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We have studied the ground-state properties of ordered, partially ordered, and random Cu-Au and
Ni-Pt alloys at the stoichiometric —,—,and —compositions in the framework of the multisublattice
single-site (SS) coherent potential approximation (CPA). Charge-transfer effects in the random and
the partially ordered alloys are included in the screened impurity model. The prefactor in the
Madelung energy is determined by the requirement that the total energy obtained in direct SS
CPA calculations should equal the total energy given by the Connolly-Williams expansion based on
Green s function calculations for the ordered alloys that do not rely on the single-site approximation.
We find that the prefactor to a large degree is independent of lattice constant, concentration, and the
long-range-order parameter and may be considered constant for a given alloy system. The calculated
heats of formation for the ordered alloys are in good agreement with experimental data. For all the
alloys the calculated ordering energy and the equilibrium lattices parameters are found to be almost
exact quadratic functions of the long-range-order parameter.

I. INTRODUCTION

In recent years there have appeared a number of Grst-
principles theoretical investigations of ordering phenom-
ena in Cu-Au (Refs. 1—12) and Ni-Pt (Refs. 12—15) alloys
and of the inQuence of ordering effects on their electronic
structure and thermodynamic properties. In all these in-
vestigations, except in the work by Kudrnovsky et al. ,
who calculated the electronic structure of partially or-
dered Cu3Au alloys, one considers only two states of the
alloys, i.e., completely random or completely ordered.
Nevertheless, there exists an intermediate, partially or-
dered state that is a consequence of atomic rearrange-
ments between the sublattices of the ordered alloy and,
to a certain extent, preserves the difference between sub-
lattice sites. In fact, under normal experimental circum-
stances it is diKcult to avoid the partially ordered state
because of thermal Quctuations and deviations from ex-
act stoichiometric compositions during the alloy prepa-
ration.

At the present time it is generally accepted that tradi-
tional energy band-structure methods based on density-
functional theory give a reliable quantitative description
of the electronic structure and ground-state properties of
completely ordered crystalline solids. Moreover, it has
recently become clear that this approach may also be
used in calculations of thermodynamic properties includ-
ing phase diagrams of partially ordered or random al-

loys if applied in conjunction with the Connolly-Williams
method (CWM), the special quasirandom structure, ~r

or related methods. However, these methods are based
on expansions of the total energy in some parameters and
are restricted to systems where the underlying electronic
structure changes smoothly, e.g. , as a function of concen-
tration. An alternative approach based on direct calcu-
lations of the electronic structure of random or partially
ordered alloys at a given composition and order is the
single-site (SS) coherent potential approximation (CPA),
which has proven to be most accurate and reliable.

Recent applications ' show that the SS CPA
yields equilibrium lattice parameters, bulk moduli, and
enthalpies of formation with an accuracy similar to that
obtained by ordinary erst-principles methods for ordered
solids. However, in comparison to the latter methods
the SS CPA includes one additional approximation, i.e.,
the single-site approximation, and at present it is still
unknown to what extent this additional approximation
in8uences the accuracy of the calculated electronic and
ground-state properties. It appears that the most impor-
tant source of error is the uncertainty in the treatment
of charge-transfer e8'ects, e.g. , through the de6nition of
a Madelung potential of the alloy components and a cor-
responding Madelung energy.

There exists a number models that treat charge trans-
fer efFects in random metallic alloys ' including models
based on the SS CPA. 9' ' '26 These models were re-
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cently discussed by Korzhavyi et a/. , who found that
the Madelung energy in all cases had the same mathemat-
ical form but with a difFerent prefactor. It was also found
that no single value of this prefactor would lead to per-
fect agreement between theory and experiment. To solve
this problem, it was suggested that one might choose the
Madelung prefactor in such a way that the total energy
of a completely random alloy obtained in direct SS CPA
calculations should equal the total energy of the same
system, but obtained by a Connolly-Williams expansion
based on Green's function calculations for the ordered
alloys, which in this context may be considered exact as
far as teatment of charge transfer efFects is concerned. In
the present paper we shall exploit this approach further.

II. METHOD OF CALCULATION

The generalization of the usual SS CPA to solids with
several diferent sublat tices is straightforward '

and below we therefore present only a brief outline of
the technique.

A. Multisublattice LMTO CPA method

Let us consider an ordering A Bi, alloy, where c is
the concentration of the A species, with A: o,-type sub-
lattices and m P-type sublattices. In the completely or-
dered state the alloy therefore has the formula ApB
For simplicity we assume that all the n as well as all the
P sublattices are equivalent. To describe a partially or-
dered state of such an alloy it is sufFicient to introduce a
single long-range-order (LRO) parameter g. If we call the
concentration of the A species on the n and P sublattices
c and cp, respectively, g may be defined as

atomic sphere approximation (ASA). Hereby the aver-
age one-electron Green's function may be obtained in
the form of the Korringa-Kohn-Rostoker (KKR) ASA
Green's function, which is analogous to the scattering
path operator in multiple scattering theory. For a com-
plex energy z we have

g,, (z) = d k [P(z) —S(k)]
BZ BZ

where VBz is the volume of the Brillouin zone (BZ),
S(k) the LMTO structure constants, and P(z) the crys-
tal coherent-potential-function matrix. In the expression
the subscripts i and j refer to individual sublattice sites
in the unit cell and the tilde labels average (coherent
potential) quantities. Finally, we have suppressed the
angular momentum quantum numbers (lm) as well as
the LMTO representation label. The coherent-potential-
function matrix that enters (3) is block diagonal

