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Perturbation approach to the reflection and transmission of light
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A perturbation approach to the calculation of the optical response of a crystalline slab within
the framework of phenomenological electrodynamics is presented. Analytical expressions for the
change in the reQection and transmission coefBcients of the slab due to a small perturbation are
derived. The main advantage of the approach is that it takes into account both surface and bulk
contributions to optical efFects. The theory is well suited to the analysis of experiments in which
the optical effects due to the spatial dispersion of a dielectric tensor are measured. We apply the
derived formulas to the analysis of the nonreciprocal reQection of light from magnetoelectric Cr&03.

I. INTRODUCTION

In investigations of solids by optical methods one often
deals with reflection and transmission e8'ects of a small
magnitude. Such eÃects may be considered as originated
&om a small addition b~ to some background optical di-
electric tensor e . This small addition may be due to
both external perturbations and/or some internal inter-
actions. Despite the smallness of b~, it often considerably
complicates calculations of corresponding optical effects.
If bi is a local function of coordinates, then this diKculty
is purely algebraic in its nature and can be overcome by
making certain approximations. If, however, be is non-
local we face the well-known difhculty of principle. The
point is that the boundary conditions for electric and
magnetic fields of light waves needed for the calculation
of an optical response cannot be found without going into
details of light interaction with matter inside a thin sur-
face layer (see, for example, Refs. 1 and 2). When be is
nonlocal, then the relative surface contribution to corre-
sponding optical eKects may be appreciable and should
be taken into account in a proper way. This difBculty
has been known for a long time and has manifested it-
self again in the recent search for a breakdown of time-
reversal symmetry in high-T superconductors, where
theoretical calculations of the optical eKects must be con-
sistent with the Onsager symmetry principle. To avoid
this difBculty a symmetry approach to the reflection and
transmissiom of light was proposed. ' Being absolutely
rigorous, this approach has proved to be very useful in
analyzing experimental data. A limitation of this ap-
proach is an inability to get analytical expressions for
reflection and transmission coefBcients in terms of a few
physical parameters characterizing the optical properties
of a medium.

The purpose of this paper is to obtain analytical ex-
pressions for the reflection and transmission coeKcients
for a spatially dispersive medium with arbitrary symme-
try within the framework of' phenomenological electro-
dynamics. More precisely, we shall get expressions for
variations of these coefBcients caused by a small but oth-
erwise arbitrary variation be of the dielectric tensor of a

medium which are valid up to the first order in be. Thus
our theory is a perturbation theory. The derived expres-
sions for the optical response will automatically satisfy
the Onsager symmetry principle.

The problem we consider here is closely related with
calculations of surface corrections to the reflection and
transmission coefIicients. This last problem was studied
in many papers, and among them we note those where
the Green's function method was used. The Green's
function formalism is a general basis for a perturbation
treatment and can be applied to our problem. However,
we choose another approach, which is more simple and
directly leads to the sought-after result.

The formal derivation of expressions for the reflection
and transmission coeKcients is presented in Sec. II. The
derived formulas are especially suitable for an analysis of
optical experiments where efFects of the spatial dispersion
are studied. In Sec. III we demonstrate this by analyzing
the nonreciprocal reflection of light &om magnetoelectric
Cr203.

II. THEORY

We consider monochromatic light incident &om the left
on a crystalline slab of thickness d. We take the z axis
to be perpendicular to the slab and the incident wave
vector k to be in the xz plane [see Fig. 1(a)]. The slab
occupies the space 0 & z & d. We assume the slab obeys
macroscopic parallel translational symmetry, so that af-
ter the cell-averaging along the surface the x dependence
of the fields has the form e'", where k is the projection
of the wave vector of the incident wave onto the x axis.
The electric field of the light wave may be represented in
the form

Z&ik, z + R —iA: z

T(z), z) 0,

where I, R, and T represent the incident, reflected, and
transmitted waves, respectively. Here and in the follow-

ing we omit the factor e ' and the frequency argument.
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(a)

and transmission problems for the case where e = e +be.
To this end we introduce two auxiliary solutions for the
unperturbed problem. In the first of them, Ez, the inci-
dent and reHected beams are interchanged as compared
with Eq. (1) [see Fig. 1(b)]. This solution has the same
form as (1), except k must be replaced by —k:

Eo( ),I,. I', e'"* + R.', e—'"", z ( 0
i & TO(z) z&0.

