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We present relativistic linear muKn-tin-orbital calculations of the electronic structure of zinc-
blende-type silicon carbide (3C-SiC) within the local-density approximation. Information about
matrix elements, effective masses, Luttinger parameters, as well as linear and cubic spin splittings
due to inversion-asymmetry efI'ects is extracted by comparison with k p calculations. Ionicity
and. transverse effective charge are also discussed. The parameters determined in this way are
subsequently used as input in an extended 16 x 16 k p calculation so as to obtain the detailed
band structure of the higher valence and the lower conduction band states around the F point in
the [100], [110],and [1.11] directions.

I. INTR.ODU CTION

Silicon carbide has the potential to become an impor-
tant candidate for high-temperature semiconductor de-
vices. The material [together with semiconducting dia-
mond (C) and boron nitride (BN)] is characterized by a
number of interesting properties: a high melting point,
high thermal conductivity, large band gap, high hardness,
and chemical inertness. ' However, experimental work
on SiC has long been hindered by the difhculty of ob-
taining homogeneous single crystals, which is due in part
to the large number (more than a 100) of different crystal
modifications or polytypes. ' The cubic modi6ca-
tion (3C-SiC), which will be discussed here, is the only
IV-IV compound with zinc-blende structure that exists
in nature and therefore is an intermediate between III-V
semicoIiductors and crystals with the diamond structure.
In the past decade, large epitaxial 3C-SiC films have been
grown on carbonized Si surfaces by the chemical vapor
deposition technique. ' In this way, both n- and p-type
SiC have been obtained by introducing active impurities
in the crystals. In spite of the considerable experimental
and theoretical work performed over the past 40 years,
very little is known about band parameters and eII'ective
masses of 3t -SiC. To the authors knowledge, only one
set of Luttinger parameters has been reported to date,
and few results for the effective masses at the conduction
band minimum located very close to the zone boundary
X have been published. '

In the present work, we use relativistic (with the spin-
orbit interaction treated as a perturbation) linear mufBn-
tin-orbital (LMTO) band structure calculations in the
local-density approximation assisted by k p calculations
to obtain information about momentum matrix elements,
eBective masses, Luttinger parameters, spin-orbit ener-
gies, cubic and linear spin-splitting coefficients, ionicity,
and transverse e6'ective charge of zinc-blende-type SiC.

The parameters found are subsequently used as input in
a 16 x 16 k.p model involving matrix elements between
six I i5, six I'i5, two I i, and two I'i wave functions. In
this way, the detailed upper valence and the lower con-
duction band structure around the I' point is determined.
Results in the [100], [110], and [111]directions are pre-
sented. The analysis of the calculated band splittings
linear in k sheds considerable jkight on the responsible in-
terxnediate states and the systematics of these splittings
in other zinc-blende-type materials.

II. LMTO HAND STKUCTUKE CALCULATIONS

We have calculated the electronic band structure of
zinc-blende-type SiC (3C-SiC) within the framework of
density-functional theory using the local-density approx-
imation (LDA). Since we are interested in investigating
inversion-asymmetry-induced spin splittings in SiC due
to spin-orbit interaction, we treat the spin-orbit contri-
bution as a perturbation to the Hamiltonian by means of
the self-consistent LMTO method. Each unit cell con-
sists of four "atoms" including two "empty spheres, " i.e.,
atomic spheres with no net nuclear charge positioned in
the empty tetrahedral sites in order to obtain a close-
packed structure. Wave functions in all four "atomic
spheres" are expressed in terms of 8, p, and d partial
waves resulting in a Hamiltonian matrix of dimension 72
x 72 (4 atoms x 9 partial waves x 2 spin states). Calcu-
lations are performed in the usual way within the atomic-
sphere approximation including the so-called combined
correction term.

The energy gaps across the Fermi level calculated
within LDA are underestimated as a consequence of
the fact that LDA energy values are not exact single-
particle energies (the so-called gap problem). A way to
overcome this problem is given by the GTV approxima-
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tion, where quasiparticle corrections are treated per-
turbatively. Even though the conduction band. energies
are underestimated in LDA, wave functions are essen-
tially unchanged by self-energy contributions in the GTV
approach. This trend follows for materials ranging &om
wide to narrow gap as well as from covalent to ionic bond-
ing. As a result we expect momentum matrix elements,
determined solely by the wave functions, to be well de-
scribed by the LMTO calculations.

We use this information in the present paper in order
to determine efFective masses and Luttinger parameters
of 3C-SiC by using the LMTO LDA calculated momen-
tum matrix elements as input in A; .p models. Correcting
for the discrepancy between the experimental and the
calculated energy gaps, we expect the effective masses
calculated in this way to be quite accurate since mo-
mentum matrix elements from the LMTO calculation are
supposed to be accurate. Transverse and longitudinal
efFective masses at the lowest conduction band minimum
(our results show that this minimum is indeed located
at the I point) are also deterinined. Using as input the
calculated matrix elements, Luttinger parameters, spin-
orbit energies, and energy gaps in an extended 16 x 16
k p calculation we determine the detailed upper valence
and the lower conduction band structure of zinc-blende-
type SiC at the I' point in the [100], [110], and [111]
directions.