( P, 0 . . . 0 )
0 P2 . . . 0

( 0 0 . . . P„ )
and each diagonal element P, is the coherent-potential
function of the i sublattice. To obtain the complete
coherent-potential-function matrix in the single-site ap-
proximation one must, for each of the n sublattices, solve
an equation of the form

P; = c;P; + (I —c;)P; + [P, —P;]g,; [P; —P;], (5)

where c; is the concentration of A atoms and P," the
potential function of the K species on sublattice i. In
the a representation of the LMTO method the potential
function may be parametrized in the form

77 = c~ —cp.
(t-","1 —z) (~,"& —~i) + &,"&

(6)

In turn, c and cp may be expressed in terms of g and
the concentration c as

k
Cp = C ——7/)n

where n = &+m is the total number of sublattices in the
alloy.

In any partially ordered alloy there exit also short-
range-order (SRO) effects. However, in the framework
of the single-site approximation it is possible to take into
account only those SRO efFects, which are caused directly
by the long-range order. Furthermore, each sublattice is
considered. a completely random alloy with corresponding
concentrations of A and B species. Thus, in the single-
site approximation the partially ordered alloy is viewed.
as a set of coexisting completely random alloys.

The key self-averaging quantity, which should be de-
termined in order to calculate the electronic structure
and ground-state properties of an alloy, is the average
one-electron Green's function of the system. To obtain
this quantity we apply the SS CPA in conjunction with
the linear muffi-tin orbitals (LMTO) method in the

in terms of the center C, bandwidth 4, and p poten-
tial parameters obtained &om the solution of the radial
Schrodinger equation at a particular energy E„and an-
gular momentum I,.

Although it might appear so, the coherent-potential
functions on difFerent sublattices are not independent.
In fact, they are coupled by the definition g (3) of the
coherent Green's function, which, together with (5), form
the nonlinear system of CPA equations, which must be
solved self-consistently.

B. Madelung potential and energy

When the system of CPA equations is solved, one may
calculate the valence charge density p,

" of the atomic
species K in the sphere at the i sublattice. Related to
the charge density is the net charge on site i, which in
the ASA is

C =+~at d "p'i
S;
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where the integral is taken over the atomic sphere of ra-
dius S, and Z"

&
is the number of the valence electrons of

the ~ atom.
Connected with the net charge is the Madelung poten-

tial of atom v on sublattice i. In the mean-field approxi-
mation, where configurational correlations are neglected,
this Madelung potential only depends on the sublattice.
It has the form

sating charges. In Ref. 31 it was shown that this latter
term may be written

~' =-~„'„' ):~.(Q."-Q.)'+(1-')(Q, -Q.)'~
A

2

):"(1- ")(Q."—Q. )',
1

2

v,'= —) ~;, Q, ,

2

where M;~ is the Madelung matrix of the crystal lattice,
S the average atomic signer-Seitz radius of the alloy,
and Q; the average net charge on sublattice i

where P is a prefactor that depends on the particular
model used to describe the charge transfer efFects. For
example, in the screened CPA method P = 0.5, in the
charge-correlated model, P 0.6 —0.7, and in the SIM,
P = 1 when the interaction between the screening charges
themselves is neglected.

Q;=cQ, +(1 —c)Q;.

) Q, =o.

It follows that if the K, atom on the i sublattice has a net
charge different from the average value Q, , the complete
system, i.e., the atom plus the efFective medium, will have
an extra charge Q,"—Q;, which must be compensated in
some way to keep the system neutral.

Recent Green's function calculations of impurity atoms
in metals show that almost all of the compensating
charge is located in the first coordination shell around the
impurity. This observation is the basis of the screened
impurity model (SIM), 2 i according to which each
atom ~ on the sublattice i has an additional Madelung
potential

2 Q,"—Q'
ZK

caused by the compensating charge located in the first
coordination shell of radius B~. The complete Madelung
potential of each alloy species is therefore

~M go+ ~1

Related to the Madelung potential there will be a corre-
sponding Madelung energy consisting of two terms

&~ = E~+ @~

where the first is the ordinary Madelung energy of the
electrostatic interaction of the efFective sublattices

2

@~ =
2 ~ ).~"Q*Q~ (14)

and the second is the energy associated with the compen-

To solve the SS CPA equations one needs at each iter-
ation the one-electron potential for each atomic species
at each sublattice. It is therefore necessary to consider a
single atom embedded in an efFective medium where the
average charges on the sublattices obey the condition of
charge neutrality

C. Determination of P

Korzhavyi et OL tested different values of the pref-
actor P in a number of alloys exhibiting considerable
charge-transfer efFects and found that no single value,
e.g. , P = 1 or P = 0.5, worked in all the systems consid-
ered. It was therefore suggested that P may be regarded
as a constant only for a given system and crystal struc-
ture and that its value may be determined on the basis
of data obtained beyond the single-site approximation.
For instance, a possible value of P may be found by com-
paring calculated and measured properties such as lat-
tice constants and heats of formation. However, in such
a comparison one should realize that real, random alloys
difFer from the ideal systems considered in SS CPA calcu-
lations by possible SRO eKects as well as local distortions
of the lattice caused by the difFerence in the atomic sizes
of the alloy species. In fact, this appears to be the case
for the Cu-Au and Ni-Pt random alloys, ' ' which
we are considering here.

