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The phonon-mediated electron-electron scattering rate has been calculated in Al using a realistic band
structure and phonon spectrum. The electron-phonon contribution has also been calculated as an exten-
sion of previous calculations to provide a detailed Fermi-surface map and special orbit averages for com-
parison with experiment. Comparison with recent radio-frequency size-effect data in which the two con-
tributions are resolved on three orbits yields agreement in both magnitude and anisotropy for both con-
tributions. The calculated electron-electron scattering rate at points exhibits surprisingly large anisotro-

py {up to an order of magnitude), which is masked in part by orbit averaging but which could, in princi-
ple, be measured experimentally. We argue that the Coulomb interaction, whose contribution is known
to be much smaller in Al, is also much less anisotropic. Therefore, an anisotropic T contribution to the
scattering rate persisting to low temperatures should be, at least in the simple metals, a signature of the
phonon-mediated scattering mechanism.

I. INTRODUCTION

Electron-electron scattering has been seen for a long
time in transition metals, ' but only relatively recently in
simple metals, where precise measurements must be made
at lower temperatures in order to resolve the T signature
obscured at higher temperatures by electron-phonon
scattering. The latter has a more rapid temperature
dependence, generally resembling T in the quasiparticle
scattering rate and T in the electrical resistivity, but
often showing complications due to umklapp scattering,
Fermi-surface distortion, and phonon dispersion (as we
shall discuss with specific examples later).

Electrical resistivity measurements in Al (Refs. 2 and
3) extending down to 1.18 K have been found consistent
with a sum of electron-electron and electron-phonon con-
tributions, but existing quasiparticle experiments had
failed to resolve a distinct T component (two experi-
ments ' found a T dependence, while Parsons and
Steele reported T" with n varying between 2.2 and 3). In
order to resolve this situation, we recently undertook
radio-frequency size-effect (RFSE) experiments (reported
elsewhere }, in addition to the calculation reported here.
We were able to resolve both electron-electron and
electron-phonon contributions experimentally on three
different Fermi-surface orbits. Both contributions are in
agreement with orbitally averaged rates computed here,
and they are also consistent with the electrical resistivity
data.

A further motivation for the present work is that a mi-
croscopic calculation of phonon-mediated electron-
electron scattering on a distorted Fermi surface has not
yet been done. Fully microscopic calculations have been
done in the alkali metals Na, K, Rb, and Cs, for the elec-
trical and thermal resistivities involving both Coulomb
and phonon-mediated scattering. Approximate calcula-

tions for both mechanisms based on a Fermi-liquid pa-
rametrization were done for Al, Pb, and the noble met-
als. MacDonald's approximate calculation for Al is in
good agreement (within theoretical and experimental un-
certainties) with the electrical resistivity data. A micro-
scopic calculation of the (anisotropic) Coulomb scattering
rate was performed for W. ' The phonon-mediated con-
tribution has not been considered in a similar manner, al-
though a more recent approximate calculation" finds
phonon-mediated scattering rates in reasonable agree-
ment with experiment in six transition metals (Mo, W,
Nb, Ru, Os, and Re) and in Cd. The present microscopic
calculation for Al is needed not only to test the validity of
the approximate calculations, but also to examine the an-
isotropy (which is very difficult to estimate within the ap-
proximate approaches}, and to provide orbit averages
which are measured experimentally.

The microscopic underpinnings of the calculation, in-
cluding the electron wave functions and Fermi surface,
the phonon spectra, and resulting electron-phonon in-
teraction needed to compute the scattering rates, are de-
scribed in Sec. II. In Sec. III we discuss a useful method
developed for computing the multiple Fermi-surface in-
tegrals encountered with electron-electron scattering.
Calculated results are presented in Sec. IV; these include
detailed Fermi-surface maps of the scattering rates, as
well as orbit and Fermi-surface averages for comparison
with experiment. Conclusions are summarized in Sec. V.

