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Ground state and vibrations of dipoles on a honeycomb lattice
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For long-range dipole-dipole interactions, the energies of various periodic dipole orientations on a
complex honeycomb lattice have been calculated based on the lattice-sublattice relations between
Fourier components of interaction tensors. In the ground state of the system, vortex configurations of
dipoles with their orientations di8'ering in angles by +2m. /3 have been shown to be formed in the lattice
plane. Provided any adsorption potentials force polar molecules out of the surface plane, Davydov split-
ting occurs in the vibration spectrum of the molecular ensemble.

V t'(R)= ' 5 R R
(2)

Dipole-dipole interactions in two-dimensional systems
were correctly taken into account in the analysis of the
vibration spectrum of Wigner-crystal electrons over the
liquid-helium surface. Subsequently, interactions of this
kind were treated as small (stabilizing long-range order)
corrections to exchange interactions in planar magnet-
ics ' and as lateral interactions predominating in the sys-
tems of adsorbed polar molecules. ' As predicted previ-
ously, there are certain types of planar ordering of ad-
sorbed polar molecules; this has recently been proved ex-
perimentally for the CO/NaC1 (100) system exhibiting
low-temperature Davydov splitting of CO vibration lines.

A dipole force anisotropy gives rise to complex
ground-state configurations of dipole moments which
were calculated by various methods taking account of
long-range interactions for square, ' triangular, rhom-
bic," and arbitrary planar Bravais lattices. ' In the
present paper, it is our intention to present the lattice-
sublattice relations for Fourier components of a dipole-
dipole interaction tensor, which enable the energies of
various orientation structures on a complex honeycomb
lattice to be expressed in terms of known characteristics
of its triangular sublattices. In the framework of such
treatment, the ground state of the system concerned, as
well as the infrared-active spectral frequencies of radial
(valence) dipole vibrations, will be elucidated.

Let us consider an arbitrary planar lattice that consists
of n Bravais sublattices having unit cell A] Az. Then
the sites of the complex lattice are given by the vectors
R+rJ, where R=m& A&+mz Az sPecifies the sites of the
basic Bravais sublattice and r characterizes the positions
of the jth sublattice's sites within the unit cell defined
above. The sought-for energy of interactions between di-
pole moments p,R. =peR with eR denoting unit vectors
in the sites R+r can be expressed as

H= ,' g V ~(R—R—'+r ')eR ef. '
Rj,R'j'

=
—,'No g V))~(K)e~ ( —K)FJ~(K),

K,J,J

where

N =nNo, g lri~(K)I'=1
K,p, v

eR =V n g C. r(K).ri~(K) exp[iK. (R+r )] .

(4)

As is evident now, the ground-state energy is determined
by the deepest minimum among those inherent in a fami-
ly of functions Vz"(K), and the corresponding dipole mo-
ment configuration ez is specified by the eigenvectors
C '(K) [see Eq. (5)]. The above procedure of finding the
ground state of a dipole system on a complex lattice is a
generalization of the technique used previously for simple
Bravais lattices.

The behavior of the quantities Vl.~(K) for an arbitrary
Bravais sublattice has been studied rather well. ' ' Thus
the challenge is to most efficiently calculate the values of
Vgj' (K) at j'Aj. We show such intersublattice interac-
tions to be related to the known tensors V. .~(K) for the
basic Bravais sublattice. To do this, let us construct a
denser Bravais lattice whose site set r=m &a&+ mzaz con-
tains the site set of the complex lattice under study. Nat-
urally, construction of this kind is not always possible;
however, in the most interesting case presented by sym-
metric lattices, the basic vectors for the basic Bravais lat-
tice are expressible as the integer-coefficient linear com-
binations of those for the dense lattice: A =n Ia&+ n zaz
(j =1,2; n 'are integers). . Then the unit-cell areas for
these lattices are in n =detR' relationship to each other,

is a dipole-dipole interaction tensor. The second equality
in Eq. (1) corresponds to switching to Fourier com-
ponents within the main area of the basic Bravais sublat-
tice involving No sites; hereinafter twice repeated Greek
indices of Cartesian coordinate axes (a,g=x,y, z) imply
the summation over them. After finding eigenvalues and
eigenvectors of the tensor V~8(K)

g Vll. (K)C~'(K)= V (K)C. '(K),
J

j =1, . . . , n; v=1,2, 3

the quadratic form (1) can be presented as a sum of
squares:

H=-,'N y V;(K)lg, (K)l',
K,p, v
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and the basic vectors for reciprocal lattices satisfying the
equations AJ B~.'=2m5J~ and a~ b~'=2n5" are mutually
expressible as rational-coefficient linear combinations:

tices are interrelated: B,=(b, +2hz) /3 and

82 = —
( 2b i +b2 ) /3, so that the corresponding first Bril-

louin zones appear as in Fig. 1(b) and the summation in
Eq. (7) is confined to the vectors B=—82, 0, B2. Thus we
come to

With introducing the Fourier components V p(K) of
dipole-dipole interaction tensor for the dense Bravais lat-
tice, the desired quantities VJ"p(K) for the complex lat-
tice can be determined as follows:

Vi p(K) = V~2p(K)

=
—,'[V p(K)+ V p(K+B2)+ V (K—Bq)],

(8)

V. .P(K)= —g V P(K+B)eJJ n B

where summation is performed over all the integer-
coefficient linear combinations of the vectors B, and B2
falling within the first Brillouin zone of the dense Bravais
lattice.

Equation (7) proves very convenient both in elucidating
the relationships between tensors V p(K) in different
points of the first Brillouin zone and in calculating inter-
sublattice interactions within the complex lattice. This is
typified by a complex honeycomb lattice, with the hexa-
gon side being equal to a. The basic vectors
Ai=&3a(1,0,0) and Az=&3a(1/2, &3/2, 0) for the
basic triangular sublattice are expressible in terms of the
basic vectors ai=a(0, —1,0) and a2=a (&3/2, —1/2, 0)
for the dense triangular lattice in the following way:
Ai=2a2 —a„' A2=a2 —2ai [see Fig. 1(a)]. Further,
r2i=a(&3/2, 1/2, 0)=a2 —a, and all the sites of the
complex lattice are contained in the site set of the dense
Bravais lattice. The basic vectors for the reciprocal lat-

Y

V2p(K) = [ Vi2p(K)]'

=—. V~P(K) —-'[ V P(K+B,)+ V P(K —B,)]3' 2

+ i [ V'(K+B, ) —V'(K —B,)]

(9)

Vi~ (K)= 3 SV(&3S 'K)S (10)

which, along with Eq. (8), allows the values V P(K) for
different points of the first Brillouin zone to be interrelat-
ed.

Specifically, for the symmetric points K=O, k„=b2/2,
kz = —Bz [see Fig. 1(b)], and for the point K =K1 =bi/3,
the following expression is obtained:

The dense Bravais lattice is none other than the same
basic triangular lattice merely rotated around the axis OZ
through 90 degrees clockwise. With the appropriate ro-
tation matrix S introduced we obtain the identity of irn-
portance:

X, g

X, y

V P(0) =D~ V5 p, V P(kJ ) = —,'(3 ' —1)Dp V5 p,
2V=, a, P=x,y,

a
V" (k„)=Dq V, V««(k„)= —(Dq+DF/3)v,
V"«(k„)=0,
V (KJ)= —4.453 809V,

v «(Kg ) =3 (3 ' —1)Dp v —v "(KJ),
V"«(KJ )=0,
V"(K)= —V "(IC)—V««(K),

FIG. 1. (a) Ground-state configurations of dipole orientations
on the complex honeycomb lattice and the corresponding tri-
angular basic and dense lattices. (b) The first Brillouin zones for
reciprocal basic and dense lattices.

where the parameters DF = —5.517088 and
Dz = —4.094910 determine the energies of ferroelectric
and antiferroelectric states of dipole systems on a tri-
angular lattice. Now, the values of Vz~&(K) at K=O,
K~ =82/2, and Kj=b2/3 [see Fig. 1(b)] are derivable
from Eq. (9):
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V2~((0) =—,'(1 3— )D~ V6 p, V,"(K)/I/

V~, (K„)= —,'[(1+3 / )D„+,'D~]—exp i ——V,

V,",'(K.„)= —
—,
' [(1+3-'")D„

+3 D~] exp i——V,

V2, (K„)=0, (12)

= —iV2, (K~)
—t 3

—3/2(3 —1/2 1)D V & Vxx(K )

V2, (K)=—V, ) (K)—
Vp) (K)

The eigenvalues of tensor V~9(K) in the symmetric
points of the first Brillouin zone that are determined by
the formula (3) take the form

V'(0)= V (0)= ——'V (0)= —,'(1+3 )DF V

= —3.289 426 V,
v,'(o)= v,'(o)= —

—,
' v', (o)=—,'(3 '"—1)D v

=1.165 898 V,
VI(K~)= —,'[—,'DF+(1+3 '/ )D„]V

= —4. 149 068 V,
V2(K )

