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We present a density-functional-based scheme for determining the necessary parameters of com-
mon nonorthogonal tight-binding (TB) models within the framework of the linear-combination-of-
atomic-orbitals formalism using the local-density approximation (LDA). By only considering two-
center integrals the Hamiltonian and overlap matrix elements are calculated out of suitable input
densities and potentials rather than 6tted to experimental data. We can derive analytical functions
for the C-C, C-H, and H-H Hamiltonian and overlap matrix elements. The usual short-range repul-
sive potential appearing in most TB models is fitted to self-consistent calculations performed within
the LDA. The calculation of forces is easy and allow's an application of the method to molecular-
dynamics simulations. Despite its extreme simplicity, the method is transferable to complex carbon
and hydrocarbon systems. The determination of equilibrium geometries, total energies, and vibra-
tional modes of carbon clusters, hydrocarbon molecules, and solid-state modifications of carbon
yield results showing an overall good agreement with more sophisticated methods.

I. INTRODUCTION

Currently, various theoretical concepts are applied to
perform total-energy calculations on extended structures.
Classical concepts, typically based on the construction
of empirica/ potentials, ' using data provided by experi-
ments or Ob initio methods, are very fast and successful if
the physical properties of the investigated structures are
well understood. However, such methods often fail to de-
scribe geometries not included in the data basis used for
their construction.

On the other hand, there are accurate ab initio calcu-
lations based on density-functional (DF) (Refs. 3—6) or
Hartree-Fock (HF) (Ref. 7) theory, which represent with-
out any doubt a very reliable benchmark for all other
methods. Although there has been much success in ap-
plying these methods to ever larger systems, they are still
too slow for the investigation of many interesting prob-
lems.

Due to the limitations in the transferability of empir-
ical potentials and the use of time consuming ab initio
methods, 8emiempirical techniques have been developed
to simulate extended systems with reasonable computa-
tional costs. In addition to numerous traditional quan-
turn chemical methods, tight-binding schemes have been
very successful. In many cases, the results of these
two-center-oriented schemes deviate only slightly from
those of more sophisticated methods. However, the usual
way of Btting the matrix elements necessary to calculate
the band structure energy to an arbitrary set of input
data is rather complicated and not very straight forward.

Our method tries to avoid the difBculties arising from
an empirical parametrization by calculating the elements
of Hamiltonian and overlap matrices out of a local or-

bital basis with the help of density-functional theory—
local-density approxiination (DFT-LDA) and some in-
tegral approximations. For that reason, it can be seen
as an approximate linear-combination-of-atomic-orbitals
(LCAO) -DFT scheme yielding exactly the same energy
expression as common nonorthogonal tight-binding (TB)
schemes. The only, but important, difFerence is that there
is a well-defined procedure on how to determine the de-
sired matrix elements. For that reason, we will refer to
our method as a nonorthogonal DF-based TB scheme.
As in usual TB ansatzes, only two-center Hamiltonian
matrix elements are treated, and the short-range repul-
sive part of the total potential needs to be fitted with
respect to self-consistent-field (SCF)-LDA data. Despite
the extreme simplicity of this approach compared to SCF
(Refs. 3 and 4) and ab initio calculations using the Har
ris functional, s the method has proven to be transferable
to complex carbon and hydrocarbon systems. In this
way, we support discussions in the literature ' ' that
nonorthogonality is a key to transferability.

This paper is organized as follows. In Sec. II, we
brie8y outline the method and describe the construc-
tion of Hamiltonian and overlap matrix elements and the
short-range repulsive potential. Since we are mainly in-
terested in investigating a variety of carbon systems in-
corporating hydrogen, we applied our method to these
systems as described in Sec. III and present analytical
functions for all Hamiltonian and overlap integrals versus
interatomic separation for C-C, C-H, and H-H interac-
tions. In Sec. IV, we summarize the results of the calcu-
lations performed on small clusters, fullerenes, hydrocar-
bons and solid state modifications to test the strengths
and limits of the DF-TB Inodel. Our endings are com-
pared to experimental data and ab initio calculations.
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Il. METHOD

g;(r) = ) C„;P (r —Ri, ),

solving the Kohn-Sham equations in an efI'ective one-
particle potential V,tr (r):

H@,(r) = s;g, (r), H = T+. Vtr(r) .

As a result, the Kohn-Sham equations are transformed
into a set of algebraic equations:

) C„;(H„—s;S„„)= 0, Vp, i,

where

Our method, based on the work of Seifert, Eschrig,
and Bieger, ' applies the formalism of optimized lin-
ear combination of atomic orbitals as introduced by Es-
chng and Bergert for band-structure calculations. In
this approximation, the Kohn-Sham orbitals g, of the
system are expanded in terms of atom-centered localized
basis functions P„:

tion of additional functions does not yield any significant
changes, this basis can be considered converged.