II. MICROSCOPIC TREATMENT

Let us begin by summarizing the quasiparticle proper-
ties of interest arising from the electron-phonon interac-
tion. The renormalization of quasiparticle velocity at a
point on the Fermi surface (effective mass enhancement)
is described by the parameter k(k) or Z(k) through
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v'""'(k) =v(k)/[1+A(k)] =v(k)/Z(k),

where the unlabeled v is that given by any (effectively
one-electron) band calculation. The function A, (k) is
given by the Fermi-surface integral

2 (- ds(k )

(2ir) Iv(k')
I

~ (k' —k)
(2)

where

~.(k —k) (k IVVIk&
in[2pco (k' —k)]'~

4ir dS(k')
r, '(k)=

(2~) Z(k) lv(k')
I . »nh[~. (k' —k)/T]

(4)

where the temperature T and other quantities are mea-
sured in units where A =kz = 1. The corresponding
electron-electron scattering rate" at k is an integral over
three (other) states lying on the Fermi surface, only two
of which are independent, the third (p+q) fixed by crys-
tal momentum conservation as pictured in Fig. 1:

p+q

k )i p k ii

k-q-p
ri p

k-p-q

(b)

k-q

FICi. 1. Feynman diagrams representing the electron-
electron interaction (a) as it is written in Eqs. (5)—(7). Equations
(5) and (6) may be derived from the imaginary parts of the
effective self-energy diagrams (b).

is the matrix element for scattering an electron from k to
k' with the absorption of a phonon with wave vector
k' —k (reduced to the first zone), frequency co (k' —k),
and polarization e (k' —k); V is the electron-ion pseudo-
potential; and dS(k') is a Fermi-surface element at k'.
The matrix element for the corresponding phonon emis-
sion process is g

' (k', k).
The quasiparticle lifetime suffers from both electron-

phonon scattering, which refers to the emission and ab-
sorption of real phonons, and from electron-electron
scattering, due to the combination of virtual phonon
mediation and the Coulomb interaction. The electron-
phonon scattering rate for a quasiparticle in a state k on
the Fermi surface is'

r,, '(k) = T2

(2m) Z(k)

f dS(k —q)
Iv(k —q) I

X I 5[E(p+q) —E~]I (k, p;q) . (5)
dS(p)
v p

The 5 function keeps p+q on the Fermi surface. In fact
two of the three quasiparticle energies are independent
(like the crystal momenta), but these have been integrated
to give the prefactor T (the small energy range involved
effectively constrains the crystal momenta to the Fermi
surface). Equation (5) is equivalent to Eqs. (4) and (5) of
Schwartzman and Lawrence, "with

r(k, p;q) = V„(k,p;q) [ V„(k,p;q)
—

—,
' V„(k,p;k —p —q)], (6)

representing the square of the antisymmetrized two-body
matrix element, averaged over initial spin states, of the
effective electron-electron interaction pictured in Fig 1:

V„(k,p;q)= —gg" (k —q, k)co '(q)g (p+q, p)

+(k —q, p+qIV, Ik, p) .

The first term in Eq. (7) is from virtual phonon mediation
in the static limit (co «coD or T «BD ), where the pho-
non propagator becomes independent of electron energy
transfer co and reduces to the inverse of the phonon fre-
quency. It is only in this potential scattering limit that
the phonon-mediated interaction contributes as T in Eq.
(5) (Ref. 13) (in Al, electron-electron scattering can only
be detected experimentally in this regime). The second
term in Eq. (7) is just the unsymmetrized (or direct) part
of the Coulomb scattering amplitude. The wavy line in
Fig. 1 in general represents the sum of these two terms, '

although in Al the Coulomb contribution to the scatter-
ing rate or resistivity has been shown to be less than 10 fo
of the phonon-mediated contribution. Therefore in this
work we are primarily interested in the latter, except for
a brief mention of the Coulomb contribution in Sec. IV
for the sake of comparison.

