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Tunnel junctions of unconventional superconductors
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The phenomenology of Josephson tunnel junctions between unconventional superconductors is developed
further. In contrast to s-wave superconductors, for d-wave superconductors the direction dependence of the

tunnel matrix elements that describe the barrier is relevant. We find the full I-V characteristics and comment on

the thermodynamical properties of these junctions. They depend sensitively on the relative orientation of the

superconductors. The I-V characteristics differ from the normal s-wave resistively-shunted-junction-like be-
havior.

The symmetry of the superconducting order parameter of
the high-T, compounds is the subject of a heated debate.
Quite early there were theoretical suggestions' that these
materials are unconventional superconductors that have

2 y2 symmetry of the order parameter. They have stimu-
lated both experimental and theoretical work. The experi-
mental situation is still unclear. Several experiments indi-
cate d-wave pairing, e.g., the temperature dependence of the
penetration depth X.(T) (Ref. 6) and the NMR relaxation
rates. ' The most convincing set of experiments up to now
are the superconducting quantum interference device
(SQUID) experiments, ' which show that a SQUID loop
consisting of a high-T, crystal closed by an ordinary s-wave
superconductor shows a phase shift of the order of m in the
dependence of the critical current on the flux, aiid the experi-
ments on fIux quantization in multidomain rings. ' There
are other experiments, however, that cannot be reconciled
with the d„2 y2 model and have been interpreted to indicate
(possibly anisotropic) s-wave pairing, ' ' see, however, Ref.
15. Since a microscopic theory is still lacking, there are also
different theoretical opinions on the symmetry of the order
parameter. Some phenomenological calculations, assuming
d-wave pairing, have been done and they yield partial under-
standing of some experimental data.

In this paper we will further develop the phenomenology
of unconventional superconductors, assuming BCS-like be-
havior for the density of states. Our results are not specific
for high-T, materials, but may be relevant also for other
unconventional superconductors such as heavy-fermion com-
pounds. We will consider tunnel junctions between two
pieces of bulk superconductor as shown in Fig. 1.The super-
conductor is assumed to have a k-dependent order parameter
of the form Ak=Ao[k —k ]. In contrast to earlier
work, we include the direction dependence of the tunnel
matrix elements that describe tunneling across the insulating
barrier between the superconductors. For s-wave supercon-
ductors this dependence drops out, but for d-wave supercon-
ductors it is essential.

Here HI and Hz denote the unperturbed Hamiltonians of the
left and right superconductor. From a second-order perturba-
tion expansion in the tunnel matrix elements one finds the
Ambegaokar-Baratoff formula that expresses the current
across a tunnel junction in second-order perturbation theory
in the tunnel matrix elements as
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FIG. 1. The system we consider consists of two coupled d-wave
super&onductors. Their orientation is characterized by the angles

Pt, and Pn.

Along the lines of Ref. 22 we calculate the full current-
voltage characteristic (I Vcurves) for-different relative ori-
entations. We find that the presence of gap nodes strongly
influences the I-V characteristics. For a specific relative ori-
entation the quasiparticle current will be proportional to the
square of the voltage, which leads to new behavior for the
total current, which is different from the usual resistively-
shunted-junction-(RSJ-) like overdamped junction. We will
also comment on the thermodynamic properties of d-wave
tunnel junctions and the relevance of our work for thin
granular high-T, films.

A convenient starting point is the tunneling Hamiltonian
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Here A and B are the spectral densities of the normal and

anomalous Green's functions, y is the phase difference be-
tween the two superconductors, and ft &~ the Fermi distribu-

tions at the chemical potential p,J&z. The left and right
chemical potential differ by the applied voltage,
p,L

—p,~ = e V. The Tz & are the matrix elements that transfer
electrons from a state k in one superconductor to a state k' in
the other. The first term in (2) describes the quasiparticle
current I&p and the second term the supercurrent which is
proportional to the critical current ICR. The spectral densities
have the form

A(k, cu) = 7r 1+ 8(co —E(k))

e„l
+ 1 —

~ 8(co+E(k)),
b, (k)