— & [3
—5/2D ( 1 3

—3/2)D ] V

= —1.476 461 V,
V2(K~ ) = —

—,'[—,'DF+(1 3 / )D~ ] V—

=2.572 937V,
V (K )= ——'[3 D +(1+3 ' )D„]V

=3.760 436V,

V) (K„)= —V,'(K„)—V2(K~ );
V2(K~ ) ——v, (Kg ) —v, (Kg ),
V', (KJ)= V (Kq) = —4.453 809V;

V/K, ) = V»(K ) =4.902564V,

V, (KJ ) = V2 (KJ )= —
—,
' V', (KJ )

= —
—,
' V2(K/)

=—'3 (3 ' —1)DFV=0.224377V .

The dependences V'(K) calculated along symmetric
directions within the first Brillouin zone are given in Fig.
2. The minimum value, VI(KJ), determines the energy
H =

2%VI (Kz) of the one-param— etric degenerate (in an-
gle q&) ground state with the following configuration of di-
pole m.oments:

FIG. 2. Fourier component eigenvalues V~ (K) for the
dipole-dipole interaction tensor on a honeycomb lattice versus
wave vector K determined in the first Brillouin zone of the basic
sublattice.

eR~ = [cos(K&.R+y), sin(KJ R+y), 0];
eR2= [ —cos(KJ R+2m/3+y), sin(K/ R+2~/3+y), 0]

[see Fig. 1(a)]. Interestingly, the same ground-state
configuration can be arrived at with the consideration of
dipole-dipole interactions in terms of the simplest
nearest-neighbor approximation [at V I ( KJ )= —(9/2) V], ' whereas for a triangular lattice of dipoles,
short- and long-range interaction models lead to the
ground-state structures which are qualitatively different.

Let us analyze the effect caused by the thermodynamic
fluctuations of the order parameter on the ground state of
a dipole honeycomb lattice. Two factors determine the
situation just as they do in the case of a square lat-
tice. ' ' These are the quadratic asymptotics of the
minimum-energy branch V, (K) of eigenvalues in the vi-
cinity of the ground state with K=Kz and one-
parametric ground-state degeneracy in the angle variable.
As was shown previously' and confirmed by Monte Car-
lo simulations' for a square lattice, these factors lead the
system concerned to exist in the Berezinskii-Kosterlitz-
Thouless phase at low temperatures. On breaking the de-
generacy by any local potentials or multipole corrections,
long-range order should be stabilized as is the case for di-
poles on the square lattice. '

The curves Vz(K) shown in Fig. 2 correspond to six
branches of charge vibrations which can shift relative to
the honeycomb lattice sites. As a lattice of this sort is
realized on the basic graphite face for which a great body
of experimental adsorption evidence is accumulated, '

here it is appropriate to present the calculated radial vi-
bration frequencies for adsorbed polar molecules that
should be observable in infrared spectra.

Adsorption potentials can force the dipole moments of
adsorbed molecules out of the lattice plane. Based on
the calculations performed previously for square lattice
of adsorption centers' and with Oo denoting the angle of
dipole moments inclination to the surface-normal direc-
tion, we are led to
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co~z ——cop+ [ V, (0) cos~Sp+ V', (K~) sin Sp],m'l
(14)

Here the indices X, F,Z indicate vibration polarizations,
~o is a vibration frequency for an isolated adsorbed mole-
cule, m * is a reduced mass of an oscillator, I =plq is an
equilibrium distance depending on the effective charge q,
and v is a dimensionless characteristic of the anharmonic
frequency shift caused by the static electric fields of
neighboring dipoles. Finally, Davydov splitting obtained
as

cox ——cor=cop+ {[ V, (0) cos Sp+ V', (Ks) sin Sp]tcm*l

+ V, (Kz) cos Op

+ —,
' [ V', (0)+ V, ( Kq ) ] sin~Sp j .

b,co (Op) =coz cox

([V,(0)—V](KJ)]cos Opm*/
—+[VI(0)+Vf(KJ)]

—V', ( Ks ) ] sin Op ) (15)

I am thankful to the American Physical Society for
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is independent of anharmonic correction being governed
by the values of V~(K) [see Eq. (13)] in the symmetric
points of the first Brillouin zone. For the planar disposi-
tion of dipole moments (Op=90 ), no Davydov splitting
is observed in the spectrum due to the high symmetry of
the ground state.
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