A more consistent solution to the problem of finding
a system-dependent optimal value of P may be based on
the results from erst-principles methods for ordered al-
loys, which in the present context treat charge-transfer
efFects and electrostatic energies exactly. In this case the
lattice constants as well as the total and mixing energies
of completely random alloys may be obtained by means
of the Connolly-Williams method through the calcu-
lation of the cluster interactions parameters. Thus one
may find a value for P by comparing SS CPA calculations
including (13) with results from CWM calculations. Al-
ternatively, since the cluster interaction parameters may
be obtained also from SS CPA calculations one may find
a prefactor P, which makes the two sets of cluster inter-
action parameters (CWM and SS CPA) agree to some
accuracy.

It is not obvious that such a procedure should work
in all cases because in general one would expect some
dependence of the prefactor on the value of the lattice
parameter, the alloy composition, and even on the LRO
parameter. However, as we shall show, one may, at least
in the alloy systems considered here, neglect these depen-
dences and for each alloy system choose a single value of
P that allows one to reproduce with acceptable accuracy
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thermodynamic properties in a broad range of these ex-
ternal parameters.

D. Connolly-Williams method for partially ordered
and random alloys

The Connolly-Williams method is based on a phe-
nomenological expansion of the total energy of a given
alloy in terms of atomic distribution correlation functions
(o'; ozp '. .o 7,~), which are the averages of the products of
spinlike variables o.; taking on values +1 or —1, depend-
ing on whether the o. site of the i sublattice is occupied
by A or B atoms, respectively. The total energy of an
alloy is expressed as

ED~73 = vp + vyo + v2(o' —477 ) + vs(o'

E~~ = vp + vyo' + v2(o' —j~77 )

+vscr(o. —g ) + v4(o —g ),
E~~s = vp + vyo + v2(o' —

477 ) + vs(o'

~v4(~4 —-', o'q' —o.q' ——,', g4),

3& 2+ j. s)

(17)
s 2 1 s)

Erand —VP + 'Uio + V20 + V30 + V40
2 3 4 (18)

where o = 2c —1 is the average spin variable of the alloy
of concentration c and g the long-range-order parameter
defined in Sec. II A. For a completely random state g =
0 and for this value, the three expressions (17) become
equivalent and equal to the energy of a random alloy

E=) v„(„, (16)

where the sum runs over clusters of different types, v„ is
a cluster interaction parameter for a particular cluster,
and („,is the corresponding spin product.

The basic idea of the Connolly-Williams method is to
calculate the total energy of a number of different super-
cells for a given lattice and then solve the correspond-
ing number of equations of the form (16) for the clus-
ter interactions v . There are many ways to determine
a set of cluster interactions (see, for example, Ref. 37),
but for our purpose, i.e. , the comparison of the ener-
getics obtained on the basis of total energy calculations
for ordered alloys with CPA results, we calculate the so-
called unrelaxed cluster interactions, which completely
neglect lattice relaxation effects caused by differences in
the atomic sizes of the alloy components. This means
that the set of total energies used to solve (16) must be
calculated at the same volume and hence the unrelaxed
cluster interactions are volume dependent. Note that the
unrelaxed cluster interactions in fact fail to give a cor-
rect description of the Cu-Au and Ni-Pt phase diagrams
because lattice relaxation effects are important in these
two systems. ' However, we use the cluster interactions
only to determine the prefactor P in (15), and after a
value is found any other type of cluster interactions may
be obtained and used in, say, the calculation of the phase
diagram.

In the present calculations we find that the expansion
in the unrelaxed cluster interactions is rapidly convergent
and that we need only keep the five terms in (16) that
correspond to the four-site interactions of the tetrahedra
of the nearest neighbors in the fcc lattice. Therefore, we
consider in the supercell calculations for the completely
ordered alloys the pure A and B' elements in the fcc struc-
ture, the AB compound in the Llp structure, and the
A3B and A.B3 compounds in the I 12 structure.

In the case of the partially ordered alloys we have
used the total energy of partially ordered AsB (L12),
AB (Llp), and ABs (I 12) alloys as defined in the mean-
field approximation, i.e., without SRO effects on the alloy
sublattices as required by the CPA. The total energies in
the three cases are

In the present work Eqs. (17) and (18) have been used
to calculate the ground-state properties of random and
partially ordered alloys based on the cluster interaction
parameters obtained from ordered alloys by the CWM.
In addition, they have been used to determine the cluster
interactions of random and partially ordered alloys from
total energies obtained in CPA calculations. In the case
of a random alloy the cluster interactions were obtained
on the basis of the total energy of the pure elements as
well as completely random alloys at different concentra-
tions, while in the case of a partially ordered alloy the
cluster interactions were obtained &om the total ener-
gies of a single alloy structure at a fixed concentration
but with different values of the LRO parameter g.