Using ansatz (6), we perform a self-consistent solution
of modified atomic Kohn-Sham equations:

[&+V'-'( )14-( ) = ".-'&-( ), (7)

(r) = Vuucieus(r) + VHertree [it(r)]

+v.'. "[~(r)]+ (r)
~") (8)

V„, is expressed in terms of the local-density approx-
imation as parametrized by Perdew and Zunger. The
additional term (r/ro) ~ appearing in V(r) in Eq. (8) was
first introduced by Eschrig et al. ' in order to improve
band-structure calculations performed within LCAO. It
forces the wave functions to avoid areas far away from
the nucleus, thus resulting in an electron density that is
compressed in comparison to the &ee atom. The param-
eter N has only a rather small infIuence on the results,
we choose N = 2 for all types of atoms. The radius ro
may be optimized to yield best results; however, we have
found that ro = 2r, is usually a good choice, where r,
is the covalent radius of the element.

H~- = (&~IHI&-) ~~- = (&~l&-) . (4)

As has already been shown by a variety of authors,
the total energy of the system can be approximated as a
sum over the band-structure energy (sum of the eigenval-
ues of all occupied orbitals) and a short-range repulsive
two-body potential:

@tet((Rkk) @Bs((R~))+ &-p(IIR~ —Ril j)
=);;((R j)+) ) v...(lR —R l),

Calculation of matrix elements

We use the solutions P of Eq. (7) as the basis func-
tions for the LCAO treatment of the system. Within a
minimal basis description, only valence orbitals are con-
sidered. As an approximation, we write the one-electron
potential of the many-atom structure as a suIn of spher-
ical atomic contributions:

V. (r) = ) V"(lr —R l),

Creation of the pseudoatoms

We write the pseudoatomic wave functions in terms of
Slater-type orbitals and spherical harmonics:

4-(r) =
n) CX, l v )m„

a r "+ e "Y~„~„

As many tests have shown, five difFerent values of o.
and n = 0, 1, 2, 3 form a sufFiciently accurate basis set
for all elements up to the third row. Since the introduc-

where n; is the occupation number of orbital i.
In order to get the necessary matrix elements and the

repulsive contributions V, p, we perform the construc-
tion of our potential in three steps which are discussed
in detail below: (a) Creation of (spin-unpolarized) pseu-
doatoms by solving a modified atomic Kohn-Sham equa-
tion; (b) calculation of all Hamiltonian and overlap ma-
trix elements; and (c) fitting of the short-range repulsive
potential V„~.

where Vo is the Kohn-Sham potential of a neutral
pseudoatom, due to its compressed electron density,
but not containing the additional term (r/ro) any-
more. This ansatz difI'ers &om the one used in previous
studies, ' ' where the potentials of free neutral atoms
were used to evaluate the matrix elements. Using the
potentials of compressed pseudoatoms for the evaluation
of the matrix elements has two advantages.

(i) Numerous self-consistent calculations on molecules
and solids have shown that the electron densities in these
structures can be roughly approximated as a superposi-
tion of compressed atomic densities. Thus, by using this
information, we anticipate the results of a more sophis-
ticated calculation up to a certain extent. In addition
to that, as was already shown by Seifert et al. , the
densities due to superposed pseudoatomic potentials are
even more realistic than a simple superposition of pseu-
doatomic densities.

(ii) The necessary integral approximations work bet-
ter if one uses basis functions that decay more rapidly
than those of the free atom. Furthermore, Eschrig and
Bergert has shown that the modified wave functions
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form a better basis set in condensed matter applications.
Similar ideas on con6ned orbitals have been discussed
more recently by Jansen and Sankey and Chetty et al. 2

The overlap matrix consists only of two-center ele-
ments and can be calculated in a straightforward way.
Consistent with Eq. (9), one can neglect several contribu-
tions to the Hamiltonian matrix elements H~„, yielding

free atom if +P
(P+JT+ Vo + Vo+icP) if A P B

, 0 otherwise.

The indices A and B indicate the atom on which the
wave functions and the potentials are centered. As can be
seen easily, only two-center Hamiltonian matrix elements
are treated. Approximation (10) may be seen as a LCAO
variant of a cellular Wigner-Seitz method as applied, for
instance, by Inglesfield. 2s As follows from Eq. (10), the
eigenvalues of the free atom serve as diagonal elements
of the Hamiltonian, thus guaranteeing the correct limit
for isolated atoms.

Due to the fact that all matrix elements depend only
on interatomic distances, we need to calculate them only
once for each pair of atom types and store the values

using a stepwidth of O. la~. For the two-center integral
evaluation, the analytic formula of Eschrig is applied.
Matrix elements corresponding to a given interatomic
distance can easily be obtained by interpolating between
the stored values. Therefore, the creation of the Hamil-
tonian requires about the same time as in common TB
models. The calculation time is mainly determined by
the eKciency of the diagonalization routines. We are still
using Householder and QL algorithms, but the implemen-
tation of recently developed linear scaling methods is
in progress.

