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We provide a very efficient procedure for obtaining the excited states of a quantum operator H, in any
arbitrary chosen energy range, independently from the knowledge of the states at lower energies. Our
procedure consists in determining, within the Lanczos algorithm, the ground state of the auxiliary opera-
tor A =(H —E,)? and hence the eigenvalue of H nearest in energy to E,, where E, is any chosen trial en-
ergy in the energy range of interest. We show that a variational method exploiting diagonalization of
2X2 Lanczos matrices, combined with a two-pass Lanczos procedure of relatively small number of itera-
tions, produces eigenvalues of H within any desired accuracy, as well as the corresponding eigenfunc-
tions. We discuss in particular the T® 7 Jahn-Teller model, as a realistic prototype of a quantum system

with a very large number of degrees of freedom.

I. INTRODUCTION

The theoretical investigation of numerous physical
problems requires an appropriate handling of matrices of
very large rank; among the many interesting physical
problems, we can mention the Jahn-Teller vibronic sys-
tems,! extended or localized impurity states in semicon-
ductors,? spin systems and Hubbard models, >* and ener-
gy levels of solids, molecules, surfaces, and micro-
structures.>® An accurate account of these systems may
involve a large number of degrees of freedom; one often
has to handle matrices of the order N =~ 10° or more, and
therefore as many as 10'© matrix elements. Even if in
many applications the matrix is sparse (that is the num-
ber of matrix elements different from zero as proportional
to N rather to N?), the problem cannot be solved by
means of a direct diagonalization by standard routines.

The problem to treat large matrices and to extract the
relevant physical quantities requires a joint and balanced
technical and physical approach; for this reason, a vast
array of techniques has been developed, with successful
results in limited and specific situations.’”!2 In this
framework, the Lanczos method and the related recur-
sion method, *~!¢ possibly with appropriate implementa-
tions, has emerged as one of the most important compu-
tational procedures, mainly when a few extreme eigenval-
ues (largest or smallest) are desired. Despite its well-
documented merits, it is also well known that the Lanc-
zos method may indeed present a number of difficulties,
essentially connected to the loss of orthogonality among
the states of the Lanczos chain due to finite-precision ar-
ithmetic.!’~!° This fact can produce the occurrence of
spurious eigenvalues and ghost states. To avoid this
problem, an orthogonalization to all states of the Lanczos
hierarchy is required, but would be costly in terms of
storage memory. In particular, if the interest is on the
ground state of an operator H (or on its lowest-lying
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states), quite stable and accurate modified Lanczos-type
approaches have been advanced in literature. 22!

In a previous paper,>* we have presented some relevant
aspects of a method for determining any desired excited
state of a given operator; preliminary applications were,
however, limited to one-dimensional systems?? or to a test
matrix? (the “modified Nesbet matrix’’), and the method,
although promising, needed further implementations to
become a really workable tool. In this paper, in Sec. II,
we present a relevant implementation of the Lanczos tri-
diagonalization scheme, which allows us to obtain a very
fast convergence to any excited eigenvalue and eigenfunc-
tion of H, overcoming memory storage difficulties. As
an exemplification of our procedure, in Sec. III, we con-
sider in detail the T'® 7 Jann-Teller system, and provide
ground and excited eigenvalues, as well as eigenfunctions,
for different coupling constants. Section IV contains the
conclusions.

II. THE METHOD

The approach that we present allows us to determine
the excited states in any desired energy range of any arbi-
trary operator, when its representation on a given basis
set is known. No knowledge of the lower energy states is
required. The present procedure enjoys the advantages of
being variational, of fast convergence, and yet avoids the
burden of further memory storage limitations. In prac-
tice, we can extend the Lanczos method, up to now used
in literature essentially for the ground state of a system,
to any excited state of those systems.

