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F ee energies of po1nt defects in sodium from first-principles molecular dynamics
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The formation free energies of the major point defects in sodium are calculated from first-
principles (or ab initio) molecular-dynamics simulations, which allow for an accurate representation
of the electron density around the defect site. Values are obtained for the vacancy, divacancy, and
interstitial for a range of temperatures. The vacancy is found to have the lowest free energy of
formation at all temperatures except possibly close to the melting point. Vacancies are found to
experience an attractive interaction and may stay bound to each other, to form a divacancy, for a
significant period of time. Contrary to previous expectations it is found that at temperatures close
to the melting point the interstitial may have a significant presence.

I. INTRODUCTION

The field of defects and self-diffusion in bcc metals
has attracted considerable attention in the past 20 years.
This is partly due to the anomalous behavior that many
of these materials display in the self-diffusion curve at
high temperature. At temperatures close to the melt-
ing point, the Arrhenius plot of the diffusion coefBcient
bends upwards, suggesting either a temperature depen-
dence of the diffuaion mechanism, or the simultaneous
presence of more than one mechanism. Although most
of the interest has focused on the technologically impor-
tant transition metals like Zr or V, the study of simple
metals having a bcc structure is important &om a con-
ceptual viewpoint. For example, it is also believed that
the anomalous diffusion has a common origin with the
martensitic transition undergone by many of these mate-
rials (in itself an intriguing issue) and in particular that
an important contribution to both processes comes from
the q = (2/3, 2/3, 2/3) phonon which is characteristically
at very low frequency in the bcc phase. The very simplic-
ity of the electronic structure of simple metals allows one
to disentangle geometrical factors &om those depending
on the electronic structure. In spite of a considerable
body of theoretical, numerical, and experimental work,
many questions remain unanswered. .

Molecular-dynamics (MD) studies of defect properties
are a major tool for the study of dynamical properties
of matter. In the past, MD studies on simple metals
have been conducted using pair potentials (notably of the
Dagens-Rasolt type2 ), which, however, are not com-
pletely reliable for defect properties. For example, the
activation energy for vacancy-induced self-diffusion in Na
was given quite correctly as 0.37 eV, but this was a re-
sult of a cancellation of errors between a formation energy
too low by 30% (0.25 eV vs 0.35 eV) and an activation
energy 4 times too large (0.12 eV vs 0.03 eV). It has
been argued that the agreement between the calculated
activation energies and the experimental ones (which is
found also in Al) is not accidental, but is a consequence

of a systematic cancellation between many-body forces
during the process of creating and subsequently moving
the defect. However, the exactness of the separate forma-
tion and migration energies is of importance. First, the
density of defects, a function of the formation free energy,
is important in itself. Second, an incorrect migration en-
ergy may lead to spurious predictions, and it is diKcult to
separate these from the genuine ones. Unexpected phe-
nomena have been suggested by a few calculations ' and,
in the case of Ref. 3, not been confirmed experimentally.

The atomic environment around a defect is very differ-
ent &om the bulk and thus a successful description of a
defect requires a tailor-made potential. This new poten-
tial, however, is likely to be inadequate for the descnp-
tion of bulk properties, like phonons (see the discussion
in Ref. 5); this in turn affects the accuracy of the calcula-
tion of the &ee energy of formation of the defect. In other
words, in calculations on point defects the transferability
problems that affect classical potentials are highlighted.
A consistent description of all the defect properties seems
to require some sort of explicit treatment of the electronic
degrees of &eedom.

Nowadays, ab initio techniques like the Car-Parrinello
method are available, which explicitly and self-
consistently deal with the electronic side of the prob-
lem, hence avoiding these difhculties. Application of
these "exact" schemes to metals (especially in the solid
phase) on the other hand has been held back by their
extremely large computational requirements. For exam-
ple, in a single-particle, Kohn-Sham (KS) representation,
reasonable results for simple metals can only be obtained
by using a k-point sampling of the Brillouin zone corre-
sponding to at least 30 points in the irreducible zone.
A reasonable description of a point defect, however, re-
quires typically 50 atoms, which mean. s that more than
100000 plane waves must be used. Moreover, meaning-
ful thermal averaging can be done, as we shall see, only
on molecular-dynamics runs about 5 or 6 ps long. This
effectively rules out any finite temperature simulation of
the KS type on the computers now available.