Fitting of short-range repulsive part

The characterization of the Hamiltonian as described
in the previous subsection allows one to calculate the
band-structure energy EBs. Thus, the short-range repul-
sive part V„&(R) can easily be determined as the differ-
ence of the total energy resulting from a self-consistent
calculation and EBs for diferent values of interatomic
distances A:

V..v(&) = ELDA(&) —&»(&)

TABLE I. CoefBcients and boundaries of the Chebyshev polynomial expansion for the Hamil-

tonian and overlap matrix elements versus interatomic distance r E (a,b) for C-C, C-H, and H-H

interactions. Values for a and b are in bohrs, potential and Hamiltonian coefBcients are in hartrees.
A more detailed explanation is given in the text.

Matrix
(o 5)

CCHs scr

(1.0,7.0)
CC

Hspa
(1.0,7.0)cc

Hpp~
(1.0,7.0)

CC
Hpp

(1.0,7.0)
CC

~sscr
(1.0,7.0)

CCSsper

(1.0,7.0)
CC

~pp-
(1.0,7.0)

CC
~pp-

(1.0,7.0)
HCH

(1.o,7.o)
HCH

(1.0,7.0)
HHH

88cr

(1.0,6.0)
HACH880

(1.0,6.5)
CH

(1.0,6.5)
gHH

sscr

(1.0,6.5)

Cy

C6

—0.4663805
—0.0158810

0.3395418
0.0298962
0.2422701
0.0316900

—0.3793837
0.0074465
0.4728644
0.0096695

—0.3662838
—0.0150447

0.3715732
0.0051460

—0.1359608
—0.0108677

0.3523274
0.0102781
0.3597435
0.0078841

—0.2794685
—0.0013758
—0.3852816
—0.0107361
—0.4285567
—0.0200635

0.3364029
0.0058363

Cg

C7

0.3528951
0.0036716

—0.2250358
—0.0099609
—0.1315258
—0.0117293

0.3204470
—0.0008563
—0.3661623
—0.0007135

0.2490285
—0.0010758
—0.3070867
—0.0032776

0.0226235
—0.0075444
—0.2827934
—0.0050642
—0.2796815
—0.0035287

0.2233009
—0.0001446

0.3085693
0.0034289
0.3245500
0.0042566

—0.2824889
—0.0035640

—0.1402985
0.0010301
0.0298224
0.0020609

—0.0372696
0.0033519

—0.1956799
—0.0004453

0.1594782
—0.0013826
—0.0431248

0.0027734
0.1707304
0.0009119
0.1406440
0.0051533
0.1408311
0.0017970
0.1248796
0.0016687

—0.1103361
0.0002392

—0.1516239
—0.0000651
—0.1234929

0.0006126
0.1645283
0.0008281

0.0050519
—0.0015546

0.0653476
0.0001264
0.0942352

—0.0004838
0.0883986
0.0003842

—0.0204934
0.0007849

—0.0584391
—0.0011214
—0.0581555
—0.0001265
—0.1573794
—0.0013747
—0.0332928
-0.0005711
—0.0207234
—0.0007754

0.0284041
0.0000308
0.0330417

—0.0003785
—0.0092742
—0.0007052
—0.0601065

0.0000277

Cs

C10

0.0269723
0.0008601

—0.0605786
—0.0003381
—0.0673216
—0.0000906
—0.0300733
—0.0001855
—0.0170732
—0.0002005

0.0492775
0.0002303
0.0061645

—0.0000227
0.0753818
0.0000751

—0.0073840
0.0001695

—0.0095584
0.0002626

—0.0004326
—0.0000531

0.0102731
0.0001523
0.0377529
0.0002143
0.0067570

—0.0000713
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NP
(R, Q d„(R, —R)" (R ( R,)

0 otherwise.

We write V„z(R) as a sum of polynomials:

(12)

Ansatz (12) guarantees V„&(R) to be zero for R & R,
and a smooth behavior at the cutofF radius B . In many
cases, this expression is sufhcient enough to fit the points
given by Eq. (11) using a maximum power of NP = 5.
We expect the 6t to be of similar or even better quality
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FIG. 1. Hamiltonian and overlap matrix elements versus interatomic separation: (a) H, (b) S, (c) H ', and
(d) S ' . Interval boundaries a and b are in bohrs, Hamiltonian matrix elements in hartrees.
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if an exponential form of the repulsive potential is taken
into consideration.

In most cases, diatomic molecules can be used to Gt

V„~(r). However, these small systems sometimes tend
to show level crossings causing sudden changes of or-
bital occupation numbers (as long as occupation num-
bers are restricted to integers) and thus discontinuities
in the first derivatives of the energies. This behavior
makes a reasonable fit in the vicinity of the level cross-
ing almost impossible. Fortunately, one is not restricted
to diatomic molecules. Every information available from
self-consistent calculations can be included in the fit.