The second auxiliary solution, E2, corresponds to the
light incident on the slab from the right and having the
direction opposite to the direction of the incident light in
Eq. (1) [see Fig. 1(c)]. This solution may be represented
as

z(d. (4)

FIG. 1. Geometry of reBection-transmission from a slab.
(a) Original problem with the perturbed. dielectric tensor

+ be. Corresponding solution of Max@sell's equations
is denoted by E(x, z) in the text. (b) and (c) illustrate the
origin of the tv' auxiliary solutions E& and Ez, respectively,
for the unperturbed problem.

For z ) d T(z) = T exp(ik, z). Note that inside the slab
the field (1) contains a microscopic part, i.e. , a part
rapidly varying with z through a crystal cell. Due to the
presence of the boundaries the macroscopic Geld cannot
be unambiguously deGned.

The starting point of our analytical calculations is the
mell-known bilinear relation between two arbitrary free-
of-source solutions E and E of Maxwell equations

We can make the physical meaning of the solutions Ez
and E2 more clear if we notice that in an experimental
setup corresponding to our problem there are one source
and two detectors: the first of them measures the inten-
sity of the reBected wave and the second measures the
intensity of the transmitted wave. If we put the source
onto the place of the detector 1 or 2 (and set be = 0) we
obtain the solution E~ or E2, respectively.

Now we substitute Ei into Eq. (2) for E and integrate
this relation over z from 0 to d. Due to specific choice
of E and Eo the relation (2) becomes independent of x
and the values K, (0) and K, (d) can be expressed via the
reHectivity (2 x 2) matrix r p, which couples the ampli-
tudes of the incident and reHected beams: B = r pIp,
where n(P) denotes the s or p component of the reHected
(incident) wave. After simple but somewhat lengthy al-
gebra we obtain N, (d) = 0 and

div N = i —(DE —D E),c (2)

where N = (E x B —B x E); B and D are magnetic
induction and displacement vectors, respectively. We as-
sume that H = 8 and all magnetic eH'ects are incorpo-
rated in D, i.e., all induced currents are included in the
definition of the displacement vector through the mate-
rial relation D(r) = jdr' e(r, r') E(r'), where e(r, r') is an
optical dielectric tensor. We assume that the solutions
Eo and E in Eq. (2) correspond to the dielectric tensors
of the slab e and e = e + be, respectively. Here, be is a
dielectric perturbation.

To be more concrete we assume the tensor e is time-
odd (i.e. , all optical effects with the unperturbed medium
have to be reciprocal) and its dependence on x and y is lo-
cal, i.e., e,&(r, r') = e,I, (z, z')b(r~~ —

rI~), where r~~
= (x, y).

Note, that our consideration can be easily extended to
the tensor eoI, of a quite general form. An arbitrary de-
pendence of e,.& on z is allowed, in particular, the slab
may have a multilayer structure. The tensor be may
be nonlocal and in general has a coordinate dependence
be;g, (r, r') = b'

e(r~~
—

rI~, z, z').
Our key assumption is that the problem with e P can be

solved exactly for the Belds E and B, and now we use
the relation (2) to obtain the solutions of the reHection

2k, (r p —r p)Ii Ip = i — dz dr' Ei(r)be(r, r')E(r'),
C p

(5)

where r
&

is the reHectivity matrix for the unperturbed
problem. In deriving relation (5) we have taken into
account that r p

——rip (see Ref. 9), where ri p
con-

nects the rejected and incident waves in the solution E~,
Eq. (3). We note that the integrand in Eq. (5), in fact,
does not depend on x and it could be transformed to a
form in which this independence of x would be apparent.
However, for further applications it is more convenient
to retain the dependence of all the functions in the inte-
grand of Eq. (5) on x (see Sec. III).

Now we take the simplest form of the perturbation the-
ory and replace the electric Beld E in the integrand in Eq.
(5) by the field E . Thus we obtain a simple expression
for the change of the reQectivity matrix br p ——r p —r

&
due to be which is valid up to the Grst order in be:

2k, br pI, Ip = i — dz dr' E,(r)8e(r, r')E (r').
C p

The expression for the change in the transmission matrix



51 PERTURBATION APPROACH TO THE REFLECTION AND. . . 13 081

t p, defined through the relation T~ = t pIp, can be
obtained quite analogously if we substitute E2 into Eq.
(2) for Eo and perform operations similar to those used
in deriving Eq. (6). The result is

d

2k, bt pIi Ip = i — dz dr' E2(r)be(r, r')E (r'). (7)
C

jn deriving Eqs. (6) and (7) we have avoided the problem
with the boundary conditions. Instead, however, we need
to know the tensor be(r, r') within a thin surface layer.