Let us consider an operator H, with unknown eigenval-
ues E; and eigenfunctions |¥;); any auxiliary operator
A =f(H) commutes with H, and thus shares with it a
complete set of eigenfunctions corresponding to the ei-
genvalues A4;=f(E;). In order to obtain the excited
state of H nearest in energy to any a priori chosen trial
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energy E,, we consider the auxiliary operator 4 in the
form A =(H —E,)*. Several other forms for 4 are possi-
ble; our choice of f(H) in the specific quadratic power
form is very easy and its application to any given state is
straightforward. In a completely different context, this
form is suggested by numerical analysis** to solve the
Schrodinger equation within any desired energy. Recent-
ly it has been applied by Wang and Zunger® in the
framework of the conjugate-gradient method. Thus, we
are faced with the solution of the following eigenvalue
equation:

Al‘yi)E(H"Et)zl\p,‘)z)b,’|\P,') (1)

for the search of the ground state of 4.

The strategy followed for the solution of Eq. (1) is
essentially based on an appropriate implementation of the
Lanczos algorithm. We briefly summarize some basic
features of the Lanczos procedure in its standard formu-
lation; we focus then on our implementation, which
transforms the whole procedure into a workable and fast-
ly convergent method.

Let us denote with {@;}(i =1,2,...,N) a complete set
of basis functions, for the representation of the operator
H (and hence of A4). Starting from a seed state |u, ), given
by whatever chosen linear combination of the {¢;}, a
hierarchical chain of orthonormal states
lug?,luy), ..., luy) is constructed via successive appli-
cations of the operator A as follows:

|U,)=(A4 —ay)lug), b3=(U|U), ag=(uyldluy)
and, in general,

U, L )=Alu,)—a,lu,)—b,lu,_); n>1. ()

The (non-normalized) state |U, ;) allows us to deter-
mine the coefficients b, ; and a, 4 of the (n + 1)th itera-
tion step, via the procedure

by =(U, 11U, 1), (3a)

(Un+1|A|Un+1>
<Un+l'Un+1>

After normalization of the state |u, ) =|U, ) /b, 1,
the steps (2) and (3) are repeated with n replaced by n + 1.
The use of the operator 4 =(H —E,)? instead of H of
course poses no problem: in fact, it simply means to ap-
ply H, with E, subtracted from its diagonal elements, to a
given vector and repeat this same operation on the vec-
tor so obtained.

In the new basis {|u, )] the operator A4 is represented
by a tridiagonal Lanczos matrix T,,, whose elements
{a,} and {b,} are explicitly known up to the order m
(m =N) of the iterations performed. For what concerns
how many iteration steps can be obtained in actual prob-
lems, there is a wide spread of situations depending on
the physical problem at hand, on what is being calculat-
ed, whether the matrix elements are reasonable balanced
or not, etc. Experience shows that, in general, it is hardly
of any help to determine the tridiagonal matrix T,, for m
higher than a few tens (say, hundred at most), due to the

Ay 1= (3b)
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appearance of the Lanczos phenomena.!”!® In fact the
difficulty with the Lanczos method is that finite-precision
arithmetic causes rounding errors, which manifest in loss
of orthorgonality among the states |u, ); the remedy re-
quires reorthogonalization and would be expensive in
term of memory storage and time machine.

However if one is interested only to the ground state,
as in treating with the operator A4, the method suggested
by the authors of Refs. 20 and 21 appears to be a good
solution to this problem. Following this method, the
iterative steps of the Eqgs. (2) and (3) instead of being per-
formed m times, are performed only once; hence the 2X2
Lanczos matrix is diagonalized and the eigenfunction
lgo) corresponding to the lowest eigenvalue c of this
secular problem, becomes the new initial state to repeat
the cycle. Iteration of this “two-state relaxation” pro-
cedure generates a sequence of eigenvalues a,, which ap-
proach variationally the desired eigenvalue
Ao=(E,—E,)

It could seem, at first sight, that the problem is now
solved; again our experience shows that this is not the
case. In the first iterations a, decreases rapidly, but later
much slower and finally the decreasing rate tends to van-
ish. The reason for this behavior is that, as the iteration
number grows, the seed starting state, exploring all the
physical manifold of states of the system spanned by the
application of the operator A, approaches variationally
the true ground state and, at the same time, has to decou-
ple from all the other states of the chain; eventually,
there is negligible improvement to insist in the 2X2 re-
laxation process. At this point, we override the two-state
relaxation process and use the last obtained eigenfunction
lgo) as a starting state for a “two-pass” Lanczos pro-
cedure'® of suitable order. For this, we construct a new
Lanczos chain of m elements (m is of the order of few
tens), hence we diagonalize the corresponding tridiagonal
Lanczos matrix T,, obtaining its eigenvalues and the
coefficients of the eigenvectors on the basis of the chain
states |u, ). For our purposes, we select the lowest eigen-
value @, and the components {c,,} of corresponding
eigenfunction |¥,):