B(k,co) = m [8(cu+E(k)) 6'(co —E—(k))]

where E(k) = gl b, (k) l
+ et, . The strategy is to take seriously

the orientation dependence. ' This is necessary, since with
the standard assumption that the tunnel matrix elements

Tt, z are independent of momenta, ' Eq. (2) yields a criti-
cal current ICR= 0 after an angular average with

Ai=ho[k, —k ]. The results of Ref. 19 are therefore diffi-
cult to understand, as neglecting the direction dependence of
the tunneling matrix elements leads to independent angle av-

erages in both superconductors, and the angle average of
d At, = ho[k„—k~] is zero. Xu et al. ' avoid this consequence

by omitting a term proportional to k in the numerator of
their Eq. (4).

Thus, in order to obtain physical results, the direction de-
pendence of tunneling has to be taken into account. We will
consider the case of a smooth barrier for which momentum
parallel to the barrier is conserved during tunneling. A rea-
sonable assumption seems to be to take the tunnel matrix
elements T(r, r') nonvanishing only when r and r' are both
close to the barrier, i.e.,

Ta, -, , ——(2~)'T&"(kl —k(~)f(lk„l) O(k.k.') (4)

for the tunneling matrix elements. The last factor is a restric-
tion on the direction of tunneling (0 denotes the Heaviside

T(r, r') =Tb (r r') 8 (r —xo), —

where xo is the location of the barrier, as indicated in Fig. 1.
This ensures that the momentum parallel to the tunnel barrier
is conserved, since the Fourier transform of the matrix ele-
ment is Ti t,

—8 ~(k~~
—

k~~). In the following we will use
the ansatz

function). Before tunneling the electron should move to-
wards the barrier, after tunneling away from the barrier. The
function f(lk, l) is a weight function that makes tunneling
perpendicular to the barrier more probable than tunneling
parallel to the barrier. If one models the barrier by a slab of
finite thickness and takes the tunneling probability to be ex-
ponentially small in the traversed distance in the barrier, one
deduces f(lk, l)-exp( —c/lk, l), see Ref. 25. Numerical con-
stants may depend on the exact choice for f, but the princi-
pal behavior should not depend on it. In the following we
take it to be f(lk, l) = lk, l, which corresponds to vanishing
thickness of the barrier.

With this explicit form of the tunnel matrix elements, both
the quasiparticle current I&p as well as the critical current

IcR following from Eq. (2) can be evaluated by numerical
integration for different temperatures. For normalization we
calculate the normal-state current for 50=0 with the help of
(2). This allows us to identify the normal-state conductance

G~ of the barrier as G&=87r T N(0) k~ A/R&, where A

denotes the area of the junction and Rx=h/e the Klitzing
quantum of resistance. The expression for the critical current
that we find from Eq. (2) with p, i= p, „ is

~ dA dA f(co) —f(cu')
ICR=2e dc@ dred'

4m 4m co —o)'

At(A) Ai, (A')x, N (co)N (o)')lT(Q, A')l

where Nt (co) =N(0)
l col 8 (l o)

l

—At (0))/ /co' Ai(A) de--

notes the (angle-resolved) density of states of the left side,
NJt(co') is defined similarly for the right side,
dA=d@ d Osin&, and AJ &~(A) = b ocos[2(P—Pz&~)]. The
angles @t and Pz determine the relative orientation of the
two superconductors. A natural choice which applies to many
junctions is Pt = PR = 0. The results are shown in Figs. 2 and

3(a) for I&p and IcR respectively. The magnitude and sign of
the critical current show a strong orientation dependence, see
Fig. 3(b).

The quasiparticle current behaves mostly like for an
s-wave superconductor I&p- exp( 5,„/ktiT), where —the
leading behavior is determined by tunneling from a gap node
in one superconductor into the effective gap A,z in the other.
However, for those special relative orientations for which the

gap nodes in the left and right superconductor are parallel,
the behavior is different. The quasiparticle current Igp V
for voltages 26o)eV~k&T and I&p—V for voltages
eV~k&T. This can be understood as follows. The dominant
contribution to I&p arises from "node to node" tunneling.
The available phase space around the gap nodes scales with
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FIG. 2. The quasiparticle current I&p as a function of the applied
voltage for temperatures T/DO=1 (upper curve) and 0.1 (lower
curve) for the case @L= /&=0. Here and in the following figures,
I~=I~(eV=—25O).
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the larger of eV and T. With the usual factor V from the
difference in fr f~ this y—ields the quoted behavior.

