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Evidence of dilution-induced Griffiths instabilities in K2Cu1 Zn„F4 and Fei Zn F2
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Weak quasistatic singularities are evidenced within the CJriffiths regime of temperatures T,(x)
~T~ T,(x =0) in the diluted antiferromagnet Fet „Zn F2, x = 0.53, and in the diluted ferromagnet

KzCu& „Zn,F4, x=0.2, by measurements of the magnetic susceptibility, g' vs T, in zero external field.

Significant deviations from classical (y=1, for Feo47Znp 53FQ) and nonclassical (y)1, for K2Cuo sZnp 2F4)
Curie-Weiss-type behavior, g ~[T—T,( x)] r, are found just below T,(x=0) by using linear-regression

data analysis.

Since Griffiths' rigorous theoretical investigation of the
diluted Ising ferrornagnet it is known that its magnetization
is a nonanalytic function of the magnetic field H at H = 0 for
all temperatures T(T&. The Griffiths temperature TG is de-
fined as the critical temperature T,(x=O) of the undiluted
system. If 1 —x, the concentration of magnetic ions, exceeds
the percolation threshold, a global phase transition sets in at

T,(x))0, which is accompanied by strong singularities of
the free energy. In that case, the Griffiths phase exists within

T,(x)~T~ TG. It is characterized by the existence of weak
singularities of the free energy. A physically motivated pic-
ture of the Griffiths phase is given by the assumption of a
continuous series of local phase transitions within

T,(x) ~T~ TG. Arbitrarily large pure and differently diluted
clusters are at the origin of this local quasicritical behavior.
They must occur in the thermodynamic limit of infinite
sample volume.

However, experimental evidence for the Griffiths anoma-
lies is not easy to find. Recent theoretical and Monte
Carlo studies mainly focused on the dynamical signature of
the Griffiths phase. They predict a nonexponential tail of the
temporal decay of the spin autocorrelation function. This
contrasts with the simple exponential relaxation of magneti-
zation in a usual paramagnet. In fact, an experimental hint at
a dynamical signature of the Griffiths phase was derived
from inelastic neutron-scattering data on the diluted Heisen-
berg antiferromagnet KMnp3Ni07F3 However, the results
are far from being totally convincing.

Much clearer evidence was recently obtained on a field-
induced Griffiths phase of the metamagnetic compounds
FeC12 (Ref. 7) and FeBr2 (Ref. 8) by measurements of the
complex susceptibility in the presence of an axial external
magnetic field. The analogy with the conventional Griffiths
system consists in the fact that both dilution and external
field suppress the respective order parameters. However, the
nature of the corresponding fluctuations, which are crucial
prerequisites for the Griffiths instabilities, are fundamentally
different. They are static in the diluted system, but dynamic,
viz. , induced by fIuctuating demagnetizing fields, in the an-
tiferromagnet exposed to an external field. There is, hence,
no one-to-one mapping from the field-induced to the
dilution-induced Griffiths phase.

It is a principal problem of any experimental investigation
of the dilution-induced Griffiths phase to make sure, that

anomalies, if any, are not due to crystalline imperfections
like concentration gradients, but originate from the natural
statistics of the cluster distribution which accompanies the
perfect crystal growth. That is why we used crystals of ex-
tremely high quality. On the one hand, we studied a sample
of the antiferromagnetic solid solution Fe047Znp&3F2, the
batch of which was described as a crystal of extremely high
homogeneity. Our sample has extensively been used for
studies of the critical behavior, which require extremely
small concentration gradients in order to avoid artificial
rounding of the phase transition. The other system is the
ferromagnetic solid solution, K2Cup8Znp2F4, the batch of
which was shown to yield very homogeneous samples. Its
quasi-two-dimensional (2D) magnetic behavior offers the ad-
ditional advantage of revealing particularly strong spin fluc-
tuations when compared with conventional 3D systems.

