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In8uence of thermal fluctuations on single-vortex pinning in Rb3C6p fullerene superconductors
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From the experimentally obtained H ( T) dependence of the transition boundary between short-range
and long-range vortex order for Rb3C60 superconductors, the temperature dependences of the effective
potential barrier for pinning of a single vortex on a pinning center and the effective pinning force are cal-
culated. It is shown that the effective barrier falls almost linearly with the increase of temperature and
that the harmonic thermal fluctuations strongly decrease the effective pinning force as T

A large region of Shubnikov mixed state is characteris-
tic of alkali-metal-doped fullerenes which are strong
type-II superconductors. For applied fields between the
first (H, &} and the second (H, 2} critical fields, quantized
flux tubes are formed inside the sample. In the absence of
disorder they form a regular lattice of parallel flux lines
or vortices, the vortex lattice (VLL). Disorder in the
crystal structure of a superconductor, such as defects,
twinning boundaries, inhomogeneities, etc. , leads to pin-
ning of vortex lines, and the crystalline long-range order
of the vortex-line lattice as was shown in Refs. 1 and 2 is
unstable in the presence of randomly distributed pinning
centers. The magnetic properties of a superconductor
reflect all these processes. The magnetic behavior of ful-
lerene superconductors shows several unusual properties,
such as very rapid fall of the critical-current density (J, )

with temperature and magnetic field. Thermal fluctua-
tions play an important role in these phenomena. The to-
tal combination of factors (a} high critical transition tem-
perature ( T, =20—40 K), (b) short coherence length
(/=30 A), apd (c) large penetration depth (A, =2500 A)
leads to an enhancement of the effect of thermal fluctua-
tions. In Ref. 5 it was shown that in extreme type-II su-
perconductors phononlike harmonic thermal fluctuations
of vortex lines reduce the effective pinning strength and
hence strongly reduce the value of J, . The effects of fluc-
tuations are remarkable not only in strong magnetic fields
but even close to H„. There are three energies most irn-

portant in the consideration of pinning of the vortex
lines: pinning energy, repulsive intervortex interaction
energy, and an entropic contribution.

It is evident that due to a random distribution of pin-
ning centers their positions do not coincide with the po-
sitions of the vortices in the VLL. Therefore pinned vor-
tices are displaced with respect to the vortex lattice sites.
That leads to destruction of long-range order; instead, a
short-range order (or vortex glass) exists.

A pinned vortex is in a potential well with a pinning
barrier U;„. The effective barrier height U ff Up kT
is dependent on competition between thermal fluctua-

tions and the pinning force. When the repulsive energy
becomes equal to U,z the pinning force is overcome and
the vortex takes its place in the VLL. The higher the
temperature the smaller the effective potential barrier;
hence a smaller repulsive energy is necessary to unpin the
vortex. A vortex line at a finite temperature can, with
some probability, overcome the potential barrier that is
created by a pinning center. If the gradient of the mag-
netic pressure is not zero (5p/5xAO) then vortex lines
move to regions with smaller values of the magnetic in-
duction. The interaction of a vortex with a cylindrical
volume of diameter r &g was considered in Ref. 7. Be-
cause the core of the vortex is in the normal state and the
free energy of the normal state is higher than that of the
superconducting state, the movement of the vortex from
a normal to a superconducting volume leads to an in-
crease of energy, b, W=wV. Here, w=H, /8' is the
volumetric energy density, H, is the critical field of the
bulk material, and V is the volume of the vortex. For a
unit vortex length b, W=h, g /8. This is the barrier
that a vortex has to overcome as it moves from a normal
to a superconducting volume. The work of the move-
ment over a distance about g is equal to b, W. Therefore
the average force f for a volutne of diameter r is

fz -H, gr /8, — (l)

where both H, and g are temperature dependent. Close
to the critical temperature the H, (T) and g(T) depen-
dences are known from the Ginzburg-Landau theory and
the equation for f(p ) is

P (l —T/T, )
(2)

64sr A.ogo

where Po is the quantum fiux and A, is the penetration
depth.

