m.,=0.0891m,, and an averaged value
m.=1(1/m,+2/m,)”'=0.0896m,. This example cor-
responds to |d|=9.3 meV in Fig. 2(a). According to the
theory of Ref. 5, both m_ and m., would be larger than
the disordered value m§ since m;, and m;, (L-point
effective masses) are larger than m g, and the enhance-
ment is rather significant. The experimental result seems
to indicate that the effect of the folded band is relatively
weak, as pointed out by Ref. 6. However, since the
band-gap reduction of the sample used in Ref. 6 is rela-
tively small, the result is not so conclusive. For the
valence band along the ordering direction, the L points
(Ls,Lg,) of the folded A5 and A¢ bands lie below the
split-off band. The repulsion between the valence band
and the folded bands tends to increase all the effective
masses of the six bands. However, due to a relatively
large separation between the valence band and the folded
L points, the corrections are expected to be small, espe-
cially for practically obtained partially ordered GalnP,.

V. SUMMARY

In this paper, an eight-band k-p model has been used
to calculate the energy dispersions and effective masses of
the conduction and valence bands in ordered GalnP,.
The effective masses are given in analytic forms, thus the
physical processes involved in the interband couplings
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are clearly seen. To terms quadratic in wave vector q,
the dispersions all have ellipsoidal forms with m, (along
the ordering direction) ¥m, (in the plane perpendicular
to the ordering direction). The change in effective masses
is found to satisfy a sum rule when ordering is weak. The
numerical results for all the masses are shown as a func-
tion of the ordering parameter. The anisotropy and non-
parabolicity of the energy dispersions are discussed. We
find that, as the order parameter increases, m is un-
changed for the heavy-hole band, increases for the light-
hole band, and decreases for the spin-orbit split-off band;
m, for the heavy and light-hole bands decreases, whereas
it increases for the split-off band. For the conduction
band, both m I and m, decrease.
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APPENDIX

The Hamiltonian for the zinc-blende structures in the
eight-band k-p approximation can be used for the disor-
dered GalnP, alloy. Ignoring the effect due to the lack of
invgsion symmetry, we have the following Hamiltoni-
an:

A 0 Vv3rt Vvaut -V 0 U -2V
0 Ao 0 -yt vaut  —Vv3y —-Vapt U
=2 _ + + _ Lo+ 3p+
V3v 0 P+Q S R 0 755 2R
V2U 4 s —-P-Q —R* v2Q 438t Al
Ha=| —v+ vav & o -pP-Q st —vis V2o |’ (
_ = 1
- + - — —V2R ——
0 V3y 0 R P+Q 55
vt -V2r - ‘/L_zs v2Q —v3st —V2R* z 0
—vart Ut VIR IS V2 —V%—S+ 0 z
where
Ay=E,+#/2m,(1+C)(k}+k3+k3),
P=y #*/2m (k3 +k%+k3),
Q=—yy#*/2m (k1 +k3—2k3),
= —V3#2/2m, [y 20(k] —k3)—2iy 30k 1k, ]
(A2)

S =2V3y,#2/2m, ky(k,—ik,) ,
Z=—Ay—y o7 /2m (kI +k3+k3),
V=P,/V6(k,—ik,),

U=iP,/V 3k, ,

where E, is the band gap; A, is the spin-orbit splitting; C is due to the coupling between the conduction band and the
remote bands; ¥ o, V50, and ¥ 3o are so-called modified Luttinger parameters due to the coupling between the valence
band and the remote bands; and P,= —i#i/m,{S|py|X ). “T” stands for the complex conjugate.

The ordering-induced perturbation Hamiltonian is block diagonal. The 2 X2 block for the conduction band is diago-
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nal with an element a.. The 6X 6 block for the valence band (in a basis used by Ref. 13) can be written as follows:

—p +q s+ r+ 0 _71_5_S1+ ‘/irl-i'
s —p—q 0 —rt V2q' \/_%s”“
r 0 —p—q st -—\/;s' V2gq'
h,= _ 1 , (A3)
0 —r s —p+gq —V2r —————‘/.z.s’
_%zsl qu: -’\/T;—S’+ __‘/Err'l- z 0
AL 3 oy} 1 ’
V2r s V2gq =5 + 0 z
where
pb=—a,
q=0,
r=—id/V3,
s=—d(1—i)/V3,
, (A4)
z=a',
q'=0,
r=—id' /V3,
s'=—d'(1—i)/V3 .

Constants @, d a’, and d’ are defined in the main text.

After applying the renormalization procedure to the 8 X8 Hamiltonian H 4 [Eq. (8)], we obtain a block-diagonal
form with a 2X2 block for the conduction band and a 6 X6 block for the valence band. The diagonal term in the 2X2
block is then the energy for the conduction-band states [Eq. (9)]. The 6X 6 block can be written as

Hl?rd=H'§1is+Eu , (AS)

where H is the renormalized valence-band Hamiltonian in the absence of the ordering effect, and /v is the renormal-
ized perturbation Hamiltonian for the valence band in which the coupling to the conduction band is included to the
quadratic terms in k. We have

1 —_
— + R+ 0 — gt ‘/2R1+
P+Q S 55
S —P—Q 0 —R* V20" 43St
' R 0 -P—Q st —Vis' V20’
H;hs: 5 ] R (A6)
—_— —_ _+_ — RI —_— ’
0 R S P+Q 2 755
~-Ls vigr —y3st —VIR'* z 0
V2
V2R IsT V2 —T/lfzler 0 z

with
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P=y#/2m, (k2 +k2+k?),
Q=—v,#/2m (k3 +k:—2k2),
R=—V3#/2m,[y,(k} —k})—2iy;k k,],
S=2V3y,#/2m ky(k,—ik,) ,