In order to ensure a consistent definition of the sign of
the spin-orbit parameter 4, representing the coupling
between the I'»5 conduction and the I'»5 valence bands,
and the matrix elements P, P', Q, and P"' defined as

P = &(I'is,. I I* I
I'i) P' = &(I'i5,. I I* I li)

& = (li.,. I & I
I'i,.) P"'= '(I'i,. I&* I

I")

the positions chosen for the two constituent atoms must
be specified and also the phase of the wave functions
at I, which are conveniently chosen to be real (possible
because of time-reversal symmetry), as depicted in Fig. l.
The C atom has been chosen to be at the origin, while Si
is located at uo(4, 4, —), where ao is the lattice constaiit.
This choice results in a positive sign for P and Q, which
is evident from Fig. 1 by replacing p = i

& (—in atomic
units, 5 = mo ——e = 1).

III. EFFECTIVE MASSES
ANI3 MATH. IX ELEMENTS

Spin-orbit effects are very small in 3t -SiC. The pa-
rameters I, M, N, and A' introduced by Dresselhaus
et al. and Kane and appearing in the expressions for
effective masses are therefore well described by LMTO
calculations without the inclusion of spin-orbit effects.
k p expressions for the effective masses at the I' point
are given by Kane and Shtivel'man for the case of
zero spin-orbit interactions (Ao ——0):

m» = 1+2L )

m2 ——m3 ——1+2M

in the [100] direction,

2I, + 4M+ 4N' =1+
3
4M+ 2I. —2N

m2 —m3 —1+
3

in the [111]direction, and

C

15Si
' at'

m»
»

—»
m2

= 1+1+M+%,
1 1= 1+2M+ (L —M —N—) ——

I
L —M —N I,2 2

1 1= 1+2M+ —(L —M —K) + —
I
I, —M —N

I2 2

a
Bz

(4)

in the [110]direction. Here the subscripts of the effective
masses increase with energy. The 8-type conduction band
(I'i) effective mass m4 is isotropic and given by

2P2
m4 = 1+2A'+

0

where E0 ——Ep; —Ep, . The physically more meaningful
hole masses mhh, m~h, and m, and the conduction band
mass m, including the spin-orbit splitting at I' are

FIG. 1. Schematic diagram demonstrating the phase con-
vention of the I'~5, I'15, and I'z wave functions. The C atom is
taken to lie at the origin and corresponds to the anion (An).
The cation (Si) is labeled (Cat). In the figure, the z' direction
corresponds to [111].

2I+4M —2IL —MI
m,„=1+

3

2L+4M+2
I
L —M

I

mh~
——1 +

3

in the [100] direction,

(6)
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2L+4M —2
I
N

Imh = 1+
3

I.+ 4M+2
I

mhh —1 +
3

in the [ill] direction,

2L + 4M —[(L —M)' + 3N']
m,„—1+

3

2L+4M+ (L —M)'+3N'
hh

—1 +
3

in the [110] direction, and

(8)

and

Q2

Er. —Er-1 15
2B

G r

Ep —EI-
2

HI =—
E+c —Epv15 15

H, =O,
g/2

+
Ep Ep Ep Ep/1 15 1 15

(2G+ 2M P~

m.-' = 1+2A'+ 2P' r'2 1

3 (Eo Eo+ Eo

for an isotropic efFective mass. Note that the effective
mass m refers to the 8-type conduction band, which is
located. below the p-type conduction band. ; see Fig. 2.
This is in agreement with GlV calculations and previ-
ous LMTO calculations ' on cubic silicon carbide and
opposite the case of diamond (C) and silicon. In dia-
mond, the I'i state is located 10.52 eV (LMTO LDA)
(Ref. 17) and 8.0 + 0.5 eV (experiment) (Ref. 23) above
the I'&5 states. In our discussion of efFective masses, we
use atomic units, i.e. , mo ——5 = e = 1, energies in hartree
units, and Luttinger parameters in the conventional units
of "'

The parameters I, M, N, and. A' are given by Dres-
selhaus et aL and Kane:

The matrix elements P, P', and Q above were defined
in Eq. (1). The I'iq i state in Eq. (12) is equivalent to
the pI -state of the representation I' 2, in the notation of
Dresselhaus et al. i The expressions (11) for I", Kz, and
A imply neglecting coupling to the high-energy f-like
bands. We emphasize that f partial waves are not in-
cluded in the LMTO calculations anyway. The first term
in A is symmetry allowed in zinc-blende-type materials
due to the lack of inversion symmetry. This term is, of
course, zero in diamond-type materials. The second term
in A' is expected to give the dominant contribution since
the I'I and I'I5 conduction bands are relatively close in
energy; see Fig. 2 (the energy difference Er ~ —Ez", is
close to the energy difference Ez", —Er„).