In computing the scattering rates and mass enhance-
ment we employ the same basic ingredients as Meador
and Lawrence, ' and introduce a couple of minor
refinements. The electronic parameters (namely, the
Fermi-surface shape, the band velocities, and the wave
functions) are obtained from a 4-OPW (orthogonalized
plane wave) fit to more recent de Haas —van Alphen
areas, ' whose improved precision makes only minor
changes in our computed results. The phonon spectrum
is determined from a Born —von Karman fit to neutron
data. ' The electron-phonon interaction is calculated
from these ingredients without any further adjustable pa-
rameters. The electron-ion form factor which enters the
electron-phonon interaction could in principle be con-
sidered adjustable, since the Fermi-surface 6t determines
its values only at the reciprocal-lattice points [111]and
[200]. We follow the spirit of Meador and Lawrence, '
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however, in choosing a simple plausible functional form
consistent with this fit. They chose the Ashcroft form, '

which has a single parameter (the atomic core radius) and
works well in simple metals generally. In the case of Al,
it fits both pseudopotential coefBcients reasonably well,
but of course not exactly. Because the electron-phonon
interaction is quite sensitive to the form-factor values
near these points, we prefer to adopt a two-parameter
form factor that reproduces both coe%cients precisely,
while otherwise distorting the Ashcroft form as little as
possible. Perhaps the least arbitrary way to do this is to
convolute the Ashcroft form with a Gaussian. Physically
this smooths out the step at the core radius. In momen-
tum space, it weakens the form factor at the largest
momentum transfers, near 2k~. We have repeated the
calculations of Ref. 14, and find the electron-phonon-
scattering rate substantially unchanged. The mass
enhancement parameter, which depends more strongly
on large-angle scattering, is reduced by somewhat less
than 20%%uo while retaining its general anisotropic form. A
more detailed comparison is given in Sec. IV.

III. EVALUATION OF SURFACE INTKGRALS

Here we discuss the technique used to compute the sur-
face integrals required for r,, in Eq. (5). First note that
for each q in the first surface integral, we may interpret
the remaining integration

Jl
I

[ + — ]
dS(p)

= Jd p 5[8(p)—E ]5[e(p+q) —E ] (8)

as the line integral over the intersection of two identical
Fermi surfaces, one centered at the origin and the other
centered at q. This intersection contour is shown for Al
in Fig. 2. Physically, the contour represents final states
(p+q) on the Fermi surface shown, and initial states (p)
on the displaced Fermi surface (not shown). For Al the
contour is always multiply connected, and the Fermi sur-
face may be drawn in an appropriate reduced zone so
that the contour is always closed (in contrast, open con-
tours may occur, for example, on the noble-metal Fermi
surfaces, depending on q). It is apparent that all possible
electron-electron scattering events (normal and umklapp
if these designations are meaningful) are counted, because
for each q in the Fermi surface integration (over k —q),
the integration contour is uniquely defined. It is imma-
terial whether or not q lies in the first Brillouin zone so
long as all sheets of the Fermi surface appear in the zone
where p+ q resides. Throughout this work, for
definiteness, we regard all contour integrals as functions
of q remapped to the first Brillouin zone.

To remove the 5 functions and write the contour in-
tegral of Eq. (8) explicitly, we let dp denote a line element
along the contour, and d p~ the area element in the plane
locally perpendicular to it. The energy arguments in the
6 functions may then be rewritten in the neighborhood of
any point p on the contour as v(p). bp~ and v(p+q) bpj,
where Apz is a vector originating on the contour and ly-
ing in the aforementioned plane, and the two velocity

FIG. 2. Contour of the intersection between the original Fer-
mi surface (shown) and an identical Fermi surface displaced
through q (not shown).

vectors are shown in the inset of Fig. 2. It can be shown
that

Jd~pl5[ (ps) FE]5[«p+q) —&F] lv(p) Xv(p+q)l

and so Eq. (5) takes the form

T dS(k —q)
(2~)'Z(k) I

v(k —q) I

dp I'(k, p;q)
c(z) I v(p) xv(p+ q) I

(10)

where the contour C(q) is defined completely by q, as de-
scribed above.

To actually find the contour, we evaluate the secular
determinant defining the displaced Fermi surface,
D(p+q), and locate its zeros (by interpolation) along
lines joining mesh points p on the original Fermi surface.
These zeros then establish the contour integration mesh.