Z=— MgV #2/2m (K} +kE+k2),
Q'=—yy#/2m, (k2 +k:—2k2),
R'=—V3#/2m,[vy(k] —k3)—2iyik,k,]
S'=2V3yi# /2m k4(k, —ik,) ,
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(A7)

where v =yt E,/(3E,), v2=v2tE,/(6E;), v3=v3+E,/(6E;), v1=V 0t E,/(3E;), v3=vTE,/12 (1/E,

+1/E;), v3=v3tE,/12(1/E, +1/E,;), and E;=E, +A,,.
We write A, =h, +h,, then 8A, is the contribution from the conduction band:

1 ’ AL
—Pc +qc sc+ rc+ 0 - ,\/_'Z'SC * ‘/zrc *
se —P.—d 0 -t V2 3T
5 e 0 —p.—q. s —V'3s. Vg
h =
v — 1 ’
— — + _.\/2 ’ T !
0 re Sc P14, re V3 S
—o5sl Vi Vit SVt o 0
’ 3 N 1 ’
Vr! s, Vgt — 755 + 0 z,
where
_faem P, PO d L d )tk gk
p.= 3E32 3 E; E,E, 1%2 1K3 2R3/,
(a.—a)P} Py’
= ————(k3+k3—2k3)+ ———(k k3 +k,ky—2k k),
q 6Eg2 1 2 3 6E,E, 1K3 2K3 152
V3(a,—a)P} V3P V3P’
- _ c . 2 . 0 2 . 0 2 2_ 2
rc 6Eg2 (k2+lk]) —+1i 9E82 k +i 18EgEd (k1+k2 2k3)
V3pPid' )
——6E—E;‘“[(klk3—kzkg)—l(k1k3+k2k3)] .
4
V3(a, —a)P} V3P V3P’
s,=———— Ok, —iky ey +(1— i) —— k2 9
3E? 9E; 18E,E,
Vv3pid' )
+W{(k2k3+klk2)—l(k1k3 +kiky)],
4
(@ —@PG o 2PE ks hoky)
Z. = - 152 1K3 2Kk3)
¢ 3E} 3E,E,
(2a,—a—a')P} P} d d’'
gi=— e — (k3 + k2 —2k3)+ + 52 |(k ks +kyky —2k ky)
12E,E, R PR DN P F N
Pi( d
+i— — = [(k?—k3+kk3—kyk3),
12 EgEd Eg2 1 2 173 273

[(k}4+k%—2k3)—i(ki+k}—2k?)]
1

(A8)

(A9)



13172 YONG ZHANG AND A. MASCARENHAS 51
Vv73(2a,—a—a')P} V3P3d’ V3Pld' V3Pl
= : +ik, ) +i 24 Tk i (ki +k}—2k3
& DEE, etk gz TR itk m2ks)
V3PS [ d Tk k(D k
0 |E BE | RS Dkaksl
_YBamazaPy w1 P Pk —iky)
= -1 -1 —1
Se 6EgEd 1 2 3 18Ed2 6Eg2 1 2 1 2
V3P N2 1212 :
+ Ty (1D =k k)4 3ks ey =ik, )]

Note that the hydrostatic terms in the above formulas are equivalent to changing Luttinger parameters in Eq. (A7) by
8v1=—[(a,—a)E,|/3E;}, 8y,=8y;=—[(a,—a)E,]/6E}, 8y|=—[(a,—a)E,]/3E}, and 8y,=8y3=—[(2a,~a
—a')E,]/12E,E,, respectively.

As we know that Hamiltonian Eq. (A5) has three double degenerate eigenvalues, it is possible to simplify the eigen-
value equation to a cubic equation, then solve it analytically. In fact, this approach has been conducted previously, but
with certain simplifications.!®!° Here we have obtained a cubic equation for the most general form, Eq. (A8), of the
valence-band Hamiltonian:?°

E3+ A(K)E*+ A,(K)E+ A4,(k)=0, (A10)
with
A,(k)=—2P+Z,
A,(k)=P>—Q*—2|Q'|?*—|R|*—2|R’'|*—|S|>*—2]|8'|>*—-2PZ ,
A4;(k)=2(P—Q)|Q'|2+2Q'R'R'+2Q"RR"+2(P+Q)|R'[*—Q''s's' —Q’'s5"T
+(2P—Q)|S'|2+(P*—Q*—|R|2—|S|)Z+V3(R'TSS'+R'STS' ") +V3(RTs'2+ RS T2) /2|

where P, Q, R, S, Z, Q', R’, and S’ are the sums of the corresponding matrix elements in Egs. (A6), (A3), and (A8):
P=P+p+p., Q=Q+q +q,, and so on. The three solutions of Eq. (A10) give heavy-hole, light-hole, and split-off
bands, respectively:

E,=2Vucos(v/3+2m/3)—A4,/3, (A11)
E,=2Vucos(v/3+4r/3)— A,/3, (A12)
E,=2Vucos(v/3)—A4,/3, (A13)

where u =1 —w} /27, v =arccos[ —w, /(2u)], w; =(34,— A3)/3,and w, =24} — A, A, /3+ A,.
The effective-mass tensors can be obtained from series expansions of the above solutions. However, there is an easier
way to get the effective-mass tensors through the following relationship:

3’4, P2 24, £
L dk,dk; |, ° | dk;9k; |o °
my; 3E3+24,E,+ A,

3k ok,

j JO

, (A14)

where the derivatives are evaluated at k=0, and E is the energy eigenvalue at k=0. Note that this method is not ap-
plicable when two bands are degenerate at k=0 but have different effective masses.
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