Following the determination of the matrix elements I',
G, and M we obtain the Luttinger parameters pI, p2, p3,
m, and q from24

where

L, = E+2G,
M =HI+H2,
N =F —G+HI —H2,

1
pi ————(2E + 4G + 4M) —1

3
1

pz ————(2F + 4G —2M) —q6
1

ps ————(2P —2G + 2M) + q6
1 2 2

~ = —-&i+ -&2+ WS
———

3 3 3

+q,

q= ——
9 2 e

20 Note that for materials with very small spin-orbit cou-
pling (as, e.g. , 3C-SiC), the parameter q can be neglected
in the expressions above.

CD

lJJ
-]0 —L',

X
1

-20—
L

FIG. 2. Band structure of 3C-SiC as calculated from the
j MTO method in the local-density approxilnation.

IV. ESTIMATE OF P'

In the present work, P' has been estimated in two
ways. The second term in the expression for A' (pro-
portional to S~) was calculated for Si by Cardona and
Pollak, and for C in a previous publication by us.
Taking the average value as an estimate for the second
term of A' in SiC and using expression (5), we obtain P'
from our LMTO calculations of m4 in the local-density
approximation. This is possible since P is known once
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the valence band effective masses are determined from
the LMTO LDA (P is given by the parameters L, M,
and %). In this way we obtain

I

P'
I
= 0.017 a.u. How-

ever, in our calculations of the band structure of SiC
using a 16 x 16 k . p model, we employ P' = —0.0123
a.u. , obtained from the spin-splitting results (see later
sections). Compared with the value found for the III-V
or II-VI compounds (P'/P = 0.3) our value of P'/P for
SiC is negligibly small.

In Refs. 26 and 27, P' was also estimated by a linear
combination of atomic orbitals approach [see Eqs. (16)
and (17) below] based on the assumption that the inter-
atomic nearest-neighbor contributions are much larger
than intra-atomic s-p matrix elements. This is a good
approximation for Si, Ge, and o,-Sn. For diamond, due
to the lack of core p electrons, the intra-atomic contri-
butions are large and predictions by this method become
rather unreliable, in both magnitude and sign.

V. ESTIMATES OF A IN SiC

The spin-orbit coupling parameter 4 is defined as

((33, (33,
) (i4)

(1)
i2)

2LO
3

Here Lo is the spin-orbit splitting that one would have if
= 0. Inserting into Eq. (15), the values b (z) = 4.8

meV and h (2) = —9.6 meV, we find b, p
——14.4 rneV and

I= 26 meV. Ap was determined in a similar way to
be 69.6 meV.

We also performed a tight-binding estimate of L . As-
suming that the I'&5 and the I'&5 wave functions are ob-
tained as bonding and antibonding linear combinations
of the Si and C p states, we have

(i6)

The s states are distinguished from the p states by a
prime. We can then write for the antibonding I z state

where
I (2 2) ) [I (2 z) )] represents the eigenvector of the

I'rs [I"i5] eigenstate. According to the phase convention
of Fig. 1 (both eigenstates are chosen real), A is real.
The magnitude of 4 can be determined by performing
calculations for the I'~5 and the I'&5 states both with and.
without the inclusion of spin-orbit interaction. In the
absence of L coupling, the I'~5 bands split into J =
3/2 and 1/2 (I's and I 7) components, the shifts being in
the ratio 2:1. Including second-order perturbation terms,
these shifts deviate slightly from the ratio 2:1 character-
ized by L as follows:

&0
3

where E„and E„'are the atomic term values that appear
on the diagonal of the tight-binding Hamiltonian. H
the composite matrix element, is a function of the bond
length d and can be written as

4 8 128H..= -V„„+-V„„
3 3 (i9)

The equation is based. on parameters derived &om a sp s'
tight-binding model. We calculated g from Eq. (18) to be
—1.82 using the term values of Harrison. This results in
a bonding wave function I'rs that is more anionlike (C has
a larger electronegativity than Si. We therefore denote
C as the anion and Si as the cation). The term energies
given by Harrison are &ee-atom-like, not self-consistent,
and independent of crystal volume. A similar calculation,
but based on self-consistent term energies extracted from
LMTO calculations (including downfolding of the d or-
bitals and empty-sphere orbitals) for the SiC compound,
yields the value, g = —1.34. The difference observed here
between the LMTO and the Harrison estimates empha-
sizes the importance of self-consistent calculations.

I

The ratio g' = &, (both of the same sign) is given by

1
—2VBB

rl @c @si + [(Ec Qsi)2 + 4P'2 ]r/2

where

1.32
+SBCT (21)

In this case, Harrison's value is g' = 2.09 and the LMTO
value is 2.02, i.e., the I'& conduction electrons reside
more on the Si side corresponding to a cationlike anti-
bonding wave function I'&. In III-V compounds, the I'&

conduction electrons are ahoays cationlike. Earlier calcu-
lations indicate, however, for GeSi that the I'& conduc-
tion electrons are anionlike, even though the assignment
of Si as an anion in the GeSi material system is somewhat
uncertain.