III. DETERMINATION
OF THE PARAMETERS FOR C AND H

V(r) = ) c T i(y) ——,

&+a

(13)
2

The resulting coeKcients t" and boundaries a and b of
the expansion are given in Table I. The standard devia-
tion achieved in all cases is less than 10 . Table II con-
tains a corresponding representation of the short-range
repulsive two-particle potentials. However, for all tests

For carbon and hydrogen, we used 1.42 A and 0.69 A
for the value of ro [see Eq. (8)]. This corresponds to 1.85
times the covalent radius of each element. The repulsive
potential for the H-H and C-H interaction was 6t to self-
consistent LDA calculations of the diatomic molecules.
Some problems arise when one tries to Bt the C-C inter-
action only to the C2 molecule. As self-consistent LDA
calculations show, the og and m„state are almost degen-
erate and cross each other near the diamond equilibrium
distance. There is no point in fitting V„z(r) to the dis-
continuity in the first derivative of the total energy, due to
this level crossing. Therefore, the bulk moduli of graphite
and diamond have been used to model the curvature of
V„p(r) for r ) 1.4 A.

In Figs. 1(a)—1(d), we show the Hamiltonian and
overlap matrix elements versus interatomic separation
for carbon-carbon, carbon-hydrogen, and hydrogen-
hydrogen inteactions. To derive analytical expressions
for the Slater-Koster data, we expressed them in terms
of Chebyshev polynomials yielding

performed in the following sections, the exact values of
the Slater-Koster tables have been used.

IV. TEST AND RESULTS

Sma11 carbon clusters

The first group of systems we investigated with our
method were carbon clusters. Table III shows the
ground state geometries and zero-point energy cor-
rected binding energies per atom for the small carbon
clusters C2 to Cio. We corrected our binding ener-
gies for the spin-polarization energy of the &ee carbon
atom (1.13 eV), determined with a self-consistent LSDA
method. The results are compared to ab initio calcu-
lations by Raghavachari and Binkley and Almloef.
Though other TB calculations performed on such small
systems often use an additional Hubbard-like term in the
total-energy expression to describe charge transfer and
correlation effects, we did not use this modification since
we wanted to test the accuracy of our model without
further changes.

The geometries of the small clusters are in good agree-
ment with the ab initio results. Except for C8, where
our most stable ring has Cs symmetry, the symmetry
groups of our cyclic clusters are identical with those cal-
culated on ab initio level. All bond angles are 5 —10
larger than the ones determined by the more compli-
cated self-consistent method. The bond lengths of the
cyclic structures are about 0.02 A larger, whereas those
of the linear forms alternate stronger than the ones de-
termined by the self-consistent calculation. Because the
largest discrepancies appear at the ends of the chains,
it is likely that they are mainly caused by strong cor-
relation effects and charge transfers that difFer slightly
6.om the self-consistent calculations. However, the er-
rors in the bond lengths are in no case larger than 5'%%uo,

typically 2—3%. Our calculations show that &om C2 to
C9 the linear forms are the most stable ones, though
the even-numbered cyclic structures are almost compa-
rable in energy. In contrast to that, the calculations of
Raghavachari and Binkley found cyclic C4, C6, and Cs
to be more stable than the linear chains. We want to
note, however, that the energy difference for all these
structures is rather small and that the HF energies in

TABLE II. Coefficients and boundaries of the Chebyshev polynomial expansion for the
short-range repulsive potential versus interatomic distance r E (a,b) for C-C, C-H, and H-H in-
teractions. Values for a and 6 are in bohrs, potential coefficients are in hartrees. A more detailed
explanation is given in the text.

Vr'ep

(a, b)
CC

prep
(1.0,4.10)

CH
prep

(1.0,3.70)
~HH

rep
(1.0,3.11)

c6

2.2681036
-0.0219294
0.4679363
-0.0038757
0 ' 1432403
-0.0028892

C2

C7

-1.9157174
-0.0000002
-0.3651743
0.0000000
-0.0985304
0.0010845

C3

Cs

1.1677745
-0.0000001
0.1906972
O.OG00000
0.0338895
0.0006418

c4
C9

-0.5171036
-0.0000005
-0.0841604
-0.0000001
-0.0116796
-0.0001857

c5
C10

0.1529242
0.0000009
0.0285450
0.00000G2
0.0062808
-0.0002322
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9.0—

+

T

7.0—
ho

0

P 5.0—
bD

j
v

calculation. There are, of course, some discrepancies. All
energies are too large by a little more than 1 eV. We ex-
pected this behavior since LDA typically overestimates
binding energies. We also do not find the change in the
even-odd behavior of the fragmentation energies observed
by Raghavachari et al. for Cqo. Furthermore, the dif-
ference in the &agmentation energies between even and
odd numbered clusters is even larger than in the ab ini-
tio calculation. This problem could probably be solved
by introducing an additional term in the Hamiltonian
accounting explicitly for correlation and charge transfer
e8'ects.