m
l\I/O): 2 Cn,0|un> .
n=0

Then because, for memory reason, in the three-term re-
lation (2), we do not store all the vectors |u,) when we
determine T,,, we regenerate the states Iu,,) with the
same initial seed state |g,) by a second Lanczos pro-
cedure. As far as storage requirements are concerned, we
note that, with respect to the usual Lanczos procedure,
we have to store only one further vector. An appropriate
alternation of 2X2 relaxation processes and two-pass
Lanczos procedures allows to obtain the ground state of
A (and hence the excited state of H nearest to E,) within
the desired accuracy. In effect, is not possible to give a
unique criterion for this alternation of 2X2 relaxation
processes and two-pass Lanczos technique. The impor-
tant fact is that the more efficient way to reach conver-
gence is neither the 2 X2 relaxation process nor the tradi-
tional Lanczos procedure. The problem is not a “princi-
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ple” problem (mathematically the Lanczos method gen-
erates a perfectly orthonormal hierarchy of states); the
problem is purely technical: one has to cope with the loss
of orthogonality that unavoidably flaws the Lanczos pro-
cedure, due to finite-precision arithmetics. So only a gen-
eral guideline can be given to treat situations that can be
quite different, as we will discuss in the following section.

III. THE T® 7 JAHN-TELLER SYSTEM

In this section, we apply the method outlined so far to
the T®7 Jahn-Teller system, a well known?® rather
demanding example of vibronic system encountered in
the framework of the dynamical Jahn-Teller effect in lo-
calized electron states.! As any other vibronic system, in
the intermediate or strong coupling situation, it requires
processing of a large number of electronic and vibrational
states. These situations have been studied in the litera-
ture also by standard recursion techniques,?”2® but exten-
sion to the strong coupling regimes can be done with the
method illustrated in Sec. II.

The vibronic system under consideration is constituted
by a threefold degenerate T, electronic state with T,
group symmetries, linearly coupled with a triply degen-
erate vibrational mode (7, symmetry). In a cluster mod-
el,?® by expanding the electron-phonon interaction ener-
gy up to the second order in the normal symmetrized
coordinates Q,, Q,, Q,, and taking into account the
tetrahedral symmetry of the vibronic system, we obtain
the following T® 7 Hamiltonian on the basis of the elec-
tronic wave function W, ¥, ¥ :

0 Q. ¢
0 O
Qy Qx 0

+iIMoX QI+ Q2 +02) . (5)

# | 9? 3?2 92
H=—"— + + +v, |0,
2M | 3Q? 03Q7 Q7 Q

In Eq. (5), the energy of the degenerate electronic state is
taken as reference energy; V. is the linear coupling con-
stant of the electronic state with the vibrational mode 7,,
and o is the angular frequency of the mode; the quanti-
ties in Eq. (5) that are not written explicitly in matrix
form are intended to be multiplied by the 3X3 identity
matrix. This is a well-known Jahn-Teller Hamiltonian
studied by a number of authors starting from the pioneer
works of Ham, ** Englman, Caner, and Toaff. !

It is convenient to adopt a second-quantization
description introducing the phonon creation and annihi-
lation operators a,, ax+, a,, ay+, a,, and az+ for the
partner functions of the 7, mode; the corresponding
states can be labeled by the integers /, m, n, respectively,
which give their occupation numbers. The basis func-
tions chosen are thus the direct product |¥;;Imn ) of the
degenerate electronic functions |¥;)(i =x,y,z) and the
vibrational states |/mn). On the basis functions
|W;;Imn ), the Hamiltonian (5) can be written as

H=H,+H,_; , (6a)

where the lattice Hamiltonian is
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Hy= 3
i=x,y,z
IL,m,n =0, o

(I+m +n+ 3|V Imn ){(V;Imn| ,

(6b)
and the electron-lattice interaction H, _; is

H,_; =k, 3 [|¥,;lmn )(‘I/y;lmnl

Lm,n

+ W, ;Imn )V, ;Imn|)(a, +a )+ -,
(6¢)

where the dots summarize cyclic interchange of x,y,z in-
dices. The adimensional coupling constant k_ is equal to
2V, /[V3(2M#)203/?] and is related to the Huang-
Rhys factor S by the standard relation S = %k 3

Following the method described in Sec. II, we can ob-
tain the eigenvalues and the eigenfunctions of the Hamil-
tonian (5) for any excited state and for any strength of the
coupling constant k.. We discuss below some aspects of
the solution, whose relevance is beyond this specific prob-
lem.