E. Details of calculation

All the calculations for partially ordered and random
alloys have been performed in the scalar-relativistic ap-
proximation and the ASA by means of the LMTO CPA
method ' in the tight-binding representation.
For the pure elements and the ordered compounds we
have used the LMTO Green's function (GF) techruque in-
stead of solving the conventional Hamiltonian eigenvalue
problem. Thereby we treat these systems numerically on
the same footing as the random alloys. This allows us to
compare directly the calculated electronic structure and
ground-state properties of random and ordered alloys. In
the latter case we have also found that the difFerence be-
tween the results of the LMTO GF calculations and the
second-order tight-binding LMTO Hamiltonian calcula-
tions is practically negligible. For example, the difference
in the total energy of CusAu is about 0.03 mRy/atom.

Only valence electrons with l „=2 were treated self-
consistently in the local-density approximation (LDA)
with the Perdew-Zunger parametrization of the results
of Ceperley and Alder for the exchange-correlation po-
tential and energy. Core electrons were frozen after initial
atomic calculations. We have tested the influence of this
so-called kozen-core approximation on the calculated
ground-state properties and found that it may safely be
used, at least in the calculations for the present systems.
For instance, the difference between the results of all-
electron and &ozen-core calculations is less than 1% for
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the equilibrium lattice parameter and 10% for the bulk
modulus, i.e. , within the accepted range of errors in the
LDA and the ASA. Moreover, as expected, it becomes
negligible in the comparison of ground-state properties
of ordered and disordered states.

AH alloy and pure metal calculations have been per-
formed in a simple cubic structure with four sublattice
sites corresponding to the fcc structure with lattice pa-
rameter a, i.e. , (0, 0, 0), z (1, 1, 0), 2 (1,0, 1), and (0,1,1) 2,
where the probability of occupation by difFerent atoms
depends on the composition, stoichiometric formula, and
the value of the LRO parameter g. For pure metals and
random alloys all four sublattices are equivalent, while
for the Cu3Au, Au3Cu, Ni3Pt, and Pt3Ni completely and
partially ordered alloys in the L 12 structure three sublat-
tices are equivalent and di8'erent from the fourth and for
the CuAu and NiPt ordered alloys in the I 10 structure
with a c/a ratio equal to 1 there are two sets of equivalent
sublat tices.

The integration over the Brillouin zone (3) has been
performed by the special point technique. For pure met-
als, random alloys, and the L12 ordered alloys we used
56 k points in the irreducible wedge (1/48) of the simple
cubic Brillouin zone and for the Llg alloys we used 168
k points in the irreducible wedge (1/16) of the Brillouin
zone, of the simple tetragonal lattice. In order to cal-
culate integrals over the whole Brillouin zone, which is
needed for the oB-diagonal elements of the Green's func-
tion g, which enters the CPA equation (5), we applied
the 48 proper symmetry operations of the L12 structure
and the 16 symmetry operations of the Llo structure to
each k point in the irreducible Brillouin zone wedge, i.e. ,

1
I =

VBz
dk ) U(T) [P —S(k)) U(T), (19)

where U(T) is the unitary transformation matrix, which
transforms the KKR ASA Green's function [P —S(k)I
under the symmetry operation T. For completely ran-
dom alloys where all the sublattices are equivalent and
have cubic symmetry, g is diagonal in the cubic harmonic
representation with l = 2. The time-consuming sum-
mation over T in (19) may in that case be performed
analytically by means of the orthogonality relations.
For completely ordered alloys no summation over T is
needed because only the trace of the Green's function av-
eraged over equivalent sublattice sites enters the problem
and this is invariant under the symmetry transformations
(19).

In all the calculations the individual atomic sphere
radii were set equal to the radius of the average atomic
signer-Sietz sphere of the alloy. The moments of the
state density needed for the kinetic energy and the va-
lence charge density were calculated by integrating the
Green's function on a complex energy contour using a
Gaussian integration technique with 16 points on a semi-
circle enclosing the occupied states. The convergence cri-
teria for the total energy was 0.001 mRy. The equilibrium
lattice parameter and corresponding ground-state energy
of a given alloy were obtained on the basis of five self-
consistent calculations of the total energy close to the

equilibrium lattice parameter and a subsequent fit to a
Morse-type equation of state.

III. DPTIMAL P VALUE

According to the procedure outlined in Sec. IIC, one
may obtain an optimal value for the SIM Madelung pa-
rameter P by a comparison between CWM and CPA to-
tal energy calculations for random alloys. In Fig. 1 we
present such a comparison for the Cu-Au system and
from the figure one may observe that the results of CPA
calculations with P = 0.74 are identical to those obtained
by the CWM, at all concentrations. A similar comparison
for the Ni-Pt system leads to an optimal value of P = 0.6
and we conclude that P may be considered constant for

(a)
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CPA (il = 0.74)

CPA (i) = 1.00)

CU7 AU25

E0
05

10
E

CDI 5

Q)