In this paper, we will illustrate the results of a first-
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principles MD study of defect energies and &ee energies
of defects in Na. We used a numerical scheme which gives
a first-principles, self-consistent description of alkali met-
als at the same level of accuracy, but at a &action of the
computational cost, of conventional KS schemes. Rather
than use a representation of the kinetic energy functional
via the introduction of orbitals (as in the Kohn-Sham rep-
resentation) we use an explicit functional of the density.
In the case of Na we find that the differences between
our method, the conventional KS method, and the ex-
periment are very small and probably lie within the basic
uncertainties introduced by the local density approxima-
tion plus pseudopotential scheme. The major advantage
of the orbital-&ee scheme is that we can easily use cells
containing up to 250 atoms (xnore than 400 for static cal-
culations) and run dynamics for 100 ps if needed. This
makes our method ideally suited for defect calculations
in alkali metals.

The method has been described in detail elsewhere,
and so has the method of calculation of &ee energies.
In this paper we will only show and discuss the results
for the major point defects: the vacancy, the divacancy,
and the interstitial. There are in fact several different
divacancies to be studied; it makes a difference if the two
vacant sites are first neighbors, second neighbors, etc. We
will call D„a divacancy in which the vacant sites are nth
neighbors. We studied the cases n = 1 —4, as they are
probably the most relevant in the diffusion and related
processes. Moreover, larger values of n imply a substan-
tial computational efFort (due to the need for larger cells)
and would give results not much different &om the case
of a couple of isolated vacancies. As always, the ground-
state structure of the interstitial is not a priori obvious.
We performed an explicit study to find the lowest-energy
atomic configurations.

In Sec. II we present the static results regarding for-
mation energies at the absolute zero and the correspond-
ing electronic and ionic structures for all the defects.
This enables us to assess the validity of our choice by
making systematic comparisons with state-of-the-art KS
calculations. Section III contains the results for the &ee
energies and a discussion of the results. Our conclusions
are in Sec. IV.

II. ENERGETICS OF DEFECT FORMATION

A. Preamble

We wish first to compare the prediction of our model
for the T = 0 energetics of defects in Na with those of
a recent accurate study within the KS scheme. In this
way we can check the adequacy of the approximations
made in constructing our energy functional and appro-
priately choose the convergence parameters. Moreover,
as we are able to use much larger cells than used in the
KS calculations, we may check for the absence of size
effects.

Once the energy functional has been selected, one is left
with three main approximations (more details on both

the formalism and the parameters used can be found in
Ref. 11). First, one has to choose a suitable pseudopo-
tential to describe the electron-ion interaction. We have
chosen a Topp-Hopfield pseudopotential which gives a
good description of sodium in a wide variety of circum-
stances. Second, a plane-wave cutoff must be imposed
in order to have a finite number of electronic degrees of
&eedom. We have found that a cutoff corresponding to a
plane-wave energy of about 9 Ry is sufBcient for all our
purposes. Third, the size of the simulation cell is of im-
portance. An isolated defect will be properly simulated
only if the cell is large enough to make the interaction
with the periodic images negligible. To be sure that this
is the case a separate study for each kind of defect con-
sidered is required, especially when ionic relaxation is
allowed. In all of what follows, we consider an energy
converged if its estimated error is less than 0.01 eV, un-
less otherwise stated. It is doubtful that a pseudopoten-
tial plus local density approximation (LDA) scheme can
give more accuracy than this.

A formation (free) energy is calculated as the differ-
ence between the energy of a system with the defect
and the one of the perfect crystal, at constant number
of particles. Of course, the energy functional used and
the convergence level must be the same in both cases.
There are, however, several possible different choices for
the cell volumes. For the perfect crystal, we used the
experixnental lattice parameters at all temperatures (ex-
cept at T = 100 K where we used the same as T = 0),
which is the most common and sensible choice. Because
of the use of the LDA and the choice of pseudopoten-
tial, our scheme overestimates the lattice parameter of
Na by 2%%uo', this means that the system is under slight
pressure, which we verified is always less than 7 kbar at
any temperature.