In general one must compute the contour integral sepa-
rately for each k and for each q associated with the
Fermi-surface integral. The computation may be shor-
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FIG. 4. Phonon-mediated electron-electron scattering rate a=~„'T on the border of the minimum symmetry element of the (a)
second- and (b) third-zone Fermi-surface sheet.

face, and A is only weakly temperature dependent, taking
the values —', for electron-electron scattering and —", for
electron-phonon scattering when the power laws T and
T apply, for example.

Consider first the phonon-mediated electron-electron
contribution. Figures 4(a) and 4(b) show the T
coefficient a= (r,, '), /T (as a continuous curve for the
direct contribution and at selected points for the ex-

change contribution), on the border of the minimum sym-
metry element for the second and third zones of the Fer-
mi surface. Note that the exchange term is never more
than —,

' of the direct term (point 1.) and follows the same
trend but with much less anisotropy (for example it is
only —,', of direct term at point W). Particular point
values (direct, exchange, and total) are reported in Table
I. The minimum values of the coeKcient u„,occur at the

TABLE I. Calculated scattering rate parameters a =r,, 'T and P=r, &'T ' and renormalization
parameter A. at points of interest on the Fermi surface. Also shown are orbit averages for the three or-
bits measured in Ref. 7 (see Table II), and three surface averages.

Location
+direct

(10' s-'K —')
P(T~O) P(T=—10 K)

(10 s ' K )

points
L
U
X
8
K

8'b
iV,
Nb

K,
Kb
U,

1.1
11
1.7

12
1.8
7.5

21.5
7.3
7.2
2.7
3.2
8.0

0.2
0.3
0.2
0.4
0.3
0.4
0.5
0.4
0.4
0.3
0.3
0.4

0.9
11
1.5

12
1.5
7.1

21
6.9
6.8
2.4
2.9
7.6

0.29'
1.2
0.30'
4.9
4.8
9.8
4.8

11.1
2.5

17.0
0.36
5.5

0.29'
2.7
0 29'
3.5
2.4
3.2
3.3
5.0
3.5
6.7
1.9
3.7

0.31
0.44
0.35
0.48
0.44
0.40
0.48
0.36
0.41
0.31
0.33
0.30

orbital averages
second zone

( loo)+6'
third zone

( loo)
( 110)

2.4

4.1

4.2

0.2

0.3
0.3

2.2

3.8
3.9

0.38 0.59

4.1

4.1

0.36

0.32
0.32

surface averages
second zone
third zone

Fermi surface

2.5
5.9
3.3

0.2
0.3
0.3

2.3
5.6
3.0

0.78

1.8

0.90
4.6
1.8

0.37
0.33
0.36

'Reference 14.
"Orbits are defined by normal vectors. The second zone orbit is noncentral.
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L points (aI =0.87X10 s 'K ', and similar local
minima occur at the X points (1.7XaI ). The second-
zone maxima (13—14XaL) occur along the V», ridges
surrounding the square faces of the Brillouin zone. These
maxima are sharp when crossing the ridge, but almost
uniform when moving along it. The saddle points at K
on the second-zone V20O ridges appear as weak local max-
ima (1.7XaI ) when crossing that ridge. The absolute
Fermi-surface maxima (24XaL ) occur along the junc-
tions of the third-zone arms near the points 8'b. Local
third-zone minima occur at points IC, and K& (2.7 and
3.3XaI, respectively). Local maxima (about 9XaL ) ex-
tend from near the U, points along the V&&& ridges until
they rise sharply near the junctions.

The phonon-mediated scattering rate, like A, (to be dis-
cussed below), receives contributions from large-angle as
well as small-angle scattering events. Umklapp processes
contribute everywhere but more importantly near zone
boundaries, while the multiple-plane-wave character of
wave functions produces more localized effects along the
ridges. The general trends seen in the anisotropy of ~,, '

are, for the most part, understandable in these terms.
However, the sharp maxima found on the narrow V»,
ridges are unexpected, and despite a long refIection we
have no satisfying explanation for them. Also somewhat
surprising is the small contribution from the exchange
term which could, in principle, be as large as half the
direct term. The average Fermi-surface value is in11

good agreement with previous approximate theoretical
calculations by Macdonald and Schwartzman and
Lawrence, " although larger than both (by about 40%
and 90%, respectively). This difference could be con-
sidered attributable in part to the smallness of the ex-
change contribution, which contributes negatively. The
anisotropy found here could not have been predicted
from these simplified treatments because their approxi-
mations involved angular averaging.