First the 2 X2 relaxation procedure is performed with
the operator A. We soon confirm that the converge rate
is the lowest eigenvalue « is very fast for the initial itera-
tions, but then it decreases and eventually tends to van-
ish. In effect it is easy to verify that the eigenvalue
correction is of the order of |b,|*/(ay—a;), &g, @y, b, be-
ing the diagonal and off-diagonal elements of the 2X2
Lanczos chain, and this correction becomes extremely
small as the off-diagonal element b, decreases. In our
case, when the monotonic decreasing of b, stops, we start
the two-pass Lanczos procedure. We have chosen to
handle relatively small tridiagonal matrices (of the order
of 50 at maximum), and then to repeat, whenever neces-
sary, a number of two-step relaxations and two-pass
Lanczos processes. The global procedure stops when the
first recursion coefficient b; becomes smaller than a
chosen precision coefficient €.

At convergence, the mean value E,=(¥,|H|¥,), and
one of the roots E§ =E,+V a, must be coincident. In
our case, with € of the order of 107> we can obtain E,
and E§ coincident at least until eight significative figures.
In Fig. 1 we show, for a given excited state, the behavior
of the lowest eigenvalue o of 4 with a 2X2 relaxation
processes, alternated with one two-pass Lanczos pro-
cedure of order 20 and 50. The convenience of the intro-
duction of the two-pass Lanczos procedure is evident.

We wish to notice that the overall number of iterations
and states involved for the convergence, depends on the
strength of the Jahn-Teller coupling or, in other terms,
on the value of S: large values of S involve large number
of phonons and of basis functions. For instance, for
k=3, eigenvalues accurate up to 9 significant figures re-
quire 17 phonons in each direction and hence
N =3X183=174 96 basis functions.

In Fig. 2 we show the vibronic energy levels corre-
sponding to the different representations of the group 7T,
as functions of the coupling constant k_; these energy
values are in agreement, with previous calculations,?’-3!
usually available only for small k..
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FIG. 1. Behavior of the lowest eigenvalue ¢ of the matrix 4
(corresponding to the 5th excited state of 7, symmetry and
k,.=2) vs the number of iterations. (-O-) Two-step relaxation
process; (-A-) two-step relaxation process alternated with one
two-pass Lanczos procedure of order 20; (-®-) two-step relaxa-
tion process alternated with one two-pass Lanczos procedure of
order 50. The horizontal dashed line indicates the asymptotic
value A,. Energies are in units of 10 *#w.

kg

FIG. 2. Vibronic energy levels for T® 7 Jahn-Teller vs the
coupling constant k.. The levels are labeled according to the ir-
reducible representations of the group T; #iw is the unit of ener-
gy-.
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Our technique allows also to obtain the eigenfunctions
for any state; thus, we can calculate, as a significant test,
some ‘“‘effective factors” for the ground state. They are
well known in literature as the “reduction factors” K (E),
K(T,), and K(T,), first introduced by Ham,*® and
defined, in general, as follows:

(©,?|E,|®;%)
K(E)=—-72 - , (7a)
<<I)22|Evt9|q)zz>k1_=0

T. T.
(@,°T,|®,%)
T. T. >
(2T, 19, )y —o

K(T,)= (7b)

T.
(2L, |o2)
K(T)=——F"—"7"> , (7c)
<q)x2|Lz|q)y2>kT=0

where d): 2 (<I>yT 2,<I>ZT ?) is the vibronic eigenfunction of the
total electron-phonon Hamiltonian transforming as the x
(y,z) row of the T, irreducible representation of the T
group. Here the electronic operators E,, L,, and T, are
represented, on the degenerate electronic triplet, by the
following matrices:

L0 o0
00 —1
=1V [+, (v, =W, (Y, |, (8a)
0 —10
T,=|=1 0 0|=—(¥ ) {(Y,[|+¥, ¥, 8b)
0 0 0
0 —i 0
L,=1i 0 0|=—i(|¥ (¥, [—|¥){¥]) . (8¢c)
0 0 0

In our notation, we can write the vibronic function
transforming as the z row of the T, irreducible represen-
tation as

o7
2_ 2 Cx Imn |q/x?lmn )
Lm,n
+e, Y sImn )+l W, sImn ) )
Taking into account the Egs. (7a) and (8) we obtain
K(E)=— 1—32|cz,m,, . (10)
Imn

As a consequence of the symmetry of the problem, we
have

2 lcz Imn |2—1_22 Icz Imn
Imn Imn

We can thus express
K(E)=1-33 letx)

Imn

(11a)

z, lmn ’

in terms of the z component of the vibronic function
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TABLE 1. Effective factors K(T,), K(T,), and K (E) for the
ground vibronic state. N is the number of basis functions in-
cluded. In the brackets we report the values calculated by
O’Brien. 2

k, N K(T,) K(T)) K(E)
0.5 1029 0.902 09 0.71599 0.720 85
(0.90209)  (0.71600) (0.720 85)
1. 3000 0.76077 0.33974 0.368 42
(0.76097)  (0.33977) (0.368 17)
1.5 8232 0.678 67 0.13040 0.176 95
(0.67867)  (0.13040) (0.17695)
2. 10125 0.65020 0.03797 0.07713
(0.6520) (0.03797) (0.077 13)
2.5 12288 0.649 15 0.007 29 0.024 30
(0.6492) (0.007 29) (0.014 48)
3. 17496 0.65325 0.912x1073 0.004 79
(0.6532) (0.000 1) (0.004 8)
4. 31944 0.659 40 0.50% 10~3 0.526X107*
5. 98 304 0.662 24 <1078 0.12X107¢
6. 128 625 0.663 67 <10~ <1070

transforming as the x row of the T, irreducible represen-
tation.

The effective factors K(T,) and K(T,) also, can be
given in terms of the components of the same vibronic
function in this way:

K (T3)= 3 (N unCarmin + €5 omnCyimin) » (11b)
Imn
K(T)=(cH) e —eX X)) (11¢)
1 2 x,Imn%x,min »imnty,min/ -«
Imn

These first-order reduction factors are compared with
previous calculations of O’Brien,*? as shown in Table I,
where the values calculated by means of our procedure
have accuracy within nine significant figures, and hence
we consider this calculation a very significant test of the
technique proposed.

In principle it would be possible to calculate, in a simi-
lar way, also second-order reduction factors, because they
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involve matrix elements of a perturbation operator be-
tween ground and excited states. However, this would
require a lot of work, certainly important in a perturba-
tive approach, as discussed in many significant pa-
pers. 2735 We notice, however, that our procedure is not
perturbative, it is very flexible, and allows us to consider
exactly, on the same footing both the Jahn-Teller interac-
tion as other interactions of physical interest (for instance
spin-orbit interaction, magnetic or electric field, uniaxial
stress, etc., regardless of the relative importance of the
various contributions) treating with the same method the
total Hamiltonian of the system. Perturbative ap-
proaches can thus be avoided, and the limit of the pro-
cedure is not the Hamiltonian but the number of basis
functions that can be handled. These considerations
should be of value, in particular, in those Jahn-Teller or
pseudo Jahn-Teller systems (impurities in II-VI or III-V
compounds, F centers) subjected also to an external per-
turbation, where a diagonalization made within the tradi-
tional Lanczos scheme?® has given good results, only for
the ground or lowest lying energy states.

IV. CONCLUSIONS

We have presented a very efficient method to evaluate
the excited states of a quantum system with a large num-
ber of degrees of freedom. The advantages of our method
ar numerous, in particular explicit determination of the
lower energy states and orthogonalization to them is un-
necessary, the convergence is satisfactory, and memory
storage difficulties are avoided. As an examplification of
the procedure, we have examined the T®r Jahn-Teller
system. The results obtained provide confidence that our
method should become a very precious one in all the
numerous problems of physics, where a large basis set is
needed. '
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