Once the lattice parameter for the perfect crystal has
been chosen, one has to decide the value appropriate for
the defective crystal. A "constant lattice parameter" cal-
culation is one which keeps the cell volume equal to that
of the perfect crystal. The unrelaxed calculations of Ref.
8 are of this kind. We choose to perform "constant atomic
volume" calculations instead, i.e., to scale the volume
with the number of atoms actually present in the cell.
One might improve by allowing the volume of the cell
to relax until the pressure is equal to the pressure expe-
rienced by the perfect crystal to which it is compared;
this would allow one to calculate the formation volume
of the vacancy. In Ref. 8, however, it was found that in
sodium the change in energy caused by this relaxation
is negligible, and our results confirm this: The pressure
difference between the perfect crystal and. the defective
crystals with constant atomic volume never exceeds 0.5
kbar, suggesting very little change in the energy upon
volume relaxation.

B. Vacancy and divacancy

For an isolated vacancy with fixed ions, we found that
the formation energy E~ is already converged at a cell
size of 16 atoms. Similar conclusions were reached by
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TABLE I. Formation energy of the vacancy and divacancy at T = 0, including ionic relaxation
(unrelaxed energies in brackets). For the vacancy, the KS representation gives 0.36 eV (Ref. 8); the
experiments 0.35 eV (Ref. 14).

vacancy
Dg
Dg
D3
D4

54
0.37 (0.51)
0.81 (1.04)
0.66 (1.00)
0.75 (1.04)
0.69 (1.03)

128
0.37 (0.52)
0.80 (1.04)
0.66 (1.00)
0.76 (1.03)
0.70 (1.04)

250
0.35 (0.51)
0.78 (1.03)
0.65 (0.99)
0.74 (1.03)
0.67 (1.03)

Frank and co-workers in their studies of lithium and
sodium. The increase in the cell size therefore brings
changes in the total energy only via ionic relaxation.
Even so, a 54-atom cell was found to give convergence
for the vacancy and all the divacancies, as seen in Ta-
ble I. We feel that most of the small variations that
the energies show at increasing N are due to numerical
effects rather than physical changes with the cell. The
results agree very well with the available experimental
and theoretical results.

In Fig. 1 we show the magnitude of the relaxation of
the first shells of neighbors of the vacancy for two cell
sizes (54 and 128 atoms per cell). The relaxation turns
out to be symmetric around the vacancy, except for some
of the shells which are incompletely included in the cell.
However, whenever the cell is enlarged so as to include
the full shells the asymmetric part of the relaxation disap-
pears. The asymmetric part of the relaxation is therefore
a finite-size effect and it has been excluded &om Fig. 1.
Again, we see that the convergence is good with a 54-
atom cell. The results are also within a few percent of
the Kohn-Sham results of Ref. 8.

In Fig. 2 we show the electron density around Dq.
The spherical "holes" in the electron density are an ar-
tifact due to the use of a pseudopotential to represent
the electron-ion interaction. The bacteriumlike hole in
the center is instead real and it corresponds to the alter-
ation in the electronic density due to the presence of the
divacancy.

C. Interstitial

atom sitting in an interstice of the crystal, while the oth-
ers sit in a recognizable distortion of the perfect lattice).
Indeed, this is not the case even for several tetrahedrally
coordinated materials, whose structure leaves much more
room. Instead, it usually happens that an atom close
to the interstitial is pushed away &om its perfect lat-
tice position. The defect thus is best described as a pair
of atoms occupying a single lattice site, with the other
atoms still quite close to their original sites. This kind
of defect is called a "dumbbell" and it might be thought
as a molecule embedded in a crystal. As such, the bond
length of the pair may be expected to be of the order of
the bond length of the molecule in vacuo (5.8 a.u. for
Na). A dumbbell is characterized by the direction of the
bond between the atoms in question. In a cubic crystal
one typically considers the (100), (110),and (111)dumb-
bells. However, other kinds of interstitial configurations
cannot be discarded a priori.