The spin-orbit parameters Ep, A~o, and A (and their
signs) can now be estimated from the expressionsii

= nP [Ap(C) —Ap(Si)]
Ao = o.2Ao (C) + p2Ao (»),
Ao = P Ap(C) + n Ao(Si) . (22)

Equation (22) gives A = 18.2 meV, Ao ——19.6 rneV, and
Lp: 30 4 meV using the I MTO value of g =

p
———1.34,

(Ref. 31) and renormalized atomic spin-orbit splittings
for diamond [Ao(C) = 0.006 eV] and silicon [Ap(Si) =

In the following discussion, it is convenient to introduce
the parameters i7 = —and q' =

&, . Referring to Eq. (16)
and Fig. 1, we point out that

I C) and
I

Si) are chosen to
have the positive lobe to the right, so that the coefEcients
satisfy n ) 0 and P ( 0. The ratio of n and P can be
obtained from Harrison

—2H

@C ESi + (@C ESi)2 + 4~2
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0.044 eV]. The spin-orbit splittings obtained here are
in reasonable agreement with the above LMTO results.
It should be emphasized, however, that the mixing of d
states into the I'is states (especially the I'is states) has
not been included in the tight-binding expressions.

VI. NUMERICAL RESULTS

The band structure of cubic SiC calculated within the
local-density approximation using the self-consistent rel-
ativistic LMTO method is shown in Fig. 2. We emphasize
that the adjusting potential method, using b-like poten-
tials centered at the atoms to shift the 8-like states and
later extended to include potentials shifting the p-like
states, is not able to reproduce agreement with experi-
mental results for band gaps of SiC at the high symmetry
I', X, and L points. Therefore we apply here the LMTO
band structure calculations in the local-density approxi-
mation to obtain the momentum matrix elements. Note
that these matrix elements, necessary for the evaluation
of effective masses, Luttinger parameters, spin splittings,
and the detailed band structure of the upper valence and
the lower conduction bands by means of a 16 x 16 k p
Hamiltonian analysis, are expected to be well described
by the LDA even for materials with a large direct band
gap, such as 3C-SiC. This follows from the weak inhu-
ence of quasiparticle corrections to the Hamiltonian in
the GW approach on the LDA wave functions.

In Table I, we show the calculated energies at the high
symmetry points I', X, and L with the LMTO method in
the local-density approximation. The results of Rohlfing
et al. , obtained with the quasiparticle GW calculations
and experimental data are also listed.

The finer structure around k = 0 in the [100], [110],
and [ill] directions of the Brillouin zone was examined
to obtain the efFective masses. By fitting a straight line to
the calculated electronic energies versus A: in the imme-
diate vicinity of point I', the slopes determine the LDA
effective masses for the different directions. In agreement
with the k - p results we find that the effective mass of
the 8-like conduction band I"z, m4, is isotropic whereas
the I'z5 hole masses show a strong anisotropy given by
the parameters L, M, % of Dresselhaus et al. or, equiv-
alently, the Luttinger parameters p~, p2, and ps.

In Table II the LDA effective masses calculated by the
LMTO method and the corrected e8'ective masses ob-
tained from our LMTO and k p calculations [using the
experimental result for Er ~ (7.4 eV) (Ref. 39) and the
GW result for Er. (8.35 eV) (Ref. 16)] are listed. We
have shown both the masses near I' for Ao ——0 (mi,
m2, ms, m4) obtained directly from our calculations and
those for Ao g 0 (m, , mih, mhh, m, ) calculated with the
expressions (2)—(5) and (6)—(9), respectively. The cor-
rected mass values given in Table II were calculated us-
ing the following scheme: First, we determine the matrix
elements P2, Q2, R2, and S2 in (ll) using the LDA en-
ergies (Table I) and the LDA efFective masses (Table II).

TABLE I. Energies (in eV) of Sic at the symmetry points I', X, and I and the indirect energy
gap.

&r-
1

&r-15

1
&r.15
&r.12

15
&r ~

1
Ex-1
&x-3
&x-5
&x-1
Ex.3

Xc
5

1
g~„1
g~„3

g~ 3
gl c

1Il Ci

&g-v

LMTO (LDA)
—15.49

0.0
6.74
7.80
14.54
18.79
16.92

—10.36
—7.87
—3.23
1.40
4.36
14.66

—11.84
—8.69
—1.04
5.69
7.35
10.66
1.20

GW, Rohlfing et al. (Ref. 16)
—16.54

0.0
7.24
8.35

—11.46
—8.65
—3.65
2.18
5.48
15.91

—12.93
—9.43
—1.22
6.46
8.52
11.97
2.18

Exp'.

0.0
7.4

7.75

—3.6, —3.4
2.39

55 47

—1.16
4.2
8.5

2.39

From Ref. 39.
From Ref. 23.

