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Integral thermodynamic properties of Mo and W in the nonempirical
effective-potential approach
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Cohesive and vibrational properties of W and Mo are calculated nonempirically. Parameters of
a model are obtained by fitting to the equation of state (pressure-volume dependence). Partial and
total densities of states are investigated for diAerent pressures. It is shown that our method of fitting
gives a good agreement of cohesive properties with the data calculated from the universal function
of Rose et a/. The applicability of the atomic-sphere approximation to the calculation of the integral
thermodynamic properties of Mo and W is discussed.

I. INTRODUCTION

Molybdenum and tungsten are the refractory metals
with a large cohesive energy and bulk modulus. Such
properties cause wide use of these metals in the industry
and are the topic of a lot of investigations in material
science. Measuring of high-pressure properties of these
metals (especially of tungsten) is a serious problem be-
cause of there extremely low compressibility. That is why
any predictions of behavior of Mo and W in extremal
conditions have to be appreciated. The progress in the
electronic theory allows us now to produce quantitative
predictions of the simple crystal structures of elements
and some binary and ternary compounds by calculating
the ground state energy of these systems. Recent de-
velopments in understanding the structural stability are
achieved with the calculations at the absolute zero tem-
perature. The rapid progress in the erst-principles study
of phases at nonzero temperatures may be obtained on
the basis of modern first-principles approaches. Using
self-consistent band structure calculations, one can eval-
uate the binding energy curves for a system of atoms on
a given lattice. Analysis of such curves for elements
and for simple compounds and alloys yields theoretical
ground state properties such as cohesive energies, equi-
librium lattice separations, bulk moduli, etc. , that are
in a good agreement with experimental data. The
nonempirical calculations of tungsten were used to study
the influence of microalloying on the ductile-brittle phase
transformation in W."

Here, we present a straightforward procedure of eval-
uating difFerent properties of W and Mo on the basis of
nonempirical efFective-potential approach. We shall base
our calculations on the linear muon-tin orbitals (LMTO)
approach for solids. The LMTO procedure is known to
be a very effective method for nonempirical calculations
of band structures. Recently, we used this method for cal-
culations of the efFective pair potentials for Cs (Ref. 11)
and for description of the curved Arhenius plots in self-
difFusion. In this paper, we present the results of the
first-principles LMTO-ASA (atomic-sphere approxima-
tion) calculations of electronic properties together with

thermal properties of Mo and W. We discuss the limits of
I MTO-ASA application to the pressure-volume diagram
of these metals and show the way to overcome these lim-
itations. Also, we give a scheme for prediction of the
pressure-volume dependence in a wide region of volumes
per atom (i.e. , for highly compressed and highly tensed
crystalline lattice). On the basis of the efFective-potential
approach, we calculate the cohesive energy as a function
of volume and values of the second and fourth moments
of phonon frequencies. These results are used for the
calculation of the Debye temperature of Mo and W.

II. FORMALISM

Herewith we give the brief description of the theory
which will be applied to the calculations. Self-consistent
band structure calculations for the set of the cell volumes,
0, give the volume dependence of the total energy, Et &,

of the crystal:

In order to perform self-consistent field calculations in
the ASA, the spherically averaged electronic density is
used, and for this purpose the one-center expansions are
sufBciently accurate. The total energy of the electrons
in the ground state may, according to density-functional
theory, be estimated as

E... = ) e, —Eg, + E.i + E..
Here, e, are the one-electron terms, Eg, is the double
counting energy, E ~ is the electrostatic energy which can
be calculated from the Madelung constants, and E„ is
the exchange-correlation energy. Eg, is calculated &om
the electronic density, p(r) and crystal potential, V(r),
as

1
Ed, = — p(r)V(r)dr.

2

Here, V(r) is a spherically symmetric potential. It is now
fairly simple using the Born-Oppenheimer and the local-
density-functional approximations to carry out first-
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principles calculations of the full pressure at zero tem-
perature, that is the change of the total energy with uni-
form compression, i.e. ,

P(O) =—

P(Ao) = 0. (5)