We studied the three dumbbells mentioned above, plus
two configurations in which a pure interstitial was ei-
ther in a tetrahedral or an octahedral site. In all cases
all atoms were allowed to relax using a steepest-descent
procedure until convergence in the energies (an estimated
error of less than 10 4 hartree) was reached. As already
found in other studies, we found that the change in en-

ergy between the initial, unrelaxed configuration and the
final one is massive (as large as 2 or 3 eV), in fact much
greater than the relaxed formation energy itself. This
shows that the "unrelaxed" structures of the interstitial
are unphysical and the convergence has to be studied

Close-packed solids like metals usually do not allow the
interstitial to exist in a pure form (by pure we mean an
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FIG. 1. Relaxation of the ionic shells around the vacancy.
Squares: 54-atom cell. Crosses: 128-atom cell. Open crosses:
KS results (Ref. 8). The lines are guides for the eye.

FIG. 2. Electron density around a Dz divacancy, in a
250-atom cell. The slice is taken along the (110) direction.
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on the relaxed energies directly. From Table II we argue
that, due to the small differences in energy between some
of the competing structures, a 128-atom cell is advisable,
although a 54-atom cell is probably sufficiently large for
many purposes.

Our values for the formation energies agree well with
the KS results of Ref. 8, although ours look systemati-
cally lower. We think that at least part of the difference
may be explained by a diferent degree of convergence in
the ionic relaxation: As we showed, the ionic relaxation
energy is very large and a slightly imperfect convergence
may cause sizable errors. Indeed, these are almost to be
expected if the relaxation is performed by moving the
atoms "by hand. "

As Table II shows, when a 54-atom cell is used, the
(110) and (111) dumbbells turn out to be energetically
almost equivalent. The bond length between the two
atoins is similar too: 5.78 and 5.74 a.u. , respectively [to
be compared with KS results of 5.51 and 5.47 a.u. (Ref.
8)]. However, when a 128-atom cell is used the (ill) con-
figuration becomes somewhat lower in energy [the bond
length increases to 5.83 a.u. ; that of the (110) dumbbell
remains almost the same]. Whether this is significant or
not remains to be seen: A change of about 0.02 eV in
the formation energies as the cell becomes larger may be
expected. Moreover, with such a small energy difference
it is almost certain that at finite temperature the two
forms are both present simultaneously.

In order to check that no other configuration can have a
lower energy than those studied above, we used simulated
annealing. We put the extra atom in a tetrahedral site,
heated the system to 1500 K, and cooled it down gradu-
ally (b T/T = 0.01/step) until the instantaneous temper-
ature was of the order of 1 K; then it was quenched until
converged. At the end of the run it was found that the
atoms forming the dumbbell did not include the original
interstitial, which shows that the system had lost mem-
ory of the original configuration. In the 54-atom cell we
found that the ground state was a (110) dumbbell (bond
length 5.79 a.u. ), with a forination energy almost equal
to that given by the relaxation study. Of course the an-
nealing cannot be expected to discriminate between this
structure and the almost degenerate (111)dumbbell. In a
128-atom cell the ground-state configuration was found
to be the (111) dumbbell, again with the same forma-
tion energy of the relaxation study. We conclude that
the static calculations are indeed sufBcient to study the
ground state of the interstitial.

The electron density along a (100) slice of the crys-
tal crossing a (ill) dumbbell is shown in Fig. 3. The

PIG. 3. Electron density around a (111) dumbbell, in a
432-atom cell (see text).

contours corresponding to regions with the lowest elec-
tronic density have been omitted, as they only appear
in the pseudopotential core region (where the calculated
density is unphysical anyway) and would only confuse
the figure. The slice crosses the dumbbell approximately
midway between the two atoms in question, the right-
most atom being slightly higher than the plane of the
figure and the leftmost slightly lower. The buildup of
charge between the atoms is clearly reminiscent of the
chemical bond in a diatomic molecule; however, there
are difFerences. In particular the pockets of electrons on
the outside of the dumbbell appear to be an eHect of the
crystalline environment. It is interesting to note that in
spite of the importance of the ionic relaxation in deter-
mining the interstitial formation energy, the distortion
of the surrounding lattice is almost undetectable to the
naked eye.