We have estimated the purely Coulomb contribution to
the scattering rate based upon a simple model for the
scattering amplitude between single OPW's which in-
volves a screening length parameter. The effect of the Al

band structure is to introduce about 10% anisotropy (in-
dependently of the screening length), without changing
the average magnitude significantly. Extremal values
occur near the zone boundaries, and there is very little
difference between the average values on the two zones.
We have not attempted to improve upon previous many-
body calculations of the underlying scattering ampli-
tude, ' since this is found to be small in Al.

Figures 5(a) and 5(b) show the T coefficient—1% 3p=(r,
& ),/T of the electron-phonon scattering rate at

various temperatures (also see Table I). These are very
close to those presented by Meador and Lawrence, ' but
available now on the whole Fermi surface. The maximal
anisotropy (50-1, considering the entire Fermi surface)
occurs in the low-temperature limit. The lowest values
are found in the free-electron-like regions of the second
zone (near points L and X) and a less pronounced local
minimum occurs near the third-zone point Kb. Maximal
values are found on the V2OO ridges of both zones, and
smaller local maxima occur on the V&&& ridges of both
zones. As temperature increases the intrazone anisotro-
pies wash out at different rates: The second-zone anisot-
ropy decreases from 20-1 near T =0 K, to 2-1 at T =100
K (which is —,

' of the Debye temperature of Al). The
third-zone anisotropy drops more quickly, from 40-1 near
T=O K to 3-1 at T=10 K; then it disappears almost
completely as the average value drops, approaching the
average second-zone value near T=100 K. Only in the
free-electron regions near I. and X does theory predict
pure T behavior throughout the experimentally accessi-
ble temperature range (say, T &15 K). Deviations (in-
creasing P) are predicted above about 15 K near X and 25
K near L. Regarding the Fermi surface as a whole, P
tends to increase with temperature in free-electron-like
regions, and generally to decrease with temperature near
ridges, the more rapid decrease near V2OO ridges. Figure
6 shows typical calculated point scattering rates for
points lying on one of the measured third-zone orbits, to-
gether with the calculated orbit average. It is striking
that despite the wide variation in temperature depen-
dences seen at individual points, the orbit average has

P 123 4 56 7 9 10 P 11 12 13

(a)
10

10K

10

I
I

100 K
35 K

20 K

OK

10

35 K

106

K L U N W W N K U K

FICx. 5. Electron-phonon scattering rate p=r, &'T ' on the border of the minimum symmetry element of the (a) second- and (b)
third-zone Fermi-surface sheet. Points labeled P 1,P2, . . . identify the available SLLR data shown in Table II.
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FIG. 6. Total inelastic quasiparticle scattering rate
a+PT=r 'T at representative points on the principal (110)
orbit of the third zone, compared with the orbit average. Corre-
sponding values of a and P are given in Table I.

nearly cubic dependence over a broader temperature
range than do any of the point rates. A similar finding
was reported in Ref. 14 on a single orbit, and we find this
behavior to be quite typical of orbits on the Al Fermi sur-
face (see Ref. 7 for further discussion). Model calcula-
tions exploring the range of temperature dependences
that can occur for orbit averages are found in Ref. 20.