From this dependence the bulk modulus, or inverse com-
pressibility, B,

We have neglected in Eq. (4) the zero-point motion of
the nuclei. Performing these calculations on a large set
of volumes, we receive the dependence of the pressure on
the volume, which enables us to estimate the equilibrium
atomic volume, 00, &om the condition

E(a) = —E,~h(l + a*) exp( —a*). (10)

a is a length scale characteristic of the condensed phase,
which we will take to be the lattice constant, and ao is the
equilibrium lattice constant. The parameters of potential
(9) will be obtained by fitting to the pressure-volume
dependence carried out &om LMTO-ASA calculations for
different volumes. Making use of this potential, we obtain
the second. moment of frequency spectrum u2,

In this expression, E, h is the absolute value of the cohe-
sion energy at zero temperature and pressure. The quan-
tity a* is a measure of the deviation from the equilibrium
lattice constant,

a* = (a/ao —1)/(Z..„/9ano) -'.

dP
dlnO

) (u'(k) = g (hf ) ILL .

and the cohesive energy, E

PdO,

may be obtained. We want to emphasize that it is possi-
ble to perform calculations of the full pressure with the
same accuracy as calculations of the potential parame-
ters in the LMTO scheme. On the other hand, the to-
tal energy may be expressed as the sum of effective pair
potentials,

&t-t =
2 ). 4'(lr' —r I).

s is the number of atoms per unit cell, j is the number
of the phonon frequency branches, u is the maximum
frequency in the phonon spectrum, and g(w) is the den-

sity of states. The quantity ~2 is defined by the trace of
dynamic matrix. For solids with one atom per primitive
cell, u is related with force constants by

The prime shows exclusion of the term with l = 0. In
Eq. (13), M is the atomic mass, E p are force constants
determining the dynamic matrix. These constants may
be expressed in the pair potential approximation as fol-
lows:

The double summation here is done over all atom po-
sitions. In further calculations, we will use Morse-type
pair potentials:

@I)
r'J.=R,

(14)

C'(r) = D exp[—2A(r —ro)] —2D exp[ —A(r —ro)]. (9)

The choice of this form of potentials is dictated by the
results obtained in the framework of embedded atom
method (EAM) approach. This method was introduced
in Refs. 14 and 15 and widely used. for description of dif-
ferent properties of metals, especially for Mo and W.
The effective potentials obtained in Refs. 18—20 from
EAM are very close to the Morse potential form. These
effective potentials give only a part of the total energy,
whereas the Morse potential is intended to provide the
Etot ~

It is well known that pair potential approach is abso-
lutely inapplicable for the investigation of elastic prop-
erties of metals. The main reason is the validity of the
Cauchy relation, Cq2 ——C44, which is the direct conse-
quence following &om the pair potential approximation.
This relation is not true for most of metals. However,
if we are interested in cohesive properties, they may be
reasonably described by the Morse pair potential approx-
imation. We will compare our results with the Ref. 21,
where the cohesive energy of most metals as a function of
lattice constant was scaled to a simple universal function,

In Eq. (15), z; is the number of neighbors in the ith shell.
The second moment ~2 js related ta the Debye tem-

perature in the high temperature limit by a simple
expressiorl 3

8 = lim 0 = [5h, u)~/(3k )] ~ .T~oo (16)

OD is the high-temperature limit of the Debye temper-
ature as determined from specific heat measurements.

l represents three numbers, showing the position of the
lattice site, x and xp are the projections of the lattice
vector R~ on the corresponding axis, 4' and C" are the
first and second derivatives of the effective pair poten-
tials with respect to r, and b represents the terms of the

@I
higher order in — . Hence, the second moment of

v =Ri
phonon spectrum may be expressed in the terms of force
constants and may be obtained without direct calcula-
tions of phonon spectrum and density of states by means
of

) z(2 +C"
/

f e'
3M '( r „R
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This expression is frequently used as the experimental
value of O~, quoted without further comments in the
literature for a given substance (see for example Ref. 24).