Cluster size n

I

10

FIG. 2. Energies of the fragmentation reaction C —+ C
+ C calculated within LDA-TB (solid line) and ab initio
CCD+STD(CCD) (dashed line) versus cluster size.

the ab initio calculations (which were used to optimize
geometries) Favor the linear forms just like our method
does.

A very interesting test is to calculate the energy of the
reaction C ~ C i + C for each cluster and plot it as a
function of n as was done in Fig. 2. The shape of the DF-
TB curve is very similar to the one of the self-consistent

The C60 cluster is a very interesting object because it
can be considered as a system between a typical molec-
ular and a typical solid-state structure. For that reason,
we calculated the ground state geometry, total energy,
and phonon frequencies within our model. The results
are listed in Table IV.

We find the two difFerent bond lengths to be 1.397 A.
and 1.449 A. , which is in very good agreement with
the experimental 1.402 A and 1.462 A, as well as with
the 1.398 A and 1.450 A. determined by self-consistent
LDA calculations. The binding energy of each atom
in the cluster is 8.85 eV, with respect to the &ee spin-
unpolarized atom. This value has to be seen in relation to
the 9.22 eV calculated for the diamond structure see be-

TABLE III. Bond lengths, angles, and binding energies per atom for the clusters C2 through
Cyp. For the linear molecules, bond lengths are sorted beginning at the end of the chains. Binding
energies are with respect to the free, spin-polarized carbon atom (see text). Reference values for
CCD+STD(CCD) were taken from Ref. 7 and for CASSCF from Ref. 26.

Cluster
C2

C3

C4

C5

C6

C7

Cs

C9

C10

Method
DF-TB

CCD
DF-TB

CCD
DF-TB

CASSCF
DF-TB

CCD
CASSCF

DF-TB
CCD

DF-TB
DF-TB

CCD
DF-TB

CCD
DF-TB
DF-TB

CCD
DF-TB

CCD
DF-TB
DF-TB

CCD

Symm.
Dao h

D2h

D~h

D3h
D3h
Doo h

Dao h

Cs„
D4h

Dao h

D5h
Dsh

Bond lengths (A)
1.244
1.245
1.288
1.278

1.288 1.321
1.306 1.287

1.443
1.425
1.432

1.257 1.315
1.271 1.275

1.265 1.324 1.287
1.346
1.316

1.245 1.337 1.280
1.270 1.280 1.264

1.253 1.335 1.279 1.308
1.348

1.240 1.380
1.240 1.350 1.263 1.302
1.269 1.283 1.261 1.269

1.246 1.345 1.269 1.311 1.284
1.311
1.290

Angle
180.0
180.0
180.0
180.0
180.0
180.0
70.7
61.5
64.5
180.0
180.0
180.0
100.1
90.4
180.0
180.0
180.0
120.3
107.1
180.0
180.0
180.0
125.3
119.4

Eb g (eV)
3.7
2.9
5.5
4.2
5.5

5.1
4.3

6.2
4.8
6.1
5.8
4.8
6.4
5.0
6.4
6.2
5.0
6.6
5.2
6.5
6.5
5.4
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low. Therefore, our model yields an energy difference of
0.37 eV between C6o and the diamond structure, which is
in good agreement with more sophisticated calculations
estimating this difference to be 0.3—0.4 eV.

The phonon &equencies of C60 were determined using
the relaxed geometry and applying the same scheme as
Quong et al.27 Since only a few of the modes are exper-
imentally observable, we compare our results with two
LDA calculations performed independently by different
authors ' and define the error of the &equencies with
respect to the average of the two LDA methods. As
can be seen &om Table IV, the general properties of the
phonon spectrum are well described with a maximal er-
ror of 17'%%uo (for the second Tq mode) and an average
error of 10%. Especially most of the low energy modes
are very close to those of the LDA calculations. The
high energy modes, however, are between 10'%%uo and 15'%%uo

too large. Analyzing the eigenvectors of the vibrations
yields the result that the largest discrepancies occur for
phonons with a high percentage of C-C stretching. For
that reason, we believe that a more sophisticated fit of
the short-range repulsive potential could make this sys-
tematic errors even smaller.

Hydrocarbons

Carbon shows many different types of bonding. All
of them can be found in the huge class of molecules

known as hydrocarbons. For that reason, it is impor-
tant to know how a method performs on these systems.
In addition, hydrocarbons are well understood and one
can refer to an abundant number of experimental and
theoretical data. For all the properties tested here, accu-
rate self-consistent calculations are available. 28 Ta-
ble V shows the ground state geometries of the radicals
CH, CH2, and CH3 and the molecules H2, CH4, C2Hq,
C2H4, C2H6, C6H6, cyclopropene C3H4, cyclopropane
C3H6 and n-butane C4Hqo. We want to note here that
according to experiments all the radicals are spin polar-
ized, therefore a direct comparison is difficult for these
structures. This is especially true for CH2, where the ab-
sence of spin in our model leads to a more stable singlet
state. For that reason, we compare our geometries for
this radical with spin-unpolarized calculations and the
experimentally observable singlet state.