'Prom Ref. 23 (this corresponds to Er,. —Er, ——5.36 eV). In Ref. 39, Er,. —Er, was found to be
7.5 ev.
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TABLE IV. Luttinger parameters for 3C-SiC, transverse (m~) and longitudinal (m~~) effective
masses at the conduction band minimum (X), and spin-orbit energies in eV.

yl

y2

y3

mJ
fA

((

Ap
Ap

Present
1.820
0.155
0.648
—0.52
0.29
0.60

14.4 x 10
69.6 x 10
260 x 10

Bimberg et al. (Ref. 5)
2.817
0.508
0.860
—0.41

10.2 x 10

Kono et al. '

0.25 + 0.01
0.67 +0.01

Kaplan et al. (Ref. 6)

0.247
0.667

Following the determination of the matrix elements
P, P', P"', Q, B,S, and using the parameters Eo, Ao, Er'i,
b, 'o, Eo", Ci„C&, pt, p2, and ps (all obtained from our
LMTO calculations), we are in a position to perform de-
tailed band structure calculations at the I' point using
a 16 x 16 k p Hamiltonian involving matrix elements
between six I'~5, six I'~5, two I'~, and. two I"~' wave func-
tions. As a basis we take the linear combinations of
these states, which correspond to ( —,+—), ( —,+—), and

( —,+2) angular-momentum states with z along [001] as
the quantization axis. Portions of the Hamiltonian can
be found in Table I of Ref. 11 (between the I &, I's and
the I'&, I's, I s states) and in the Appendix of Ref. 41 (the
"diagonal" matrix connecting the I'z5 states with them-
selves).

In Fig. 3 we show the upper valence and the lower
conduction band structure in the [100], [110], and [ill]
directions calculated with the 16 x 16 k p Hamilto-
nian using the experimental direct gap values (along in
the [100) direction the lowest conduction band is not well
represented, a fact that signals the incorrectness of the
16 x 16 Ic . p basis for k & —). In this way, we ob-
tain information about the I'z5 conduction band efFec-
tive Inasses. The effective masses are listed in Table V
for the three directions [100], [110],and [111].These val-

ues can also be obtained from a k p analysis in the upper
s-like conduction band states (I' t') and the p-like conduc-
tion band states (I'is) similar to that presented above in
the lower 8-like conduction and the upper p-like valence
band states. Furthermore, we conclude &om Fig. 3 that
the valence band maximum of 3C-SiC occurs at I'. The
same conclusion was found in the case of semiconducting
diamond C, contrary to a suggestion in Ref. 42.

VII. INVERSION-ASYMMETRY-INDUCED
SPIN SPLITTING IN SiC

A. Cubic terms along [110]

All bands along [110]are split by spin-orbit interaction
in zinc-blende-type materials. The splitting energy can
be written for small k as

where p is positive if the Z4 state is above the E3 state.
We shall use p with the subscripts c (s-like conduction),
hh (heavy hole), lh (light hole), sh (split hale), he (heavy
electron), le (light electron), and se (split electron). In
Figs. 4—8, the splittings near I' are depicted.

We have extracted the difkrent p's from our LMTO
data by fitting the energy difference LE of the split bands
to k using a very dense mesh close to the I' point. When
required by symmetry, we added a linear term in k whose
coefBcient is also found from the hh and he splittings
along [ill] as discussed in Sec. VII C. In Table VI, the
calculated p's (in units of eV A.s) are listed. Also given in
the table are p values obtained from third-order (in k p)
perturbation theory from states that exactly include Lo,

0.4—

O 0.3—
E

0.2—a

C
mse

C
m)@

C
mhe

[loo]
2.65
0.402
0.561

[11o]
2.65
0.668
1.26

[111]
2.65
1.20
8.26

TABLE V. Effective masses of the I'z5 conduction band
states close to the I' point in the [100], [110],and [ill] direc-
tions. 0

0 2 4 6 8

Wave Vector (0.01 A )

I

10

FIG. 4. Spin splitting alang [110], clase ta I', of the first
s-like conduction band as calculated with the LMTO method.



51 RELATIVISTIC ELECTRONIC STRUCTURE, EFFECTIVE. . . 13 157

0.5

) 03—

0.2—
I

0.1—

o S
~ hh 0.3—

O
Q)

0.2—E
ill
CI

0.1—

~ Ih

0
0 0.5 1.0 1.5

Wave Vector (0.01 A )

2.0
0

0 0.5 1.0 1.5

Wave Vector (0.01 A )

2.0

FIG. 5. Spin splitting along [110],close to I', of the hh and
sh bands as calculated with the LMTO method.

FIG. 6. Spin splitting of the lh band along [110] and close
to F. A small linear term is found from the fit opposite to the
sign of the cubic contribution.