05
a 0

2.75

CU50AU50

2.75

I

2.85

(I3 = 0.66)
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FIG. 1. Comparison between calculated binding energies
for (a) Cu7sAu2s, (b) CusoAuso, and (c) Cu2sAu75 ran-
dom alloys relative to the energy of the standard state
E = cE&„+ (1 —c)E&„, where c is the Cu concentration
and Ez„and E&„ the equilibrium energies of Cu and Au,
respectively. The results have been obtained by the expan-
sion (18) with cluster-interaction parameters derived by the
Connolly-Williams method on the basis of total energies of
ordered alloys and by the I MTO CPA method in the SIM
with several choices for P. In (b) P = 0.5 corresponds to
the screened CPA method (Ref. 26) and P = 0.66 to the
charge-correlated model (Ref. 9).
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a given alloy system independent of concentration, LRO,
and lattice spacing. It should be pointed out, however,
that we find that P may depend on the crystal structure,
e.g. , for fcc Ni-Al alloys P = 0.6 while for bcc Ni-Al alloys

P = 0.96.
Based on the present experience as well as previous

calculations, one may expect that ground-state prop-
erties of random alloys may be calculated by the SS CPA
with an accuracy similar to the one found in calculations
for ordered alloys. However, to obtain such an accuracy
one must take account of charge transfer efFects, for in-
stance, in the form outlined above. The expectation that
a universal value of P would lead to the required accuracy
in all alloy systems is not substantiated and instead we
find that the optimal value varies in the range from 0.5 to
1. On the other hand, judging from Fig. 1(b) both the
screened CPA method corresponding to P = 0.5 and
the charge-correlated model corresponding to P = 0.66
would do much better for the Cu-Au system than the
conventional complete neglect of charge transfer efFects.

A. Cluster interactions: Dependence on P

As an alternative to the comparison of binding ener-
gies one may consider the calculated cluster-interaction
parameters v of the expansion (16). Note that since vo
and vq define the standard state from which relative en-
ergy changes are measured, only the higher-order terms
will be important. In Table -I we therefore present se-
lected sets of the calculated volume-dependent unrelaxed
cluster interactions v2, v3, and v4 for the CuAu and NiPt
systems which correspond to a termination of the series
at four-site interactions, i.e. , at the tetrahedron of near-
est neighbors. For the ordered phases the cluster inter-
actions are based on total energy calculations for the two
pure components and the three ordered phases A3B, AB,
and AB3. For the completely random alloys the cluster
interactions are based on the total energies of the two
pure components and three random alloys at concentra-
tions of 25, 50, and 75 at.%. Finally, for the partially
ordered alloys the cluster interactions are based on the
total energies of the two pure components and of partially
random alloys at fixed concentrations but with three dif-
ferent values of the LRO parameter g = 0.0, 0.5, and 0.8.
In the case of equiatomic, partially random alloys, i.e.,
CuAu and NiPt, we did not extract cluster interactions
because in this case E~~ of Eq. (17) is a function of il2

and g4 only.
To form a useful expansion of the total energy of an

alloy as a function of concentration and order one must
require that the cluster-interaction parameters are inde-
pendent of the configurations used in the first-principles
calculations from which they are extracted. Ideally, it
should therefore be possible to select a value of P such
that the cluster interactions derived from CPA calcu-
lations for random configurations agree with those ob-
tained from calculations for the ordered alloys. In prac-
tice one must expect some dependence on the config-
urations of the underlying first-principles calculations,
e.g. , because in a fit to the truncated expansion (16)

TABLE I. Two-, three-, and four-site unrelaxed cluster in-
teractions (in K) obtained by calculations for ordered, ran-
dom, and partially ordered alloys. The Wigner-Seitz radii S
are chosen close to the calculated equilibrium value for the
ordered phase.

Alloy
Cu3Au ordered

S (a.u. )
2.773

vg

6864
V3

503
v4

11

Random
Random plus LRO
Random
Random plus LRO

1.0 7714
7722

0.74 6938
6815

788
3504
671
687

17
1097

30
133

CuAu ordered 2.90 4411 311

Random 1.0 4773
0.74 4362

465
385

20
21

Au3Cu ordered 3.00 3142 176

Random
Random plus LRO
Random
Random plus LRO

3293 288
3457 —811

0.74 3057 235
3104 199

26
335

26
3

Ni3Pt ordered 2.7 8390 953 210

Random
Random plus LRO
Random
Random plus LRO

1.0 10540 1801
10533 9007
8475 1386
8206 1117

0.6

298
3186

267
384

NiPt ordered
Random

2.8
1.0
0.6

5847
7113
5784

694
1254
946

148
236
214

Pt3Ni ordered 2.9 4096 490

Random
Random plus LRO
Random
Random plus LRO

1.0

0.6

4812 831 159
5552 —2875 1050
3996 609 141
4259 725 —112

the higher-order interactions that are neglected will be
redistributed over the calculated cluster interactions de-
pending on the configurational parameters. Hence, even
if the calculated total energies of the alloys were exact
the extracted cluster interactions would still be some-
what difFerent.