As in SCF-LDA calculations, the C-C and H-H single
bond lengths are about 0.02 A too short in comparison
to experimental data. The double bond in C2H4 is about
0.01 A too short, while the triple bond in C2H2 has al-
most the same length as known from experiments. Struc-
tures with very small C-C-C bond angles, such as cyclo-
propane and cyclopropene, are also well described. C-H
bonds are systematically overestimated by about 0.03 A,
a little bit more than the overestimation in SCF-LDA
calculations. Bond angles agree within 2 or even better;
exceptions are the radicals where the H-C-H angles are

TABLE IV. Harmonic vibrational frequencies (cm ) for the fullerene cluster Css in comparison
to SCF-LDA calculations performed by Quong (Ref. 27) and Wang (Ref. 29). Total energies and
bond lengths are given in the text.

Rep. DF-TB
Ag 552

1683

Quong Wang Err. (%)
478 483 +14.9
1499 1529 +11.2

Rep.
A„

DF-TB Quong Wang
1017 850 947

Err. ('%%uo)

+13.2

Tgg 589
886
1442

580
788
1252

566
825
1292

+2.8
+9.9
+13.4

512
656
1326
1642

547
570
1176
1461

533
548
1214
1485

—4.2
+17.3
+11.0
+11.5

T2g

Gg

563
736
863
1540

500
605
743
1223
1461
1728

271
434
714
868
1247
1435
1635
1810

547
610
770
1316

486
571
759
1087
1296
1505

258
439
727
767
1093
1244
1443
1576

550
771
795
1360

484
564
763
1117
1326
1528

263
432
713
778
1111
1282
1469
1598

+2.6
+6.7
+10.3
+15.1

+3.1
+6.6
—2.4

+11.0
+11.4
+13.9

+4.0
—0.3
—0.8

+12.4
+13.2
+13.6
+12.3
+14.1

354
704
1094
1352
1754

360
745
819
1076
1494
1645

417
554
698
751
1377
1521
1803

342
738
962
1185
1539

356
683
742
957
1298
1440

404
539
657
737
1205
1360
1565

344
717
987
1227
1558

356
752
784
977
1339
1467

396
534
663
742
1230
1358
1588

+3.2
—3.2

+12.3
+12.1
+13.3

+1.1
+3.8
+7.3
+11.3
+13.3
+13.2

+4.2
+3.3
+5.8
+1.5
+13.1
+11.9
+14.4
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Molecule

H2
CH

CHg
(Singlet)

CH3

CH4
C2Hg

(acetylene)
C2H4

(ethene)

C2H6
(ethane)

C3H4
(cyclopropene)

C3H6
(cyclopropane)

C4Hgp
(n-butane)

C6H6
(benzene)

Variable

HH
CH
CH

HCH
CH

HCH
CH
CC
CH
CC
CH

CCH
CC
CH

HCH
CiC2
C2C3
CgH

HCgC2
CC
CH

CiC~
C2C3
CC
CH

DF-TB LSD GGA

0.765
1.138
1.134
98.6
1.114
116.8
1.116
1.206
1.099
1.321
1.113
116.3
1.503
1.119
108.0
1.318
1.509
1.109
148.4
1.503
1.114
1.511
1.520
1.389
1.114

0.765
1.152
1.135
99.1
1.093
120.0
1.101
1.212
1.078
1.331
1.098
116.4
1.513
1.105
107.2
1.305
1.510
1.091
149.5
1.504
1.095
1.517
1.532
1.396
1.095

0.748
1.108
1.117
99.1
1.090
120.0
1.100
1.215
1.073
1.341
1.095
116.2
1.541
1.104
107.5

Exp.
0.741
1.120
1.111
102.4
1.079
120.0
1.086
1.203
1.061
1.339
1.085
117.8
1.526
1.088
107.4
1.296
1.509
1.072
149.9
1.510
1.089
1.533
1.533
1.399
1.089

TABLE V. Geometric properties obtained for selected rad-
icals and molecules. All bond lengths are in A. The SCF and
experimental values have been taken from Ref. 31 (H2 through
ethane) and Ref. 30 (cyclopropene through benzene). GGA
values refer to calculations using generalized gradient approx-
imations for the exchange-correlation functional as described
in Refs. 31 and 30.

clearly underestimated by about 4 .
Table VI shows atomization energies (including zero-

point corrections) and reaction energies for some typi-
cal hydrocarbon reactions. The atomization energies are
with respect to free, spin-polarized atoms; that means
the spin polarization energies of &ee carbon and hydro-
gen atoms (1.13 eV and 0.90 eV, respectively, calculated
within LSDA) have been subtracted &om the actual at-
omization energies determined by the DF-TB method.
The atomization energies as taken &om Ref. 28 are al-
ready corrected for zero-point vibrations. For the se-
lected reaction energies presented here, accurate calcula-
tions and experimental values are available kom Refs. 30
and 31.