In order to investigate the temperature dependence of
Debye temperature in the high-temperature region, we
will use the expansion, given in Refs. 23 and 25,

60

30

TOTAL DOS Mo

3 8P f u)4 25eo = [08j 1 — —— +
100 T i 22 21)

(17)

The fourth moment of the phonon spectrum, u4 may be
also expressed in terms of force constants,

30
O

'=(~') + 3M2 ).(+ (~)) + ). (+ P(&))
I n l cr~P )

(18)

Thus, carrying out calculations according to the
Eq. (14) and making use of ur2 and A&4 according to the
Eqs. (15) and (18), we may get the temperature depen-
dence of the Debye temperature &om the first principles.
Further we will perform these calculations and compare
the results with the experimental values.

0
0 0.5 1.5

ENERGY (Ry)

FIG. 1. The total and partial DOS of bcc Mo.

III. RESULTS AND DISCUSSION

Our erst-principles calculations of the equation of
states at zero temperature, i.e., the change in the to-
tal energy, Eq q, with uniform compression, were carried
out. The self-consistent crystal potentials for bcc W and
Mo were generated in LMTO-ASA band structure cal-
culations. We included also the relativistic corrections
in the scalar-relativistic scheme (without the spin-orbit
coupling). Calculations have been performed for set of
difFerent lattice parameters, on the mesh corresponding
to 285 k points in the irreducible wedge of the Brillouin
zone. The integration has been done by the tetrahe-
dron method and the Gunnarson-Lundquist exchange-
correlation potential in the local-density approximation
was used. We found band structures that are practi-
cally identical with the results of the previous papers. 2

The total and partial density of states (DOS) for Mo are
presented in Fig. 1. It is easy to see that the main con-
tribution to the total DOS at high energy is given by the
p electrons, while in the neighborhood of the Fermi level
the d electrons, as well known, are playing the main role.
Up to the energy 1.6 Ry our DOS are in good agreement
with the results of Ref. 27. Figure 2 shows the DOS of W
for difFerent pressures. Increasing of the pressure leads to
decreasing of the height of picks with the broadening of
them in DOS. Figure 3 represents changes of 8-, p-, and
d-partial contributions and the total DOS at the Fermi
level.

We would like to emphasize that quality of the ob-
tained values of the pressure are of the same order of
accuracy as a quality of the band structure calculations
in the framework of the LMTO-ASA approach. At the

same time, the results of Et, t calculations in this scheme
are much less accurate. From our calculations on a large
set of volumes, we extract the equilibrium volume 00 at
P = 0 for Mo and W. The carried out lattice parameters
are aM ——6.05 a.u. and a~ ——6.06 a.u. These val-
ues are in good agreement with the experimental results
(aM~ = 5.89 a.u. , aw = 5.98 a.u. ).

In the region of positive pressures (see Fig. 4), we com-
pare our results with experimental data for Mo. Our
curve is higher in comparison with the measured values
because the bulk modulus obtained in the LMTO-ASA
approximation is also higher than the experimental ones
(see Table I). The analogous curve for tungsten is given
on Fig. 5 and may be of special interest as a prediction
of the equation of state for W. Unfortunately, to the best
of our knowledge, the experimental data for W is absent.
This is because of extremely high values of bulk modu-
lus, the highest among all metals. Nevertheless we have
compared our results with the universal function of Rose
gg ~&.2~

We have calculated the pressure-volume dependence
for W for a wide region of volumes, in such a way sim-
ulating the positive and negative pressures (compressed
and tensiled states). The results of our LMTO-ASA cal-
culations are given in the Fig. 6 (solid curve). If now
we will try to use Eq. (7) for calculations of the cohesive
energy, the very large value of it will be obtained. That
means that one may apply the LMTO-ASA only in a
narrow region near the equilibrium volume 00. In order
to overcome this diKculty, we will use the LMTO-ASA
method together with the pair potential approximation
for the description of the cohesive energy. Making use
of Eqs. (4), (8), and (9), the following expression for the
pressure in terms of pair potentials may be obtained,
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—2AD
3a3 ) z;R;(exp[A (R; —ro)]

i=1
—exp[ —2A(R, —ro)l}. (19)

5
[

d

The summation is performed over coordination shells, i,
with the radius R; up to Nth shell and z; is the number of
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FIG. 3. The dependences of 8-, p-, d- partial DOS and the
total DOS (solid curve) on the Fermi level on the pressure for
W.

atoms in the ith shell. Now we have several possibilities
to define the parameters of the efFective pair potential:
(1) by solving the system of equations in numbers equal
to the number, n, of potential parameters for given values
P(Bi), P(B2), . . ., P(B ); (2) by fitting the potential
parameters in the overfilled system of equations for a lot
of values P(By). Such a fitting has to be done on a large
set of volumes near equilibrium.