From Table I one observes that the extracted cluster
interactions for the ordered alloys satisfy the conditions
v2 )) vs )) v4, which indicate that the expansion (16),
at least for CuAu and NiPt alloys, may be truncated at
n = 4. One also observes that the cluster interactions
of the random alloys for P = 1, which is the original ap-
proximation of the SIM, ' in general agree quite well
with those of the ordered alloys. This is true for v4, while
v2 and v3 are slightly overestimated especially in the Ni-
Pt system. For the partially ordered alloys with P = 1
one finds that vs and v4 difFer considerably from the cor-
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responding values extracted from the random as well as
the ordered alloy calculations. Finally, one observes that
at P = 0.74 for Cu-Au and P = 0.6 for Ni-Pt the clus-
ter interactions of random and partially ordered alloys
are consistent with those of the ordered alloys. A mea-
sure of the accuracy with which these cluster interactions
should agree may be provided by plots of calculated total
energies of the kind shown in Fig. l.

B. Cluster interactions: Dependence on charge
transfer

When P is changed from 1 to its optimal value the ex-
tracted cluster-interaction parameters will reflect the cor-
responding change in the electrostatic interactions con-
nected with charge-transfer effects. In the two systems
under consideration it turns out that the effective charge
transfer Q; —Q; that enters (15) varies almost linearly
with concentration and is practically independent of the
value of the LRO parameter. Furthermore, Q; —Q,
changes little between sublattices and one may therefore
define a single effective charge transfer

seen that v2 for partially ordered and random alloys are
very close. The remaining cluster interaction parameters
v3 and v4 are determined on the basis of total energies
of random and partially ordered alloys at the same con-
centration. However, by definition these parameters are
proportional to the difference in energy of clusters having
different configurations. For instance, v4 is half the dif-
ference of the energies of tetrahedra consisting of atoms
of opposite types. Now the probability of finding such
a cluster in alloys with the same concentration is much
smaller than the probability of finding it in alloys with
different concentrations and therefore v3 and v4 turn out
to be strongly dependent on the LRO parameter. This
means that the values of v3 and v4 obtained on the basis
of total energy calculations for partially ordered alloys
are very sensitive indicators of the consistency of the to-
tal energies calculated within or beyond the single-site
approximation. At the same time, one should remem-
ber that this consistency may only be qualitative, as ex-
plained above, and therefore it does not make sense to
determine P by the requirement that the cluster interac-
tions of ordered and partially ordered alloys should equal
each other.

Q; —Q;—:AQ = Qp+ o.Qg, (20)

which allows us to estimate the contribution from (15) to
the Connolly-Williams interactions. On the basis of the
total energies of two pure components and three alloys
with compositions corresponding to o, 0, and —o the
contributions to the cluster interactions of a random alloy
are found to be

v2 = P (Qp —C)/—R~
4
1

vs = P —2QpQg/Rg,
4
1

v4 = &—Qi/R~.
4

(21)

vz
——1.75', v3 ——5.25Eg, vq ——1.76', (22)

where

3 AQ2

16 Rl

It follows that in this case the contributions to all the
cluster interactions beginning with v2 are of the same
order of magnitude.

According to (16) the total energies of the pure compo-
nents and the random alloys determine mainly the lowest
terms of the expansion, i.e, vo, vi, and v2. In Table I it is

For random Cu-Au alloys at R~~ = 2.773 bohrs, Qp and
Qq are 0.432 and 0.031, respectively, and for random Ni-
Pt random alloys at B~g ——2.7 bohrs they are 0.569 and
0.056, respectively. Therefore, in both systems a change
in P has the strongest efFect on v2, while the effect on v4
is at least two orders of magnitude smaller. This is in
good agreement with the values in Table I.

The contributions from (15) to the cluster interactions
in A3B partially ordered alloys with g = 0, 0.5, and 0.8
(for ABs alloys vs has the opposite sign) are found to be

IV. HEATS OF FORMATION

In Tables II and III we have collected the measured
heats of formation for Cu-Au and ¹iPt alloys at the
stoichiometric compositions together with the values cal-
culated previously by different first-principles methods.
The values calculated in the present work are shown in
Tables IV and V. In addition, we display selected values
in Figs. 2 and 3. From the data in the tables and in the
figure one observes that in view of the large uncertainties
involved both experimentally and theoretically the calcu-
lated heats of formation of the ordered alloys agree well
with each other as well as with the experimental data.
Similarly, one observes that for the random (CuAu) al-
loys the calculated heats of formation based on the CWM
for ordered alloys agree quite well.

Prom the tables one also observes that the results of
different CPA calculations for random Cu-Au and Ni-
Pt alloys differ greatly, depending on how the charge-
transfer effects are treated. For example, a complete ne-
glect of (11) and (15) leads to very high, positive values
for the heats of formation, as may be seen from our re-
sults for random Cu7sAu2s (Table IV) as well as from the
results of Ref. 28 for NispPtsp (Table III). This is to be
expected because, according to (15), the contribution to
the heat of formation from charge-transfer effects will be
negative. In fact, LMTO CPA calculations with P = 1
lead to substantial reductions in the calculated heats of
formation as shown in Tables IV and V. In this respect
the results of the KKR CPA calculations by Weinberger
et al. for random Cu-Au alloys are quite unexpected. In
spite of the fact that in these calculations charge-transfer
effects are completely neglected, i.e., terms of the kind
(11) and (15) are ignored, these authors calculate heats
of formation that are negative and very close to the ex-
perimental data.
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TABLE II. Heats of formation of Cu3Au, CuAu, and Au3Cu ordered and random alloys
(in cal/mol). The acronyms in the table are as follows: ASW is the augmented spherical
wave method, FLAPW the full potential linearized augmented plane wave method, KKR the
Korringa-Kohn-Rostoker method, and CPA-0 stands for the CPA method with complete neglect
of charge-transfer eKects both in the potential and the energy. Values in parentheses are read o8'
published figures while numbers in square brackets refer to temperature.