Z; band along (11OJ

According to fourth-order perturbation theory (3 times
k .p and once H, ), p, is given by

where

~. =A+B+C+D, (24)

A = PP'Q— 2

3 3Ep(Ep + Ap) Ep —Ep + Ap

4 ~f 2

3 3(Ep —Ep)(Ep —Ep+ Ap) Ep

1+ )Eo+ &o

4 PQA
3Ep2(Ep —Ep)

'

D= ——4 P' QA
3 Ep(Ep —Ep)2

Lz, and L . The signs of the splittings are taken Rom
the Ic .p calculations.

Here Eo ——Ej-, —Ep, and the bar above Eo and Eo
represents an average of the two spin-orbit split compo-
nents with weight two for I'q and 1 for I'8. Note that
p, (and the other spin-splitting coefficients) vanishes for
diamond-type crystals, where P' = 4 = 0. The magni-
tude and the sign of P' are extracted by comparing our
LMTO results for the I'i spin splitting (p, = —0.54 eV
As) with the k p expression [Eq. (25)] using LDA en-

ergy values listed in Table I. Since the spin splitting is
very sensitive to the value (and sign) of P', we expect
P' = —0.0123, obtained in this way, to be rather accu-
rate. As a consequence of the very small values of the
spin-orbit parameters Lo, L~, and 4 obtained from
the LMTO calculations and the small value of P', the
terms A, B, C, and D contribute little to p, . The corre-
sponding values for the spin-splitting parameter p in the
group-IV compounds SnGe (Ref. 27) and GeSi (Ref. 26)
are —272.67 a.u. and —7.1 a.u. respectively.

g. r;, lund along (»oj

The second-order k p interaction with I q proportional
to 2I + 4M give the main contribution to the band cur-
vatures [Eqs. (7) and (8) . This interaction is therefore
nearly isotropic and the 110] wave functions of I's still
can be assumed to have the form of angular-momentum
functions

[ j,m~ ) = ( 2, 6 z ), ( 2, + z ) corresponding to

TABLE VI. Values for the cubic splitting coefficients (p's in eV A ) and the linear splitting
coefficients (Cq and Ci, in meVA, ) of 3C-SiC. The pure LMTO results are compared to those
obtained by k p theory using the value P' = —0.0123. The values listed in the second (third) row
are calculated using LDA (corrected) energies.

LMTO
k. p (LDA)
k p (corrected)

7c
—0.54
—0.54
—0.50

71h
54.7
38.4
32.7

+8h
—46.8
—37.9
—32.2

$8e
—0.13
—1.52
—1.91

71e
0.32
1.71
2.11

0.05
C'I.

—0.10
t"-I,

+0.04



13 158 M. WILLATZEN, M. CARDGNA, AND N. E. CHRISTENSEN

0.4

0
0.2—

UJa

0
0

~ le
~ he
o se (

2 4 6 8
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denominator and reversing the sign. In this case we And
the values p, h = —46.8 eV A (LMTO) and p, h = —37.9
eV As (k .p).

8. Z'~ band along (11OJ

The I'& bands are given by (2, +—
) wave functions with

[110] being the quantization axis. The parameter P"' =
i(I'zs

[ p ]
I'I'), which enters into the expression for p„

and p~„was determined to be 0.7101 a.u. by combining
our LMTO calculations with k .p expressions, as already
mentioned. From Ref. 11, we have

FIG. 7. Detail of the spin splitting of the lowest p-like con-
duction band states along [110],close to the 1 point.

4PP'Q 4P2QE 2QsA
Qlh (26)

The lh curve is shown in Fig. 6. From the LMTO cal-
culations, we find the value p~h = 54.7 eV As. In addi-
tion, a small negative linear coeKcient is obtained using
a Ak + Bk fit. The linear term can be determined more
precisely from spin splittings of the hh band along [ill],
where no cubic terms contribute according to k . p the-
ory. We shall discuss this later. The p, h coeKcient for the
split-off band can be obtained from Eq. (26) by adding
the corresponding so splitting Ao to the energy Eo in the

0.1 5—)
0.1 0—E

LLIa
1

hh (111)
———he (111)(+hE)

hh-like and lh-like states, respectively, with quantization
axis in the [110] direction.

Perturbation theory up to fourth-order predicts phh
to be zero, but terms of order higher than ks (such as
k ) contribute to the splitting. In fact, from Fig. 5 we
observe contributions kom such higher-order terms. The
coefBcient for the lh band is given by

4PP'Q
3(Eo —Eo) (Eo +»o/3)

4P' QA
3(Eo —Eo) (Eo + 2Ao/3) A'

2QsA

3(Eo+»o/3)'&o
4PIIf Q~—

3(Eo" —Eo) (Eo +»o/3) &o
(27)

B. Discussion

Overall we And reasonable agreement between the val-
ues of the parameters derived from our LMTO calcula-
tions and those obtained with k p perturbation theory
(Table VI). The calculations are therefore consistent and
support our estimates of A, P', and P'". Moreover, we
conclude that the approximations made (pure J, eigen-
states, fourth-order perturbation theory, and matrix ele-
ments determined from the LMTO LDA) are valid. How-
ever, some discrepancy is observed between the LMTO
and the k - p results for the I'&5 bands, which signals a
partial breakdown of the approximation of pure J- states.