We choose the second way and obtained the pair po-
tential parameters, given in Table II. We produced the
summation in Eq. (19) up to 8th shell. The changes of
the cohesive energy Eq. (8) do not exceed 0.01 eV vrhen
the ninth shell is included in Eq. (19). The fitted param-
eters of potentials only slightly deviate from the parame-
ters of the Morse potentials computed from experimental
data. In Ref. 30, Girifalco and Weizer applied a Morse-
type potential to cubic metals by computing the potential
parameters from basic crystal properties: cohesive en-
ergy, equilibrium lattice parameter, and bulk modulus.
The value of cohesive energy was compared in Ref. 30
with experimental energy of sublimation extrapolated to
zero temperature and pressure. Making use of our pair
potentials, we calculated the modified pressure-volume
dependence for tungsten (dotted curve in Fig. 6). This

1.2
)

0.8

~ 0.6—
T

0.4 I

0.2—

Q

0.75 0.8 0.85 0.9
D/Ao

0.95

0.5 1.5 2
ENERGY (Ry)

FIG. 2. The total and partial DOS of bcc W for different
pressures.

FIG. 4. The dependence of pressure on atomic volume for
Mo. The solid curve represents the LMTO-ASA calculations
and the markers are corresponding to the experimental results
(Ref. 29).
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TABLE I. Properties of metals calculated in the frame-
work of LMTO-ASA (the top value represents the calculated
value, and the bottom value is the experimental data). 0

ao a.u.

B (GPa)

E'. h (eV)

Reference 28.
Reference 31.

6.06
5.98
350
311'
9.3

Mo

6.05
5.89
300
261
7.3

g -200

CL

-400

-600
0 400

Q (a.u.')
800 1200

dotted curve gives a much smaller value of cohesive en-
ergy, in comparison with that obtained directly by means
of P(O) dependence in LMTO-ASA calculations. Using
our pair potentials, we found the volume dependence of
cohesive energy (Fig. 7) and the equilibrium cohesive en-
ergy. The results for Mo and W are given in Table I,
together with the experimental data. As shown in Fig. 7,
our results are in excellent agreement with the universal
function (10) of Rose et al. 2~ Both Figs. 5 and 7 show the
quality of our calculations of the cohesive properties of
W. Not only the cohesive energy, but also it's derivative
with respect to volume is well defined, thus encouraging
us to calculate the vibrational properties of tungsten. We
would like to emphasize that our parameters for pair po-
tential were obtained by fitting to the pressure-volume
dependence. These potentials are representing the cur-
vature of E, h(O) in a more proper way in comparison
with the simple direct fitting to the universal function
E, h(O) of Rose et al. Such an agreement of E, ~ with
experimental data gives a possibility to estimate the lim-
its of applicability of LMTO-ASA calculations for the in-
vestigated metals. Figure 6 shows that, for example, for
ItV, the 15% deviations of volume near the equilibrium
value gives a reasonable accuracy for the LMTO-ASA
method to reproduce the cohesive energy. Potentials for
W and Mo were used for calculations of the second. and

FIG. 6. Pressure-volume diagram for W for a large region
of volumes by LMTO-ASA calculations (the solid curve) and
a modified dependence (shown by the dotted line).

D (eV)

A (a.u. ')

po a.u.

1.1
1.0

0.775
0.747
5.74
5.73

Mo

0.9
0.8
0.8
0.8
5.70
5.63

0-
(a)

TABLE II. Parameters of Morse pair potential fit ted
within the suggested procedure (the top value represents the
calculated value, and the bottom value were computed in
Ref. 30 from experimental data).
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FIG. 5. The dependence of the pressure on the atomic
volume for W. The markers are showing the data of LMTO-
ASA calculations. The solid curve is the universal curve of
Rose et al. (Ref. 21).