A superconducting quantum interference device (SQUID)
magnetometer (Quantum Design MPMS SS) was used to
measure the temperature dependence of the complex parallel
magnetic susceptibility in zero magnetic field at frequencies
f=10 Hz on Feo 47Zn(j 53F2 and f=7 and 300 Hz on
K2CU0. 8Z 0.2F4. On Fep.47Zn0. 53F2 one has to detect the mag-
netization response parallel to the tetragonal c axis, whereas
for K2Cup8Znp2F4 the easy axis is perpendicular to the c
axis. Neglecting the small intraplanar magnetic anisotropy'
one can choose an arbitrary axis within the c plane. We
focused our attention on the paramagnetic tail of the y' vs T
curves at T)T,(x) . Virtually no losses, y"(10
are observed in this temperature range. In the case of
Feo47Zno53F2 [T,(x)=36.7 K] we measured the suscepti-
bility within 40~ T~ 170 K at constant temperature steps of
AT=0.1 K. The result is shown in the inset of Fig. 1 (curve
1). No deviations from conventional paramagnetic behavior
are visible unless further analysis is done as described below.

For temperatures T& T&(x = 0) = 78.3 K (Ref. 13) one ex-
pects that y' vs T obeys a simple Curie-Weiss law,

X' = C/(T —0),
where C is a frequency-dependent proportionality constant
and 0" ~0 the global Curie temperature of the antiferromag-
net. From a theoretical point of view, Eq. (1) is an approxi-
mation assuming the temperature-independent background

yo to be much smaller than g'(T= T~). Experimentally, Eq.
(1) holds for pure FeF2 at T/T~(x = 0))1, and is expected
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FIG. 1. S vs T (see text) derived from linear regression analysis
of y' vs T data (inset, curve 1) of Fep47Znp53F2 at constant fre-
quency f= 10 Hz. The Griffiths temperature To=78.3 K is indi-
cated by arrows. The linearized S vs T data (straight lines) within
60» T» 75 K and 85» T» 100 K, respectively, intersect at
T=77.1 K. The inset (curves 2 and 3) shows deviations b, X' from
Eq. (1) which arise from direct subtraction of best-fit curves from
the y' vs T data for fitting intervals To» T» T& with T& = 170 K
and Tp= 80 (curve 2) and 120 K (curve 3), respectively.

j+n

D, „=g [I/y, '(T;) —T /C+O/C] (2)

with (y,.', T;), the ith point of the y' vs T data set. Dj „
measures the deviation of the y' vs T data from their de-

to apply also to Feo 47Zno 53F2 Taking into account
T&(x=0.53)=36.7 K (Ref. 10) the Curie-Weiss law should
be applicable at least down to T~50 K. However, within the
Griffiths phase, we expect quasicritical contributions to y
vs T. They arise from magnetic clusters, which undergo
local phase transitions at transition temperatures T~(x)
~ T&~ T&(x =0). Hence, one expects a significant deviation
of the g' vs T data from the temperature dependence given
by Eq. (1). It should set in just below the Griffiths tempera-
ture TG= Tz(x= 0) and is expected to increase with decreas-
ing temperature owing to the increasing number of clusters
which already underwent a local phase transition on cooling.
Unfortunately, it appears impossible to verify directly the
expected deviations from Eq. (1) by simply subtracting a
best-fitted model curve from the measured data. On one
hand, if the fitting interval contains the expected Griffiths
temperature, e.g., 50»T»100 K, an equipartition of very
small errors is found throughout this interval because of the
a priori compromise mediating between data at T~ TG and
& TG. On the other hand, for fitting intervals To- T- Ti
with To) TG we always find severe deviations, Ay', at the
lower bound, T~TO. This is shown for Ti=170 K, and