Of course, the first-order perturbation theory and, con-
sequently, Eqs. (6) and (7) are not always applicable,
even if bi is small as compared with e . Though we
cannot give a rigorous mathematical formulation for the
applicability of Eqs. (6) and (7), usually it is not too dif-
ficult to do this for every concrete problem. An example
of such a problem is the total internal refIection from a
chiral medium. Despite existing limitations, there is a
wide class of problems such as investigations of symmetry
changes at phase transitions by optical methods, which
may be solved by using the presented approach.

A comment concerning the above-mentioned possi-
bility of applying the Green's function method to our
problem is in order here. The expressions for the
re8ected and transmitted waves explicitly containing
Green's functions are inconvenient for calculations
of the optical response, especially for an anisotropic
medium and oblique incidence. The advantage of the pre-
sented approach is that it avoids from the beginning the
explicit use of the Green's functions and directly leads
to the relatively simple expressions (6) and (7) for the
optical response. Though the difIerence between both
approaches is not a difI'erence of principle, it is essential
for a practical usage.

As we have already mentioned, all the fields entering
Eqs. (5)—(7) contain microscopic, i.e. , short-wavelength
parts. For a practical usage of Eqs. (6) and (7) it is nec-
essary to introduce the macroscopic description of light
propagation in the slab. The presence of the bound-
aries complicates the issue. The point is that the compo-
nents E„D,and D„rapidly vary across the boundary.
For this reason the separation of these components into
short- and long-wavelength parts has no physical mean-
ing. However, the components D„E, and E„, slowly
varying across the boundary (if the first-order perturba-
tion theory is applicable), can be partitioned into the mi-
croscopic and macroscopic parts in the unique way. Con-
sequently, for one of the two factors in the products of the
type D, E; [see Eq. (2)] t.he macroscopic part can be un-
ambiguously defined. Due to this fact, the macroscopic
description is still possible. Indeed, the displacement vec-
tor D is transverse and this is also true about its short-
wavelength part, D;, , but the short-wavelength part of
the electric field, E;, , is almost longitudinal. Hence,
after the integration over z, the scalar products of the
type D; E; contribute negligibly small to the right-
hand sides of Eqs. (5)—(7). [Remember that the fields

(1), (3), and (4) have been already cell-averaged along
the surface. ] The terms linear in these microscopic parts
disappear after the integration over z. Consequently, we

may consider all the fields as macroscopic and use the
macroscopic representation for the tensor be to express
the reHection and transmission coefIicients in terms of a
few phenomenological parameters.

The above arguments are only qualitative, but, in prin-
ciple, Eq. (5) may serve as a starting point for a defi-
nition of macroscopic parameters describing the optical
response of the slab in terms of a microscopic dielectric
function. It must be emphasized that small variations of
D, E, and E„across the boundary are the key con-
dition for a macroscopic description of light reHection
and, as a consequence, are a common feature of the other
approaches.

III. APPLICATION TO NONRECIPROCAL
REFLECTION FROM Cr20~

( &)E ( I) [&iki( ) + &zkl ( )]E ( )2 ~l

BEi,(r)
+&,'~t (r)

~l
(8)

where p, gi (r) is a time-odd tensor of rank three. Su-
perscripts s and a denote, respectively, symmetrical and
antisymmetrical, in permutations of the indices i and k,
parts of the tensor p;k~. The arguments given at the end
of Sec. II allow us to neglect other than the first-order
derivatives in Eq. (8). As seen from Eq. (8), transmission
optical efFects in a homogeneous medium do not depend
on p,.I,&. Consequently, this tensor describes the infIuence
of the boundary on the optical response.

Below T~ ——307K, where the tensor p;I, ~ is nonzero,
Cr203 has the magnetic point group 3'm' with spins of

The nonreciprocal (NR) reHection from antiferromag-
netic magnetoelectric Cr20~ was predicted
theoretically and observed experimentally. The
essence of the efI'ect is that the ellipticity and rotation
of the refIected light change their signs when so do all
the spins of Cr + ions, that is, nonreciprocal efI'ects ex-
plicitly probe a violation of the time-reversal symmetry.
As it has been already pointed out, the surface plays
an important role in these eKects and should be properly
taken into account. In this section we calculate the NR
optical response of semi-infinite Cr203 and demonstrate
the advantage of our approach in analyzing such types of
problems.