FIG. 7. The cohesive energy as a function of a lattice pa-
rameter for W (a) and Mo (b). The solid line is the universal
curve of Rose et al. (Ref. 21), the markers are the results of
our calculations.
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Number of the shell
The terms of sum in Eq. (15)

W Mo

TABLE III. The coordination shell's contributions to the
second moment of the phonon spectra for W and Mo.

TABLE IV. The second and fourth momenta of the
phonon spectra (tv and w ) and the Debye temperature, 0&,
for W and Mo. O~ refers to the Debye temperature at 298 K
obtained in Ref. 24 from the speci6c heat data.

1.564
0.242
-0.055
-0.047
-0.011
-0.003
-0.005
-0.004

1.457
0.213
-0.048
-0.039
-0.010
-0.002
-0.004
-0.003

ur~(10 sec )
io4(10 "sec')

O~, K
O298 KD0'"~ KD )

1.697
6.490
404
392
310

Mo

1.564
5.176
390
380
380

IV. SUMMARY

the fourth moments of phonon spectrum with expressions
(15) and (18). The results for u2 are given in Table III.
We studied the convergency of Eq. (15) and as it is seen
from the Table II, the main contribution to u2 is given
by the first shell (more than 9070 for both of the ele-
ments). The Debye temperatures at diferent conditions
T + ao and T = 298, OD and OD, respectively, were
calculated with Eqs. (16) and (17) and are presented in
Table IV together with the experimental data. In real
crystals, the Debye temperature varies upon the temper-
ature and is different for different properties. OD refers
to the Debye temperature at 298 K. It was previously
calculated for metals in Ref. 24 &om the measurements
of speci6c heat at constant volume. Extended data are
also given in Ref. 32. We would like to mention that the
values of O& obtained &om elastic constants measure-
ments and given in Ref. 32 are equal to 370 K for W and
454 K for Mo. However, we 6nd it expedient to compare
our results with the OD obtained &om the speci6c heat
measurements, ' because as noted in Ref. 33, the value
of Oti calculated from theoretical relations (16), (17)
equivalent to the Debye temperature determined from
this type of measurements. The whole subject and how
to relate various moments of the &equency distribution
to thermal data is discussed by Barron et aL in a series
of papers (see, for example, Refs. 25 and 34).

It is usually considered and is a well-known fact that
the dispersion law calculated in the &amework of pair
potential approach will come out wrong. Nevetheless,
we showed here that such potentials, if they are deter-
rnined by the described procedure, may be successfully
applied to the calculations of integral spectral character-
istics such as u2 and OD. Especially in these cases, it
follows that it is not necessary to reproduce the details
of the phonon spectrum, and the obtained data are well
correlated with the results of measurements.

We presented here the results of erst principles LMTO-
ASA calculations for bcc Mo and W. In order to obtain
realistic values of cohesive energy and its volume depen-
dence, we suggested a scheme that allows us to get &om
the pressure-volume dependence, the parameters of effec-
tive pair potentials, and the cohesive energy. The last is
of great importance, because in the framework of LMTO-
ASA, the pressure is usually calculated with just the same
accuracy as the band structure. The densities of states
(total and partial for Mo and W) were calculated as the
functions of pressure. In the region (—250—500 kBar), the
decreasing of the value N(Ef) is obtained when the pres-
sure increases. On the basis of the carried out equation
of states, we calculated the equilibrium lattice parameter
and the compressibility. We got the parameters of effec-
tive pair potentials by 6tting to equation of states. These
potentials were used further to determine the cohesive
energy, second and fourth momenta of phonon spectra,
and the Debye temperature for Mo and W. The data on
the cohesive energy calculations were compared with the
universal function of Rose et al. and showed very good
agreement. We also discussed the convergency of the di-
rect calculations of ~2 and the Debye temperature for Mo
and W on the basis of an effective pair potential approach
and showed that the series are rapidly converged. The re-
sults of our calculations eliminate additional possibilites
and limits in applicability of LMTO-ASA calculations for
the elements under investigation.
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