The total current I may be obtained by integration over
time of Kirchhoff's equation in the phase representation,
I=I&Rsin($)+Iap(2e V= A, P). In this way the average time

FIG. 4. The complete I-V characteristic for a d-wave tunnel

junction with PL = /&=0 at T=O (full line). For comparison also
the RSJ result is shown (dashed line).

derivative of the phase is found as a function of the total
current through the junction. The result is shown in Fig. 4 for
low temperatures krrT(&ho and PL =

@at =0, i.e., the geom-
etry in which node to node tunneling appears and Igp V .
The I-V characteristics deviate clearly from the well-known
RSJ behavior. For higher temperatures T of the order of the

gap Ao we have Iap- V (see Fig. 2) and the RSJ behavior for
the I-V curve is recovered.

We now continue with the discussion of the thermody-
namic properties that are described by an effective action for
the phase difference across the junction. This is especially
relevant for small mesoscopic tunnel junctions with a low
capacitance C. From a second-order perturbation expan-
sion in the tunnel matrix elements one Ands the following
effective action for the phase difference y across the
junction:

('/3 C I' Bq(r) l

«82„o 8e i Bv'

0.0
0.0 0.2 0.4 0.6 0.8 1.0 fP (

+ d rd ~'cos
jo

~(r) —
V (r') \

2
n(r r')—

0.6

0.3

(b)
Jo

~ V(r)+ V(r')~
d Td7' cos'

)
p( — ') (6)

The kernels n and P describe quasiparticle tunneling and the
Josephson coupling, respectively. They are given by

0.0
O

p(r).

'
G(k, r)G(k', —r)d'k ~ d'k'

F(k, r)F(k', —r)

-0.6
0.0 1.0 2.0 3.0

FIG. 3. (a) The critical current Ic„as a function of temperature
for the case $1 = pa=0 (full line). For comparison the s-wave re-
sult is also shown (dashed line). (b) The critical current Ica as a
function of the relative orientation Pa[Jr =0 (full line), and

Pr = vr/4 (dashed line) j at T=O

where the normal and anomalous Green's functions 6 and F
were introduced. The usual approximation, in which the Fou-
rier transform of the tunnel matrix element TI, z is taken to
be independent of momenta, leads for s-wave superconduct-
ors to the standard expressions in the literature, i.e., both n
and p decay exponentially on the time scale 5 '. The same
approximation for a d-wave junction will lead to unphysical
results. For instance the beta term is found to be zero, as the
average over orientations of AI, is zero.
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To remedy this shortcoming, one again has to retain the
direction dependence of the tunneling matrix elements (4).
The gap nodes have a pronounced effect on the long-time
behavior of u and P. If PL = /&=0, the gap nodes in the
two superconductors are in the same direction (the "node to
node" geometry) and the asymptotic behavior of n(r) is

This corresponds to a low-frequency behavior-~ ln~, which is "super-ohmic. " An investigation of the
co inca dissipation remains a subject for further study, and
may be relevant for the phase diagram and superconductor-
insulator transition in thin granular high-T, films. For rela-
tive orientations without node-to-node tunneling we find ex-
ponential decay, as was also found for s-wave tunnel
junctions.

In conclusion we have calculated the full I-V characteris-

tic for a tunnel junction between two unconventional super-
conductors by making a new ansatz for the direction depen-
dence of the tunnel matrix elements. The temperature depen-
dence and a strong dependence on relative orientation are
found. For specific orientations the I-V characteristics differ
from the usual RSJ-like behavior. All of our predictions have
experimental consequences and should be verifiable using
thin-film junctions on bicrystal substrates.
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