III. FREE ENERGIES

A. Preliminaries

1 Defect co.nPgnrctt'ons

As discussed in Ref. 11, for a defect which can exist in
m equivalent orientations it is convenient to calculate its

TABLE II. Formation energy of the interstitial at T = 0, in eV. Rightmost column: KS data
(Ref. 8), obtained using 1V = 54. Pull ionic relaxation is allowed.

N
(100)
(110)
(111)
oct
tet

annealed

54
0.67
0.55
0.55
0.67
0.59
0.55

128
0.66
0.55
0.52
0.66
0.59
0.52

250

0.50

54 (KS)
0.73
0.59
0.60
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&ee energy when in a specific form, and then add a term
which we call "orientational entropy. " This term is given
by S ' = k~ lnm and all one needs to do is to count the
number of equivalent configurations.

The vacancy is fully specified by the site in which it
sits; hence m = 1 and S ' = 0. The divacancy Dq is
specified first by the lattice site of one of the pair of
vacant sites [let us suppose it is (0, 0, 0)j; then, once the
first site is fixed there are eight possibilities for finding
the second, as it inust lie at a lattice site a(+2, +2, +2)
(a is the lattice parameter). However, only half of these
must be counted, due to the indistinguishability of the
vacancies. Therefore for D, m = 4 and S ' 1.4. For
the divacancy D2, the second vacant site is a(+1,0, 0)
plus all the permutations of axes, giving m = 6/2 = 3 and
S ' l.1k~. For the divacancy Ds, one has a(kl, +1,0)
(plus permutations), and so m = 12/2 = 6 and S '
1.8k~. Finally, for D4, one has a(+ 2, + 2i, 6 i) and m =
24/2 = 12 and S ' 2.5k~.

In principle, all the possible configurations of the in-
terstitial should be studied. We have seen &om the en-
ergetic considerations that only two of them can be of
importance, the (110) and (111) dumbbells. To simplify
matters, we decided to take the (111)dumbbell as repre-
sentative of both. In this case, we consider the (110) and
(ill) dumbbells to be equivalent; hence m = 6 + 4 = 10
and S ' 2.3k~.

upon by u. The values of LF at various temperatures
have been calculated previously and published in Ref. 11.

The case of the interstitial is analogous. In this case,
however, the defect is best described as two atoms (the
dumbbell) gradually appearing in place of a regular lat-
tice atom, as A approaches 1. The simplest approach is
then to take the vacancy crystal and not the perfect crys-
tal as the reference state. In this case, the atoms appear
in the site of the vacancy, and

UN+1 (A 1) UN+1 (2)

U +
(A = 0) = U~ +. 2u, (3)

where Ul and Uv refer to the potential energy of the
interstitial crystal, and a vacancy crystal, respectively.
We then have

f
1 g~N+1

dA —Fiv+i(A —1) Fr+i(A —0)
0 BA

v
~N+l AN

—1
(4)

In this case, the formation &ee energy of the interstitial
FfI is calculated relative to that of the vacancy Efv and
Eq. (1) has to be suitably modified. By definition,

2. A inteyretien

The technique for calculating the formation &ee en-
ergy F of a defect has been described in detail in Ref.f
11. We summarize here quickly the relevant formulas for
the vacancy and the divacancy and derive those for the
interstitial. For a vacancy or a divacancy in an N-site
cell,

1 1

FP = — dA (4~(A))„+LA. dA P(A) + LAF,
0 0

gNyN+1 + y N ~N+1 ~N' CfI I ~ C I C

yN
FN = F~ 'F—iv = Fi 'Fiv -c

(6)fV V ~ C V C +

Subtracting Eq. (6) from Eq. (5) we have, in analogy
with Eq. (1),i'