The fourth term is due to the interaction with the I'z
band. If we assume that the I's states along [110] are
predominantly (z, +2) (for he) and (—,+—) (for le), the
expression for pt would be obtained from Eq. (27) by
adding 4& to Eo and reversing all signs. The LMTO
and k . p results for p„and p~ are given in Table VI.
Furthermore, we And from Fig. 7 that the spin splitting
ef the he bands exhibits a very small but nonzero value
for ph, (found to be 0.05 eV A. ). From k p theory, this
coeKcient should be zero to third order in k, similar to
the case of the hh bands.

0
0 100

Wave Vector (G.01 A )

FIG. 8. Spin splittings of the hh (solid) and he (dashed)
I'8" bands in 3G'-SiC for k along [ill] as calculated with the
LMTO method.

C. Terms linear in k

The existence of spin splittings linear in k in zinc-
blende-type materials has been known for a long
time. ' Measurements using magneto-optical and
polariton-scat tering techniques ' yield information
about these linear splittings. Here we shall consider the
splittings in the [ill] and the [110]directions. For the sh,
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se, and s-conduction (c) bands there are no linear terms,
whereas the lh and le bands only show a linear splitting
along [110]. We designate the coefficients by Ci, for the
valence bands and Ck for the conduction bands.

It has been demonstrated that the main contribu-
tion to CA, and CI', usually is the second-order interac-
tion, bilinear in A: . p and in the spin-orbit Hamiltonian
H, between the I's and the uppermost d core levels (I'i2
intermediate states), and that the contribution from the
A:-dependent spin-orbit Hamiltonian vanishes. For SiC
the situation is diferent, since there are no core d states
in Si and C. We return to this point later. In Fig. 8 we
present the splittings of the hh and he bands along [111].
The symmetries are A5 and A4, respectively. For small
k, the splitting along [ill] is linear (no cubic terms) and
is related to CI, for the hh bands by

E(As) —E(A4) = 2~2Ckk .

CI, ———A
Ep, —Eg

(30)

where we use for the cation d states the empty I'i2 states.

A similar relation holds, of course, for the he splitting
with CI, replaced by C&.

The magnitudes of CA. and Ck are determined by fitting
the slope for small k and listed in Table VI. The signs
of the linear coeKcients were obtained &om Figs. 5 and
7 relative to the cubic spin-splitting terins in the [110]
direction. The absolute signs of Cy and C& are there-
fore determined &om the signs of the cubic spin-splitting
terms all ready found in the A: . p calculations.

In the [110]direction, the splittings of the hh and the lh
bands, assuming pure ( z, + 2) and ( 2, +—

) symmetries
and that the quadratic (effective-mass) splitting is larger
than the linear one, are

3~3
Ei,h (~4) —Ehh (~s) =

2

~3
Kh (~4) —Rh (~s) =

2

A similar relationship applies for the he and the le bands
provided that j and m~ are still good quantum numbers.
From the splitting in the [ill] direction, we find Cy =
—0.10 meV A. . We performed similar calculations using a
fit of the type Ak + Bk in the [110] direction to obtain
Ci, = —0.13 meV A (from the hh bands) and Cy = —0.12
meVA (for the lh bands). The agreement is quite good
and gives a measure of the validity of the assumption
that hh and lh states are pure eigenstates of J . For C&
we find in a similar way the values +0.04 meVA along
[ill] (he bands), +0.06 meVA. along [110] (he bands),
and +0.03 meV A along [110] (le bands).

Earlier we mentioned that Ck is mainly due to bilinear
second-order perturbation terms, including 0& and H,k-p
with the I'i2 (core d levels) as intermediate states. Since
there are no d states in the cores of Si and C, these terms
do not contribute to the linear splitting in SiC. CI„how-
ever, can be understood as arising from the empty I'i2
states through an expression of the type

In order to take into account the strong polarity of SiC
we use for A instead of the value 220 meVA used for
Ge and Si, a value of —300 meVA. , where the sign
reversal is due to the fact that the 3d states of Si (Fi2) are
above the Fis states. Using As~(Si) =0.005 (obtained by
extrapolating the splittings of occupied 3d states47) we
find

0.005
Ci, = 300 x = —0.1 meV A,—15

in perfect agreement with the LMTO calculations. The
I'i2 (Si 3d+ Ge 4d) contribution, which should be much
higher in zinc-blende-type SiGe, is probably the reason
for the discrepancy between the LMTO value CI, ———
1.8 meVA. in this material and the one obtained using
only Ge core 3d states with the equivalent of Eq. (31)
(CA,. = —4.0 meV A. ).