In order to calculate r p by using Eq. (6) we need
an explicit form for the tensor be. In media with zero
net magnetic moment, the optical nonreciprocal effects,
if any, may be due only to the spatial dispersion of an op-
tical dielectric tensor, i.e., spatial derivatives must be in-
cluded in material relations. A special feature of magne-
toelectrics is that three-dimensional parity symmetry is
broken. Therefore, the lowest, i.e. , the first-order deriva-
tives of the fields are sufFicient to describe the magneto-
electric (ME) effect in optics. Extending the Onsager
symmetry principle to an inhomogeneous medium
with broken time-reversal symmetry and zero net mag-
netic moment we can write
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Cr + ions pointing along the threefold axis C3 in an al-
ternating manner. We consider the normal incidence re-
flection and take the orientation of the crystal axes such
that z

~~
U2 (twofold axis) and x

~~
Cs.

Mathematically the nonreciprocity in reflection man-
ifests itself as a linear dependence of the r-matrix el-
ements on the tensor p, p~. For normal incidence only
the oK-diagonal elements r „and r„may be time-odd;
therefore, we calculate br „=—br„

Substituting expression (8) in Eq. (6) and using the
properties of the zero-order solution for the semi-infinite
crystal, we easily obtain

1
~:,.= -(~**—~we)

2
(10a)

1
'Yxy~ — (~~~ + ~ww) ~

2
(10b)

and substitute these expressions in Eq. (9), we obtain for
br „exactly the same result as in Ref. 18. However, as it
follows from Eqs. (10), the optical ME tensor n defined
through the usual material relations

2
b *" (1+"-)(1+")

li~*" +~*" "*+")I' (9)

where n and n„are indices of refraction for light waves
polarized along the x and y axes, respectively. In deriv-
ing Eq. (9) we have used simple relations between the
amplitudes of the incident 1 and transmitted E waves
at z = 0: Eo = 2IO/(1+ n ) and E„=2I„/(1+ n„). In
addition, we suppose that the spatial width of the surface
transition layer [where p,'. &&(r) and 7,&&(r) vary rapidly] is
much less than the wavelength of light. The components

and p „,are responsible for the NR rotation and el-
lipticity of the reAected light. The former quantity may
be measured in transmission experiments, but the latter
describes the inhuence of the surface on reBection. It is
important to emphasize that this surface term is not a
small correction to the bulk one. These two terms are,
in general, of the same order of magnitude.

It is interesting to compare the refiection coefficient (9)
with the result obtained in Ref. 18 by solving Maxwell's
equations together with boundary conditions. These
bound. ary conditions have the tangential components of
K and H = B—6E continuous across the boundary. Here
n is the magnetoelectric tensor at optical frequencies. If
we set

The calculations in the considered example are rather
simple due to the absence of the normal component E of
the electric field. At oblique incidence the E, is nonzero
and the integration over z in Eq. (6) becomes somewhat
more complex. Fortunately, there is a simple way to re-
solve the difBculty, ' expressing E in terms of the
components D„E, and E„which are slowly varying
across the boundary.

IV. CONCLUSION

We have derived the expressions for the optical re-
sponse of a media with a nonlocal optical dielectric ten-
sor. The only assumption made in our derivation was
that the nonlocal part be of the total dielectric tensor

+ b~ can be treated within the framework of the
erst-order perturbation theory. There is a wide variety
of real systems for which such separation is justified.

The distinctive property of systems with a nonlocal
optical dielectric tensor is the relatively large inhuence
of the surface on an optical response. The approach we
presented in this paper is especially suited for such sys-
tems, since it permits one to obtain a symmetry-allowed
parametrization of the optical response in the form in
which the surface contribution is separated &om the bulk
one. In particular, the expressions (6) and (7) can be ap-
plied. to the cases where the bulk contribution to optical
eKects equals zero. For example, the bulk contribution
to the NR re8ection from antiferromagnetic La2Cu04
equals zero, but it is not the case for the surface con-
tribution, since antiferromagnetic ordering in this crystal
does not break translational invariance along the surface
(assuming surface normal to be perpendicular to Cuo2
layers) .

Our results can also be applied to the study of the
optical eBects which are due to the spatial dispersion in
macroscopically inhomogeneous media. An example of
such a medium is a current-carrying superconductor. In
Ref. 23 we have obtained the symmetry-allowed forms
of the r matrices for this system. However, the explicit
calculation of the reQection coefBcients for an oblique in-
cidence and anisotropic crystal by using the traditional
method is rather diFicult. Our approach permits one to
carry out the calculations without any essential diKcul-
ties.

D =~'E+cH,
B =8+6 E

(11)
(12)
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