1 1

Fyq ——Fy~+ dA (C(A))n —LO dAP(A) —LbF,
0 0

where 4 =
&& ~ii, 0 the atomic volume, P is the

thermodynamical pressure exerted by the system, and
L is the number of atoms to be decoupled to form the
defect in question; i.e., L=1 for the vacancy and I=2 for
the divacancy. The cell volume 0 is taken to be a linear
function of A. The potential function U~ = U~(A) is
parametrized so that U~(A = 1) = ionic potential of the
perfect crystal, and U~(A = 0) = is the ionic potential of
the crystal with a vacancy or divacancy plus the potential
energy of L atoms decoupled &om the others and put
in L harmonic wells u. These wells are centered in the
vacant sites and switched ofF as A approaches 1. The
oscillation frequency of an atom in u is chosen to be the
Debye &equency for sodium: ~~ 4.75 x 10 a.u. ,
LE is the di8erence between the &ee energy per atom
in the perfect crystal and the &ee energy. . of an atom
in a harmonic well, at the same temperature: LE
NEc —y, where p is the free energy of an atom acted

with L=2.
In the case of the interstitial it is not obvious a priori

where the dumbbell should appear, i.e., where the har-
monic wells u have their center. Considerations of con-
sistency with the T = 0 results show that they must be
centered at the place where the dumbbell is found to sit
in a static calculation after full relaxation of the crystal.

A further set of parameters of importance for the &ee-
energy calculations is then the set of A points used for the
calculation of the integrals above. We checked that two
Gauss-Legendre points (Ai2 = 0.2113248654 and A22 =
1 —A~i ——0.788675 1346, both with weight 1/2) are suffi-
cient to give convergence for the vacancy and all the diva-
cancies. The interstitial, however, causes a much larger
ionic relaxation and this requires the use of three points:
Ay: 0 112 701 665 4 A3: 1 Ay: 0 887 298 344 6 both
with weight 5/18, and A2 ——0.5, with weight 8/18. The
integrals over the pressure gave the desired convergence
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with just one or (for the interstitial) two A points.
The molecular-dynamics run lengths were chosen to

be about 6 ps, including thermalization. To check that
this is sufficient for the desired statistical convergence,
after each run we calculated the averages by discarding
sections of difFerent length &om the beginning of the run.
We found that discarding the first 2 or 4 ps (i.e. , retaining
4 or 2 ps for thermal averaging, respectively) leads to
results very similar to each other. However, discarding 1
or 5 ps leads to significant differences. Allowing 2 ps of
therrnalization and 2 ps for thermal averaging therefore
seems necessary and sufficient. Test runs as long as 12
ps did not change this conclusion.

H. results

0.45

0.40—

0.35—

0.30—

0.20—

0.15
0 100 800

T (K)
300 400

FIG. 4. Formation free energy of the vacancy, in eV (in-
cluding S '). The error bars show the statistical uncertainty
of the results, estimated by the spread in results obtained by
starting the statistical averaging at different times along the
run.

Vacancy and dieacancies

The free energy of formation Efv —TS&' of the vacancy
is shown in Fig. 4, as a function of the temperature.
Although &om the slope of the curve it is in principle
possible to calculate the formation entropy, in practice
the statistical uncertainty prevents this, even if more T
points had been calculated. All that can be said is that
Sy is of order 1k~ or 2k~ at low temperature and prob-
ably increases to about 4k~ or 5k~ in the vicinity of the
melting point. One conspicuous characteristic of Fig. 4,
repeated in almost all the calculations, is the increase in
the statistical Buctuation of the results at T = 370 K, and
the bending downwards of the I" (T) curve, indicating a
definite increase in entropy. We interpret this as a sign
that melting is approaching (370 K is the experimental
melting temperature of sodium). Work is in progress to
locate the melting point within our model.

Figure 5 shows our results for the various forms of
the divacancy. Again the Buctuations increase sharply
at 370 K. The formation entropies are (4—6)k~ at low
temperatures, and increase probably to about 8k~ close
to the melting point. The energy difFerences between the
various forms of the divacancy are small but, in our opin-
ion, significant. In particular, the conclusion that D2 and
D4 are the forms with lowest &ee energy is in agreement
with the experimental findings of Ref. 6.

2. Interaction between vacancies

We may regard a point defect as a kind of quasipar-
ticle, dressed by a cloud of virtual phonons (the ionic
relaxation), somewhat analogous to a polaron in an ionic
crystal. The defects can interact with each other via the

lattice and with line and surface defects, and can anni-
hilate themselves by recombining with another defect or
with a surface. An interesting point to study is whether
two vacancies repel or attract, or, equivalently, whether
the divacancy is bound or not. In this picture the role
of the interaction potential is played by the difFerence
E;„q ——Ef —2Ef~. The orientational entropy plays the
role of the quasiparticle entropy. To see this, one may
just write the equation for the number concentration c
of two nth neighbor vacancies in the case of E;„t ——0:

e{T~ Ff rt)/IgB T —2Ff v/~BT 2n- = me =mc&,

where m is the number of possible ways in which two nth
neighbor vacancies can be found. Therefore, m = e
is the configuration space available to the motion of the
two vacancies.