Phase
Cu3Au ordered
Random with SRO

Expt.
—1682 [298 K]
—658 [691 K]

—1059 [720 K]

ASW
plus

CWM'
—1500

FLAPW
plus

CWM'
—830
—60g

FLAPW
—1106

LMTO
plus

CWM

—(250)g

KKR
CPA'

Random 620 (1070) (136O) —(62O)

CuAu ordered —215O [32O K]
Random with SRO —1230 [720 K]

—1150 [693 K]
Random

—1608 —1450
—390g

667 (87O), 1567"

—(60)s

(1410) —(1250)

Au3Cu ordered
Random with SRO
Random

—1136'
—710 [720 K]

471

—610

(410) —(720)

Reference 43.
Reference 3.

'Reference 4.
Reference 10.

'Reference 12.
Reference 11.

gAt 800 K.
"Reference 9.
'Value obtained from the ordering energy of Ref. 44 and the heat of formation of the random
Au&5Cu25 alloy of Ref. 43.

TABLE III. Heats of formation of NisPt, NiPt, and PtsNi ordered and random alloys (in cal/mol). FLMTO stands for the
full-potential LMTO. Values in parentheses are read ofII" published 6gures.

Phase
Ni3Pt ordered
Random with SRO
Random

Expt.

—1620

FLMTO
plus CWM

—1975
LMTOb
—2250

LMTO
plus CWM'

—(820)'
(47o)

LMTO
plus CPA

NiPt ordered
Random with SRO
Random

—2727
—1700

—2667
—(14oo)'

(240) 3323g
—2414"

NiPt3 ordered
Random with SRO
Random

—1500
—2007

—(92o)'
(- o)

Reference 45. Interpolated values for Ni75Pt25 and Pt75Ni25. The experiments were performed at 298 K on samples quenched
from 1473 K. The structures are assumed to be random but no information concerning the structural state is given.

Reference 15.
'Reference 12.

Reference 28.
At 1473 K.
Including combined correction terms and neutral spheres.

~CPA with complete neglect of charge-transfer e8'ects both in the potential and the energy.
"CPA using neutral spheres.
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Phase
Ordered

Cu3Au
—1400

CuAu
—1923

Au3Cu
—1293

0.74
1.0

CPA-0

1260
564

3317

TABLE IV. Heats of formation of Cu3Au, CuAu, and
AusCu ordered and random alloys (in cal/mol) calculated
in the present work by SIM CPA. For P = 0.74 the LMTO
CWM and the SIM CPA calculations yield identical heats of
formation. CPA-0 stands for the CPA method with complete
neglect of charge-transfer eKects both in the potential and the
energy.

1
G)

D
E
C5

or.

O
c5
E
D

D

Q) -2

In both real Cu-Au and Ni-Pt alloys there are strong
short-range-order eKects in addition to the eKects of local
lattice relaxation. ' ' ' As may be seen from Table II,
the calculated heats of formation of random Cu-Au alloys
with SRO effects but neglecting lattice relaxation eÃects
are still substantially larger than the corresponding ex
perimental values. In fact, to compare the results of the
KKR CPA calculations with the experimental data one
must correct for SRO and lattice relaxation efFects. Ac-
cording to diferent estimates, ' such corrections are
large and negative and would make the results of Ref. 11
even more negative than the measured heats of formation
of the ordered alloys. It would seem that this underesti-
mate of the heats of formation is a fault of the SS CPA.
However, this is not substantiated by the present calcula-
tions, which show that methods based on the CPA can be
made as accurate and reliable as the usual first-principles
methods for ordered. solids.

-3
0.00

I I I

0.25 0.50 0.75
Atomic fraction of ALI

1.00

FIG. 2. Experimental and calculated heats of formation
for Cu-Au. The negative values are experimental values for
ordered and random alloys with SRO and calculated results
for ordered alloys. The positive values are calculated results
for completely random alloys. The experimental values from
Ref. 43 are labeled by open squares connected by a full line
for ordered alloys and by open squares connected by a broken
line for random alloys with SRO. Filled circles are from the
present work, open diamond from Ref. 3, open triangles from
Ref. 4, and inverted open triangles from Ref. 12.

V. GB,DEB.INC ENEB.CV
AND LATTICE SPACINC

Once the optimal value for P has been determined one
may use the multisublattice CPA method described in
Sec. IIA to calculate the total energy of an alloy as a
function of I RO parameter and volume. Thereby one
may obtain heats of formation and lattice spacings as
functions of the LRQ parameter. In Fig. 4 we show the
results of such calculations for partially ordered CuAu
and NiPt alloys. It is seen that in both alloy systems the
heats of formation are almost exact quadratic functions

0

1
D
G5

E
o -2—
O

/
/

/
/

/
/

/
/

/

Q

Phase
Ordered

Ni3Pt
—2090

NiPt
—2808

Pt3Ni
—2861

0.6
1.0

1130
—1440

—180
—1500

TABLE V. Heats of formation of Ni3Pt, NiPt, and Pt3Ni
ordered and random alloys (in cal/mol) calculated in the
present work by the SIM CPA. For P = 0.6 the LMTO CWM
and the SIM CPA calculations yield identical heats of forma-
tion.