At low temperature (T«T, ) where H, and g are
practica11y temperature independent, the influence of the
temperature dependence of r, where r is the linear size of
the defect, on the pinning force should be taken into ac-
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count [see Eq. (1)]. The coefficient of linear expansion is

A=1/l Xdl/dT, (3)

where / is a length. On the other hand, A=yC, /3B,
where y is Gruneisen s parameter and C, is the specific
heat. It' is seen that A depends on temperature in the
same way as C, . It is known from dielectrics that
C„—T and T~O and C„ is a constant at T&&O~ (O~ is
a characterstic temperature). Proceeding from this, one
finds A= AT", where 3+n ~0. Substituting this in Eq.
(3) one gets

i=10 Xexp[AO[(T/T, )"+'—1]],
where AO=ATO '/(n+1). Taking into account that
the power of the exponent is much less than unity, one
obtains

1—= Io[1+Ao[(T/T, )"+'—1]] .

The I( T) dependence is changed from l —T to / —T and
in the low-temperature region the pinning force increases
with temperature just as the linear size of the defect does.

It is necessary to note that all previous equations are
approximate and, in the model considered, vortices are
acting independently, i.e., there is no correlated motion.
The quantitative effect of thermal fluctuations on that
process is still controversial from both theoretical and ex-
perimental points of view.

In some theoretical and experimental research (see, for
instance, Refs. 10—12), the vortex-depinning process and
the inhuence of thermal fluctuations on it were investigat-
ed for high-T, superconductors with strong anisotropy.
However, this question for materials with high critical
temperature, three-dimensional superconductivity, and a
strong pinning potential is unresolved.

In Ref. 4 a transition in a vortex system from short-
range to long-range order in the collective vortex-pinning
regime was shown. A superconducting Rb3C60 powder
sample was investigated by dc magnetization measure-
ments. In that experiment the magnetic-field dependence
of the inverse critical-current density was linear. The
behavior of 1/J, (H) is in good agreement with collective
pinning theory ' which gives the relation between
critical-current density and magnetic-field induction (B)
as

clusters R, becomes equal to the size of the supercon-
ducting grains in the sample. The transition boundary
on the HT diagram is linear (Fig. 1) and can be described
by

H=5. 6X10 X(1—T/T, ) . (6)

At small external magnetic field the vortex system is a
short-range ordered structure. With increasing H,„, the
distance between vortices decreases as d=($0/H, „,)'
and hence the repulsive interaction energy U„ increases.
On the transition boundary U„„becomes equal to the
effective potential barrier U,z and the pinned vortices
overcome the barrier and form a vortex lattice. This
means that a transition from a vortex glass to a distorted
vortex lattice has occurred. A similar transition from
short-range to long-range vortex order in the regime of
collective vortex pinning was experimentally observed by
Trauble and Essmann. '

One can easily estimate the repulsive energy U„and
the repulsive intervortex force f„~ on the transition
boundary (here and further a tilde shows that the value of
a parameter is taken on the transition boundary) and,
since at zero temperature U„~(0)= U~;„=U, tr(0) andf„=F,find that the values of U;„and F are constant
in the whole experimental region of T and H.

For this estimation let us consider the interaction of
two parallel Aux lines. The force experienced by Aux line
1 due to the presence of another, parallel Aux line 2
(separated from fiux line 1 by a distance d) is given by'

fd=(go/8n A, )Ki23 d
(7)

where K& is the modified Hankel function of order one.
For x =d /I, « 1 the function K, (x) may be approximat-
ed by

1 (1.23 —2 lnx )x
x 4

(8)

60

For the specimen under consideration A, (0)=2500 A
(Ref. 15) and d(0) =(Po/H )'~, where H(0) = 56 kOe [see
Eq. (6)]. Because the repulsive force f„~ and pinning
force F are equal and opposite on the transition bound-