The results for E;„t are shown in Table III. The com-
paratively large size of the various uncertainties with re-
spect to these values makes any quantitative conclusion
dubious; in particular, the results at 370 K are probably
unreliable and are not shown. We believe, however, that
the qualitative picture is quite clear: At all temperatures
there exists at least one divacancy configuration which is
stable with respect to dissociation into a pair of separate
vacancies. This implies that vacancies in sodium tend to
lump together. The small concentration, however (about
10 per site at 300 K), ineans that there is much more
phase space volume available for isolated vacancies than
for bound ones and at equilibrium it is likely that the
isolated vacancies outnumber the divacancies.

At large distances the vacancies do not interact; hence
we must have lim ~ Ey ——2Ef~. This limit is al-

TABLE III. Interaction free energy F;„& of two vacancies (eV).

T (K)
Dg
D2
D3
D4

0
0.06
-0.08
0.02
-0.04

100
0.04
-0.10
0.02
-0.05

200
0.04
-0.14
0.01
-0.04

300
0.00
-0.11
-0.02
-0.02
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ready reached for n = 3 in the static calculations if the
ionic relaxation is not allowed, in agreement with the
6ndings of the convergence study for the single vacancy.
The difFerence between E3 and E4 is thus entirely due to
the ionic relaxation, and so it is the interaction between
two well-separated vacancies. The data in Tables I and
III suggest that the interaction between two vacancies is
nonmonotonic, oscillating around zero, and. becomes neg-
ligible only when they are as far apart as to be sixth or
seventh neighbors.

0.80 —0

0.60—
(D

0.40—

0.20—

8. Interstitial

Figure 6 shows the formation free energy of the (ill)
dumbbell with S ' = k~ ln10. Arguments have been pre-
sented in the past (see, e.g. , Ref. 6 and references therein)
in favor of a negative formation entropy for the intersti-
tial, as its presence compresses the lattice and might be
expected to lead to higher phonon &equencies and thus
lower entropy. Our data do not support this view. In-
deed, the formation free energy drops rapidly with T,
suggesting a quite large, positive formation entropy, pos-
sibly 6k~ or 7k~. At T = 370 K, Eyl is close to zero;
although this is not conclusive, due to the large statisti-
cal fIuctuations at that temperature, it clearly suggests
that the interstitial may play a signi6cant role close to
the melting point. Indeed, one may suggest a view of
melting in Na, if not an actual mechanism, as the desta-
bilization of the crystal lattice towards the formation of
interstitials.
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We have shown the results of a fully cb initio, self-
consistent calculation of defect free energies in a metal.
The method we used allows one to reach easily the large
cell sizes and long simulation times required by this kind
of problem: All the calculations were performed on a
Convex 200 and are comfortably within reach of a pow-
erful workstation.

Our results are in good agreement with previous cal-
culations at T = 0, and represent a significant extension
of them. In particular, it has been shown that the role of
interstitials at equilibrium cannot be dismissed as static
calculations suggested. Indeed, the increase in the num-
ber of interstitials might be at the root of the increase in
the self-difFusion coefBcient of sodium close to melting.
To resolve such questions, a dynamical calculation of the
defect-induced self-difFusion for the various mechanisms
should be performed. Work is in progress along these
lines.
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FIG. 5. As Fig. 4, for the four kinds of divacancy: (a) D&,
(h) D~ (c) Ds (d) D4.
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Experimental evidence of simultaneous contributions
froin vacancies and divacancies to the self-difFusion find
an interpretation as the presence of a "vacancy gas"
in equilibrium with "vacancy molecules" which contin-
uously bind and dissociate after some time. A quanti-
tative theory, however, appears difficult to formulate, as
the energy differences are tiny and one would need very
accurate results.
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