It is interesting that the typical LDA overbinding ef-
fects cannot be found in the expected magnitude when
applying the DF-TB formalism. The root mean square
error per bond is only 3.5 kcal/mol for the molecules
tested here. In particular, if one assumes an overbind-
ing of ll kcal/mol for each C-C single, double, and triple
bond and no overbinding of C-H bonds, the absolute error
of the atomization energies does not exceed 5 kcal/mol
for all tested molecules. On the other hand, the reac-
tion energies calculated self-consistently show a better
error cancellation than DF-TB. Furthermore, the ener-
gies of the isodesmic reactions with cyclopropane and
cyclopropene are clearly too large.

To test the dynamical properties of our potential, we
have also determined the phonon frequencies for a num-
ber of radicals and molecules using the same method as
for C6o. The results are displayed in Tables VII and VIII.
It has already been outlined by some authors that
the frequencies determined this way have to be compared

TABLE VI. Atomization and reaction energies for some typical reactions of organic chemistry.
Atomization energies are with respect to the free spin-polarized atoms (see text). Calculated
energies are not corrected for zero-point vibrations, but experimental values are extrapolated to zero
and corrected for zero-point vibrations. All reference energies were taken from Ref. 28 (atomization)
and Ref. 30 (reactions).

Atomization energies (kcal/mol)
DF-TB HF

113 84
425 332
422 300
577 431
735 557

1438 1041
3.5 27.4

Reaction energies (kcal/mol)
DF-TB HF

2 21
47 64
89 118

14.3 8.6
43 22
84 54
87 50
63 26

35.2 3.7

Molecule
H2
CH4
C2H2
C2H4
C2H6
C6H6
Rms err/bond

Reaction
C2H6 + H2 m 2 CH4
C2H4 + 2 H2 m 2 CH4
C2H2 + 3 Hg —+ 2 CH4
Rms error
C2H4 + 2 CH4 + 2 C2H6
CzH2 + 4 CH4 ~ 3 C2H6
C3H4 + 3 CH4 m 2 C2H6 + C2H4
CgH6 + 3 CH4 —+ 3 C2H6
Rms error

LSD
113
463
461
634
795

1577
12.9

LSD
18
67

131
16.1

32
77
50
26

15.4

GGA
105
422
41?
574
720

1413
2.5

GGA
19
60

114
5.5
22
58
44
23

4.7

Exp.
109
424
408
568
719

1375

Exp.
19
57
89

20
49
45
25
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Mol. Rep. Err. ('%%uo) Rep. DF-TB LSD Exp. Err. ('%%uo)

H2 Zg —1.3
CH Z —0.3
CHg Ag n.h. 2865

LSD Exp.
4207 4401
2682 2862
1392 1353
2757 2806
1392 1353
488 606

2988 3137
1526 156?
2041 2011
3452 3497
3349 3415
1345 1370
1685 1655
3089 3153
1036 1044
1417 1473
3073 3147
1038 1016
1390 1449
2978 3043
317 303

1360 1438
2982 3061

DF-TB
4345
2852
1534
2892
1534
651

3006
1559
2297
3453
3292
1363
1928
3121
1066
1431
3107
1116
1489
3038

188
1447
3049

B2 2932 2844
n.h.
n.h.
n.h.
—4.1
—0.5

+14.3
1 0 3

—3.6
—0.5

+16.5
—1.0
+2.1
—2.8
—1.3
+9.8
+2.8
—0.2

—37.9
+0.6
—0.4

CH3 Ag

A2
Ag
E

CgH2 Zg

n.h.1374 1356 1396

1378 1293
3155 3121

544 475
709 730

CH4 T2 1357
3158

624
747

+1.5
—0.1

—12.8
—5.1

Z„
C2H4 Ag Bgg

B2„
869 910 959
769 800 843

3213 3175 3234
1227 1187 1245
3202 3151 3232
896 926 969

1247 1178 1246
1509 1463 1552
3129 3045 3175
811 800 822

1522 1466 1526
3140 3069 3140

—9.4
—8.8
—0.6
—1.4
—0.9
—7.5

A„
Bg„

BQg

B3„
EgC2H6 Agg +0.0

—2.8
—1.5
—1.3Ag„

A2„ —0.3
+0.0

TABLE VII. Calculated phonon modes (cm ) for selected hydrocarbons. Experimental fre-
quencies are harmonic unless marked with n.h. in the field used for the relative errors. Relative
errors are defined with respect to harmonic experimental frequencies. Reference values were taken
from Ref. 31.

with harvnonic experimental frequencies. When possible,
this is done in this paper.