J (F /V )uzB —i (5) long—
range order

Normal-

where F is the mean square value of the random pinning
force, V, =R,I., is the volume of a correlated vortex
cluster, and L, (R, ) is the longitudinal (transverse) size of
this cluster. On the transition boundary between short-
range and long-range vortex order, at the characteristic
value of external magnetic field H, kink in the linear
dependence of 1/J, (H) was observed. It was shown that
the value of the pinning force F was a constant in the
whole experimental region of external magnetic field and
temperature. Hence, following Eq. (5), the changes of
slope in the 1/J, (H) dependence lead an increase in
volume of the correlated vortex clusters on the transition
boundary by a factor of 6. The transverse size of the
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FIG. 1. Phase diagram of Rb, c«superconductor {Ref. 4).
X, values of the lower critical magnetic field {H„),multiplied
by a factor of 100 {Ref. 18); 0, values of H; +, values of the
upper critical magnetic Geld {H,2) {Ref. 15).
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FICx. 2. Temperature dependence of f„~; solid line corre-
sponds to Eq. (10) and dotted line to Eq. (11).

FICx. 3. Temperature dependence of the efFective pinning po-
tential barrier; dotted line corresponds to Eq. (14).

ary, using values of A, (0) and d(0), we can find the value

F~ =0.4 dyn/cm of the pinning force per unit length of a
fIux line.

From the experimental values of H at different temper-
atures and A, ( T) from Ref. 15 using a two-fiuid model ap-
proxirnation

A,(T)=A,(0)[1—(T/T, ) ] (9)

f„p=f„p(0)—3 X 10 t
I'

(10)

The dotted line on Fig. 2 corresponds to the equation

f„=0.15 X 10 (1 t )—
X 4—[ 1.23 —2 lnF ( T) ]F ( T)

4F(T)
where t =T/T, and

0.074( 1 t )
'~2—

(1 t )i/2

which has been obtained by substituting Eqs. (6), (8), and
(9) into Eq. (7).

Here we should note that at low temperatures the
infiuence of geometrical factors [see Eq. (4)] on the pin-
ning force will decrease the slope of the transition bound-
ary to zero at T=O. However, in our experimental tem-
perature window

(which gives good agreement with experimental re-
sults), ' ' one can calculate values of the repulsive inter-
vortex force on the transition boundary which corre-
spond to escape of the pinned vortex from the potential
well at different temperatures. The results of this calcula-
tion are shown in Fig. 2. The experimental dependence
f„(T) can be well described by the formula (solid line on
Fig. 2)

U =, h
0o~ i2 4P o(x )

4~
(12)

where Ko(x ) is the McDonald function of zero order.
For x =d /A, ((1 the function Ko(x ) may be approximat-
ed by

d ( 1.11—lnd /A, )d /A,
n

4
(13)

The values of U,~ calculated from experimental results
using Eq. (12) are shown in Fig. 3. The dotted line in Fig.
3 corresponds to the equation

U,s = [0.11—lnF(T)]+ ' F (T), (14)

which has been obtained by substituting Eqs. (6), (9), and
(13) into Eq. (12), and F( T) is the same as in Eq. (11).

As can be seen from Fig. 3 the effective potential bar-
rier for pinning of a single vortex on a pinning center falls
almost linearly with increasing temperature, and harmon-
ic thermal fluctuations strongly decrease the effective pin-
ning force as T as shown in Fig. 2.
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5=0. 18T/T, T 0.82T/T, =23 K

this effect was not observed; thus it is justi6ed to use the
linear Eq. (6) for calculations in that temperature region.

The value of the effective pinning potential barrier U,ff

at different temperatures, which on the transition bound-
ary equals U„, can be estimated by analogy with the es-
timate off„.U„~, which is responsible for repulsion of
the two Aux lines per unit length of the line, is given by'
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