-4
0.00

I I I I

0.25 0.50 0.75
Atomic fraction of Pt

1.00

FIG. 3. Experimental and calculated heats of formation
for ¹iPt. The negative values are experimental values for
ordered alloys while the positive values are calculated results
for completely random alloys. The experimental values for
random alloys with SRO from Ref. 45 are labeled by open
squares connected by a broken line. Filled circles are from the
present work, open diamond are FLMTO plus CWM results
from Ref. 15, open circles are LMTO results from Ref. 15,
and open triangles are LMTO CWM results from Ref. 12.
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FIG. 4. Heats of formation for partially ordered (a) Cu-Au
and (b) Ni-Pt alloys as functions of lang-range-order parame-
ter. The calculated values are labeled by circles (CusAu and
NisPt), squares (CuAu and NiPt), and diamonds (AusCu and
PtsNi). The curves shown correspond to fits to the quadratic
expression (24).

of the LRO parameter and may be written in the form

AH(r)) = AH. + t)'(2 H. —AH„), (24)

where AH(rj), AH„and AH are the heats of forma-
tion of partially ordered, random, and ordered alloys, re-
spectively. Similarly, we find that the equilibrium lattice
spacings shown in Fig. 5 may be approximated by the
quadratic form

a(r)) = a, —t) (a —a ) = a„—t) Aa,

where a(r)), a„and a are the equilibrium lattice spac-
ings of partially ordered, random, and ordered alloys,
respectively.

The quadratic dependencies may be analyzed in a
model based on the CWM cluster expansion (17), which
for an A3B compound and to lowest order in lattice spac-
ing a and LRO parameter g may be written

9 2 1 2AH(a, t)) = —R„a (a —a ) — v2(ap)t)—

4.05
0.0

a I 3.93 a I

0.5 1.0 0.0 0.5
Long-range order parameter

1.0

FIG. 5. Equilibrium lattice parameters for partially or-
dered (a)—(c) Cu-Au and (d) —(f) Ni-Pt alloys. The calcu-
lated values are labeled by circles (CusAu and NisPt), squares
(CusAu and NisPt), and diamonds (AusCu and PtsNi). The
curves shown correspond to fits to the quadratic expression
(24).

interaction v2 to a good approximation varies linearly
with a. If AH is minimized with respect to a at fixed g
we obtain the quadratic behavior (25) with

av, /aai. . .
9B„a„

Furthermore, when this result is inserted into (26) and
we keep only the dominating term proportional to v2 we
obtain (24), thereby explaining the quadratic variation of
both the heats of formation and the lattice spacing with
the LRO parameter g.

One may compare the calculated values for Aa with
existing experimental values. The experimental values
are, for CusAu, 3.754 —3.747 = 0.007 A; for CuAu,
3.874 —3.865 = 0.009 A. ; and for AusCu, 3.983 —3.980 =
0.003 A. , while the calculated values are 0.031 A, 0.031 A. ,
and 0.02 A, respectively. In this comparison one should
note that the calculations neglect short-range-order ef-
fects as well as lattice relaxation eAects. Thus one may
only expect that the calculated values for Aa are larger
than the experimental values, as is indeed the case.

1 t9V2 2(a —a )t),4 Oa
(26)

VI. SUMMARY

where B'„ is the bulk modulus of the random alloy. In
(26) we have used the observation that the leading cluster

We have shown that first-principles methods for ran-
dom alloys based on the single-site coherent-potential ap-
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proximation may give an accurate and reliable descrip-
tion of the thermodynamic properties of random rnetal-
lic alloys. To obtain such a description one must take
proper account of charge-transfer effects. For this pur-
pose we have used the screened impurity model based
on the assumption that all the charge, which cornpen-
sates the net charge on an impurity in a metal, is local-
ized in the first coordination shell around the impurity.
Since the spatial distribution of this charge is unknown
in the single-site approximation, the prefactor P, which
ls Ilccdcd in thc cxpl css1on for th c clcctr'os tatic energy
(15), cannot be uniquely defined from theoretical argu-
ments. In the present work the prefactor is chosen such
that the binding energies for random alloys calculated by
the single-site CPA agree with the corresponding binding
energies calculated by the C WM where the latter calcula-
tions include charge-transfer CKects beyond the single-site
approximation. For a given alloy system characterized by

atomic species and crystal structure we find that a single
prefactor descibes the contribution to the total energy
from charge-transfer CQ'ects. Furthermore, when an opti-
mal value is found, the Connolly-Williams cluster interac-
tions obtained on the basis of total energy calculations on
random alloys in the single-site approximation are con-
sistent with the cluster interactions extracted from total
energy calculations on ordered alloys going beyond the
single-site approximation.
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