It is worth noting that for all frequencies around
3000 cm, which correspond mainly to C-H stretch-
ing, the relative errors are typically only 1% and 4% at
most. This is a very encouraging result since only. the
CH molecule has been used in the 6t of the short-range
part of the potential. As already found in C60, the C-C
stretching modes are too high by typically 10—15%. For
all other modes, the error is about 5% or even smaller.
Exceptions are the mg mode in C2H2, where SCF-LDA
performs even worse, and the low-lying B2g, B2„, and
B3 modes in ethene are all too low compared to the ex-
periment. Furthermore, the mode corresponding to the
rotation of ethane around the C-C axis is far too low, in-

dicating that the rotational barrier can be described only
qualitatively. The average error is a little less than 10%
and mainly determined by the C-C stretching modes.

Solids

There has been much progress in the application of
TB models to solid-state modifications of carbon during
the past few years. ' For comparison, the results of ac-
curate self-consistent methods are available for diamond
and graphite ' and high pressure modifications. We
performed calculations for the total energy as a function
of nearest neighbor distance for the experimentally ob-
served diamond and graphite lattices as well as for the

TABLE VIII. Calculated phonon modes (cm ) for the benzene molecule. All reference values
were taken from Ref. 32, experimental frequencies are harmonic.

Mol.
C6H6

Rep.
Agg

A2g
Ag„
Bg„

B2g

82„

DF-TB
1192
3207
1421

646
1047
3197
691
963

1176
1515

GGA Exp.
1015 1008
3195 3191
1360 1367
649 686

1040 1024
3174 3174

723 718
998 990

1168 1167
1435 1386

Err. (%%up)

+18.3
+0.5
+4.0
—5.8
+2 ~ 2
+0.7
—3.8
—2.7
+0.8
+9.3

Rep.
Eig
E1tl

Egg

DF-TB
834

1146
1655
3208

624
1207
1873
3203
399
950

GGA Exp.
848 847

1057 1058
1500 1494
3191 3181
617 613

1178 1178
1613 1607
3170 3174

401 407
971 967

Err. ('%%uo)

—1.5
+8.3

+10.8
+0.8
+1.8
+2.5

+16.6
+0.9
—2.0
—1.8
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0.0—

2.0—
8
t6

—4.0

hO

—6.0

0
(-) -80

lin. C

—10.0— graphite

I
' I ' I

' I ' I ' I
' I ' I

1.1 1.3 1,5 1.7 1.9 2.1 2.3 2.5

Nearest-neighbor distance [AI

FIG. 3. Cohesive energies per carbon atom for different
lattice types versus nearest neighbor distance. The inserted
triangles give the reference energies of the SCF calculations
(Refs. 34—36) with respect to the diamond cohesive energy.

linear chain, simple cubic (sc), fcc, and bcc structures.
The results are displayed in Fig. 3. As one can see, the
diaxnond and. graphite phase are almost isoenergetic hav-
ing a total energy of 9.22 eV and 9.24 eV, respectively.
The above values are given with respect to the free spin-
unpolarized atom. If one subtracts the spin-polarization
energy of the free atom from these values, one yields
about S.l eV per atom and thus a smaller overbinding
of the C atoms compared to self-consistent LDA calcu-
lations. This behavior is consistent with those of the at-
omization energies as described in the previous section.
The equilibrium distances and energetic positions of the
high pressure modi6cations and the linear chain are also
fairly well described, though the curvature is slightly too

high for the sc, bcc, and fcc structures in comparison
to the SCF-LDA calculation. The determination of vi-
brational properties for diamond and. graphite including
some surfaces is in progress and will be examined in a
separate work.

V. SU'MMAKY

We have presented a scheme for the determination
of Hamiltonian and overlap matrix elements on the ba-
sis of density-functional theory in the framework of a
method. similar to widely used nonorthogonal serniem-
pirical tight-binding schemes. By only incorporating
two-center Hamiltonian integrals in the calculations, the
usual short-range repulsive interaction appearing in TB
models is fitted to self-consistent data derived in LDA.
Despite its extreme simplicity, above all the complete ne-
glection of three-center integrals, the potential is trans-
ferable without additional changes to the total-energy
expression and gives reliable results for geometries, co-
hesive energies, and vibrational modes for the clus-
ters, fullerenes, hydrocarbons, and solids. Except for a
few systematic errors, phonon frequencies can be found
within 10'%%up of the experimental values. Atomization en-
ergies of hydrocarbons show less overbinding than in self-
consistent LDA calculations, whereas the energies of typ-
ical reactions appearing in organic chemistry display the
right behavior, but show also larger errors than those
obtained by full ab initio methods.
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