Concerning the value of C&, it is also reasonable to as-
sume that it arises from the spin orbit and p interactions
of I'&5 with I'~2. Because of the lower content of carbon
wave function in I'i2, we expect the Ck should be lower
than CI, by about a factor of g —3. The smaller gap,
however, should increase it by a factor of 2. Hence we
expect C& —sCI, = + 0.07 meV A. , also in reasonable
agreement with the LMTO result C&

——+ 0.04 meV A .
The sign of C& is consistent with Eq. (28) of Ref. 27. The
I'i2 interaction, not included in Eq. (7.8) of Ref. 11, is
also probably responsible for the anomalous sign of C&
in InP given in Table XI of Ref. 11.

VIII. IONICITY AND TRANSVERSE
EFFECTIVE CHARGE IN SiC

Ionicity is a somewhat qualitative concept. According
to Harrison, the polarity o.p is defined from tight-binding
parameters of the p-valence orbitals as follows

Ec Ea

[(E„—E„)'+ 4H'

where E„and E„are the term energies of the cation
and the anion, respectively. For SiC one finds the value
nz ——0.29 (LMTO with q = —1.34 according to Ref. 31)
and n„= 0.39 (Harrison), much larger than the value
found for GeSi (0.07). For SnGe n~ has been calculated
to be 0.20. Although, following Harrison, p-bonding
—+ p-antibonding transitions are often believed to be re-
sponsible for global dielectric properties, one can argue
that these may be better represented by transitions be-
tween bonding-antibonding sp hybrids. We have thus
evaluated the hybrid polarities o.p using the correspond-
ing values of Eh, Eh, and Hh in Eq. (32). We find
from the tight-binding parameters of Ref. 28 o.h,

——0.61,
and from those of Ref. 31 ng = 0.66. (This value is ob-
tained directly &om the first-order tight-binding linear
mufBn-tin-orbital sp two-site Hamiltonian. In Ref. 31,
values are also given obtained &om a Hamiltonian cor-
rected to second order and reorthogonalized. This gives
nh, = 0.47.)
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SiC is an in&ared-active material and the optical
phonon at I' is associated. with an electric dipole moment
represented by the transverse efFective charge eT. It is of
interest to estimate eT to obtain insight into the in&ared
activity of Si C superlattices and also the local modes
of Si and C. Using the approxixnate expression for e&
given in terms of nz and the effective charge Z' (Ref. 28)

eT = —n„(1 —n„)+ Z*,

where Z* is 1.02 for SiC (Table 9.4 in Ref. 28), we find
from Ref. 31 eT = 1.9O, which is much larger than that
found for GeSi (0.09) and SnGe (0.47), but close to typ-
ical values for the III-V compounds. The experimental
values given for e& in SiC is 2.69. The value of the
effective charge of carbon impurities in Si is 2.28 (af-
ter efFective mass correction of the value 2.4 reported in
Refs. 48 and 49). Using instead the hybrid parameters
above, we find the effective charges e& ——2.04 (Ref. 28)
and e& ——2.01 (2.00) using ah = 0.66 (0.47).si These val-
ues are somewhat closer to the experimental value than
those obtained for p-orbital parameters. We emphasize
that the positive sign of eT in SiC, and the correspond-
ing negative charge in the C atom, is consistent with the
large electronegativity of C compared to Si. Hence the
phonon-induced in&ared absorption, proportional to eT
should be considerably higher for the local vibrational
modes of C in Si, in comparison with phonon-induced in-
frared absorption in the group-IV compounds GeSi and

26,27,50

band structure calculations for SiC in the local-density
approximation. Since the LMTO wave functions should
not be significantly affected by quasiparticle corrections
to the Hamiltonian, we determine matrix elements for
the A: p Hamiltonian &om the LMTO band structure.
The matrix elements so obtained and the experimental
energy gap values allow us to calculate renormalized ef-
fective masses and Luttinger parameters for SiC. These
parameters are still poorly known for this material. A 16
x 16 k .p Hamiltonian calculation was performed using
as input the above-mentioned parameters so as to obtain
the detailed band structure of the upper valence and the
lower conduction band states around the F point in the
[100], [110], and [111] directions. We find that the va-
lence band maximum is located at the I' point (except
for a small shift due to the linear k terms), as in the case
of semiconducting diamond, and the conduction band
minima at the I point. Inversion-asymmetry-induced
spin splittings have been discussed in terms of k .p and
LMTO calculations. The cubic and linear spin-splitting
coeKcients were found to be much smaller than those ob-
tained for SnGe and GeSi. (The k spin-splitting terms
should give rise to splittings linear in k in Si„C superlat-
tices provided that both n and m are odd. ) The ionic-
ity and transverse efFective charge were determined. The
relatively high value of eT of SiC, compared to GeSi and
SnGe, may lead to in&ared absorption for sample thick-
nesses compatible with molecular-beam epitaxy growth
techniques.

IX. CONCLU SIONS

We have performed self-consistent relativistic (with the
spin-orbit intercation treated as a perturbation) LMTO
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