Although most of the temperature dependence shown
in Figs. 5(a) and 5(b) occurs outside the experimental
range for RFSE or surface-Landau-level resonance
(SLLR), there are two interesting reasons for discussing it
in this much detail. First, similar or greater anisotropy
may be present in the transport relaxation rate, which
can manifest itself in the form of deviations from
Matthiessen s rule in the electrical resistivity (i.e., nonad-
ditivity of the electron-phonon and electron-impurity
contributions). This effect is seen at temperatures well
above those where RFSE and SLLR are effective.
Second, it is instructive (if academic) to note that the an-
isotropy of A, (k) is related to that of the quasiparticle
electron-phonon scattering rate by the identity

which follows directly from Eqs. (2) and (4). There is a
similar identity [Eqs. (41) and (42) of Ref. 21] relating the
high-temperature electrical resistivity to a (surface-
averaged) transport A, . The identity above is interesting
because it holds pointmise. It is remarkable that the an-
isotropies are already quite similar by only 100 K, as
shown in Fig. 7. Perhaps the criterion for similar an-
isotropies is that typical phonon wave vectors need only
span the equivalent of a minimum symmetry element, not
the whole Fermi surface.

The calculated values of k are very similar in function-
al form to those presented by Meador and Lawrence, '

but lower in magnitude by between 17%%uo and 20%%uo. This
is almost entirely the result of using a different form fac-
tor, one that matches precisely both pseudopotential
coefficients. The calculated Fermi-surface average is also
lower than that determined from specific-heat data,
namely 0.43, but close to that determined from the su-
perconducting transition temperature, 0.38 (Ref.
23)—0.39 (Ref. 24).

The phonon-mediated electron-electron scattering rate
is similarly sensitive to the form factor because it depends
on large-angle scattering. The electron-phonon rate, on
the other hand, depends on small-angle scattering at low
temperatures, where it is quite insensitive to this change.

Recent RFSE measurements, two orders of magnitude
more precise than previous ones in Al, have been per-
formed. The experiment allows a clear separation of
electron-phonon and electron-electron contributions to
the scattering rate by varying experimental conditions on
which only the electron-phonon contribution depends.
Both contributions are in good overall agreement with
our calculations, as seen in Table II. The electron-
phonon rates are in excellent agreement, and the mea-
sured electron-electron rates are about half the theoreti-
cal rates overall, the worst case being the discrepancy of
a factor of 3 for the second-zone orbit, which spans both
free-electron-like regions and ridges. It is particularly

0.5 0.5

0.4 0.4

0.3

0.2

0. 1 0.1

x '(k)/2vr T

X L U X

0
N W W N U K

FIG. 7. Anisotropies of A,(k) and r, & (k) are compared along the border of the minimum symmetry element of the Fermi surface.
The scattering rate is expressed in a dimensionless form whose values should approach A.(k) at high temperatures [Eq. (18) of the
text]. The anisotropy of r,&

is slightly greater than that of A, in the second zone.
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gratifying nevertheless that the measured interzone aniso-
tropies agree with theory for both mechanisms. Unfor-
tunately, existing experimental data do not allow a
definitive measure of the anisotropy of the electron-
electron scattering rate within a single zone, as one would
particularly like to confirm the largest predicted values of
7 '(k) occurring on the Viii ridges.

In previous RFSE measurements ' on Al, the authors
described their data only with single power laws, because
of the lack of precision. Perhaps most interesting are the
results presented by Parsons and Steele, whose data were
obtained using the tilted field effect in the (100) and
( 111) free-electron-like regions. Our calculated
electron-phonon and electron-electron contributions to
the scattering rate are comparable in magnitude in the
measured temperature range and consistent with the ex-
ponents of the best power laws (2.2 —2.6) published by the
authors.

SLLR measurements, on the other hand, lack
sufhcient precision to resolve departures from T
behavior in the temperature range studied, but they nice-
ly complement the RFSE data in revealing the anisotropy
of the electron-phonon scattering rate at points. Meador
and Lawrence compared these data with theory at a few
calculated points, and we add some further points (Table
II) to help fill out the picture. We specify the range of
computed P values in those cases where it is broad (these
may be read approximately from Fig. 5); otherwise we
just state the average value. It should be noted that the
experimentally determined values of P would be reduced
if T terms (as computed here, for example) were sub-
tracted from the data. This e6'ect is largest near the X
and L points, where it produces a decrease of about 20%.
Also, the discrepancy between theory and experiment,
particularly at points I'4 and P5, may reInect the fact that
SLLR measurements average over a finite, if small, arc

TABLE II. A comparison of theoretical and experimental scattering rates for Fermi-surface points
(experimental analysis for T' only), orbit averages, and the Fermi-surface average related to electrical
resistivity ( A =p„/T ) Points P1, P2, etc. are identified in Fig. 5.

Points
P theory P expt.

(10' s 'K ')
T range

(K)

second zone
P1
P2
P3
P4
Ps
P6
P7
P8
P9
P10
near ( 100 &

near (111&

0.30'
0.30-0.38
0.34-0.40
3.2
0.38
0.30
0 29'
0.29
0.32
0.30—0.60
0.30
0.29

0.41+0 03b

0.63+0.14'
1.2+O.3'
1 5+07
1.2+0.3

O. 35+O.O4b

0.39+0.03"
O. 54+O.OSb

0.71+0 09b

0.78+0.16"
0.25+0.04'
0. 19+0.02'

4—13
7—11
4—11
2—5
4—10
4—13
4—13
4—11
4—12
4—10
4—7
4—10

third zone
P11
P12
P13

0.8-3.0
4.0—4. 8

3.2

Z. 6+O.3b

5.0+0.5
3. 1+0.3b

Orbit averages a theory a expt.
(10' s 'K )

second zone
( IOO&+6'
third zone
( IOO&

( I IO&

2.2

3.8
3.9

O. 68+O.OS'

1.9+0.5
2.6+o.s'

0.42

2.4
2.4

0.54+0.02

2.6+0.2
2.6+0.2

0.3—10

0.8—6
1.0—6

FS average
(resistivity)

2 theory 3 expt.
(fQm K )

5.7
5.7

2.7-3.0'
3.7-4.7

1.2-2.2
2.8-4.2

'Reference 14.
"Reference 4.
'Reference 6.

Reference 7.
'Reference 2.
'Reference 3.
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length on the Fermi surface. Finally, we include in this
comparison the results from two limiting-point RFSE or-
bits studied in Ref. 6. These were fitted to T laws over
the indicated temperature ranges.

The global Fermi surface average of the calculated
electron-electron scattering rate may be converted into a
corresponding electrical resistivity through p„=4~6,(1
+A, )Q& (r,, ') [Eq. (20) of Ref. 11], where brackets
denote both Fermi-surface and energy averages, 6 is the
umklapp scattering parameter, and Q is the plasma fre-
quency parameter whose square is proportional to the
Perm-surface integral of the electron velocity. Using
values quoted in Table IV of Ref. 11 and the value of A,

calculated here, we find p„/T = A =5.7 fQ m/K . The
earlier approximate theoretical treatments gave the
values 2 =4. 1 and 3.0 f0m/K (Refs. 9 and 11, respec-
tively). The present value is compared in Table II with
the high-resolution measurements on 12 diferent Al sam-
ples by Ribot et al. in the temperature range extending
from 1.18 to 4.2 K. They found that the data conformed
to a sum of T and T contributions from 1.18 up to 2.2
K, but not above. In this interval the T coefficient was
found in the range 2.7—3.0 f0m/K, with the value 2.8
fQm/K within the estimated error for every sample.
Hou and Kos reanalyzed the same data from nine of the
Ribot et al. samples, as well as electrical resistivity data
on one of their own samples. They found that a sum of
constant, T and T terms fit well between 2.85 and 4.2
K, leaving an additional resistivity at low temperatures
that could be fit to a Kondo-like temperature depen-
dence. The T coefficients attributed to electron-
electron-scattering were in the range 2 =3.7—4.7
fQm/K with an average value of 4.14 fQm/K . A
Kondo temperature of 1.6 K was found for all five of the
samples for which sufficient low-temperature data exist to
determine it. The residual resistivity po varied by more
than two orders of magnitude (0.66—110 pQ m) in these
samples. The magnetic impurity responsible (if any) is
not known, and it is surprising that the Kondo tempera-
ture does not vary considering the large variation in po.
It seems to us that electron-electron and electron-phonon
scattering provide a sound physical basis for T and T
variations in the lower-temperature range, with devia-
tions expected at higher temperatures. In fact, deviations
from Matthiessen's rule are evident in the data, and could
plausibly arise from the combination of anisotropic
electron-phonon and electron-impurity scattering. This
would be expected to manifest itself in the onset of a
slower-than-T dependence of the electron-phonon con-
tribution with increasing temperature. At sufficiently low
temperatures, in contrast, both temperature-dependent
contributions saturate and exhibit po-independent T and
T contributions.

It is pleasing to note that the electrical resistivity and
RFSE data appear to be consistent with one another re-
garding the electron-electron mechanism, which resolves
a long-standing (apparent) contradiction between the
quasiparticle and transport data. In fact the Ribot et al.
resistivity coefficient 2 corresponds very closely to the
RFSE coefficient a, both being about a factor of 2 below
the corresponding theoretical values. It should be

remarked in this connection that the theoretical resistivi-
ty p„is considerably less certain than the theoretical
scattering rates, primarily because of uncertainty in the
urnklapp parameter 6, for which realistic microscopic
calculations have been carried out only in the alkali met-
als. Those calculations suggest that in Al, 6 could easi-
ly be less than the currently accepted estimate 0.4. A
modest correction to this theoretical parameter would
not invalidate our conclusions, however.

V. CONCLUSION

Using a 4-OPW pseudopotential fit to the Fermi sur-
face, and a Born —von Karman fit to the phonon spec-
trum, and adopting the simplest pseudopotential form
factor consistent with this, we calculated, without any
further adjustable parameters, a complete Fermi-surface
map of the phonon-mediated electron-electron scattering
rate in Al. To our knowledge, this is the first such micro-
scopic calculation for a distorted Fermi surface. A con-
tour integral method was developed to map out the direct
part over the entire Fermi surface and exhibit its surpris-
ingly large anisotropy in detail. The exchange part, com-
puted at a few typical points, is at most —,

' of the direct
part. We found that the phonon-mediated electron-
electron scattering rate depends, like the mass enhance-
ment, on large-angle scattering events as well as short-
angle events, in contrast to the electron-phonon scatter-
ing rate. We also extended previous calculations of the
mass enhancement factor and the electron-phonon
scattering rate to cover all the mesh points and provide
necessary orbit averages. Finally we estimated the
Coulomb contribution, known to be much smaller, and
argued that this is much less anisotropic (as expected)
than the phonon-mediated contribution.

The calculated orbital averages of both electron-
phonon and phonon-mediated electron-electron scatter-
ing rates agree with recent high-precision RFSE measure-
ments, which involve a second-zone and two third-zone
orbits. The experiments resolve electron-phonon and
electron-electron contributions by exploiting the depen-
dence of the former on radio frequency and sample thick-
ness. In agreement with previous calculations, ' we
found sharp deviations from T behavior for point rates,
but these tend to average out toward T dependence
when computed on all three orbits. Orbit averages also
conceal the large intraband anisotropies calculated in
point rates from both mechanisms, so that the anisotropy
of orbit averages is less than point anisotropies calculated
within each band.

The Fermi-surface average of the phonon-mediated
electron-electron scattering rate is in good agreement
with the value inferred from the electrical resistivity
data, ' as it is with previous more approximate theoreti-
cal calculations. '" The computed Fermi-surface aver-
age of the mass enhancement parameter A, is smaller than
the value inferred from speci6c-heat data, but in reason-
able agreement with that inferred from superconductivi-
ty.

In summary, with the simplest consistent microscopic
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theoretical framework, we have shown that we obtain
reasonable overall agreement with all pertinent available
experimental data. This work shows that anisotropy of a
T term in the scattering rate persisting to low tempera-
tures may be a signature of the phonon-mediated

electron-electron mechanism in the simple metals. Fur-
ther experimental data could confirm the extreme anisot-
ropy which we predict on all the V&&& ridges. Further
theoretical work might also be useful in providing insight
into the general origin of this anisotropy.
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