Tp = 80 (curve 2) and 120 K (curve 3), respectively. Obvi-
ously, these errors are systematically due to deviations from
the mean-field equation (1) when approaching T&(x) rather
than to the onset of Griffiths-type instabilities. A more so-
phisticated linear regression analysis is therefore in order. To
this end we rearrange Eq. (1) for a linear regression analysis,
I/g' = T/C —0/C, and introduce the sum

FIG. 2. g' vs T for KzCupsZnp2F4 at frequency f=300 Hz
corrected for demagnetization. The demagnetizing factor is ob-
tained from the reciprocal saturation value of the original y' vs T
curve at f=7 Hz (inset) for T(T,=3.9 K.

scription by Eq. (1) in the temperature interval

Tj T ' Tj + . The minimization of D J „with respect to
1/C and 0/C gives simple analytic expressions for the pa-
rameters C and 0' within the framework of linear regression
analysis. Once the best values C and 0 are found one can
compute the quantity

j+n

S,= (n —1) 'X [X (T;)—C/(T; —8)1'
1/2

as a measure of the quality of the theoretical description of
the data.

Figure 1 shows the most interesting part of the computed
Si vs T, +„curve (S vs T, for short) starting at T2pp=60 K
up to T&200=160 K. Obviously the width of the regression
interval is continuously increasing from the Griffiths region
into the paramagnetic region. That is why even in the ab-
sence of any Griffiths-type anomaly one would expect S vs T
to decrease with increasing temperature. This is simply due
to the fact that Eq. (1) describes the asymptotic high-T re-

gime, but starts to fail when approaching T&(x). However, in
addition to this, S vs T shows a significant change of slope at
T=77.1 K obtained from the intersection of extrapolated
parts of S vs T linearized within 60»T»:75 K and 85
»:T»100 K, respectively. This temperature nearly coincides
with the Griffiths temperature T&=78.3 K. The gradual
change of slope within 75»T»85 K is primarily due to the
gradual dying-out of Griffiths-type critical clusters as
T~ TG. In addition, the influence of the "noise-free" regime
at T)TG on the global noise figure, S&, grows in proportion
to T—TG.

A similar analysis is made for the y' vs T data of the
ferromagnetic K2Cui Zn F4 [x= 0.2, T,(x) = 3.90 K].
Figure 2 shows the y' vs T data within 4.5»T»9 K at
temperature steps 5T= 0.01 K after correction for
demagnetization. ' The demagnetization factor was deter-
mined from the inverse of the constant saturation value of
the uncorrected y' vs T data below the global phase transi-
tion temperature T,(x). As can be seen from the data in Fig.
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FIG. 3. S vs T (see text) derived from linear regression analysis
of y' vs T data of K2Cup 8ZIlp 2F4 (Fig. 2) for different widths of the

regression interval ST= 0.4 (circles), 0.5 (triangles), and 0.6 K (dia-
monds), respectively. The Griffiths temperature TG=6.25 K is in-

dicated by a vertical dashed line. The linearized S vs T data

(straight lines) within temperature intervals AT= 0.2 K below and

above the respective bending points intersect close to TG . The inset
shows the derivatives dS/dT vs T for BT= 0.5 (triangles) and 0.6 K
(diamonds), whose linear extrapolations (straight lines) vanish at
T= 6.24 and 6.29 K, respectively.

2 (inset), rounding of the transition occurs within an interval
of less than AT=0.05 K, i.e., ~T/T, 1~(10 .—It is, hence,
nearly as sharp as the transition of the pure compound

K2CuF4.
In contrast to Fe& „Zn„F2, even pure K2CuF4 shows de-

viations from mean-field behavior, Eq. (1), throughout the
paramagnetic phase. An adequate description is given by'

y' = C(T T,)- (3)

D, „=g [Ing,'(T;) —lnC+ y ln(T; —T, )j (4)

and

j+n

S,= (n —1) 'X [X (T;)—C(T;—T,) 'f'
1/2

Figure 3 shows S; vs T, +„(Svs T, for short). Here S
results from the linear regression procedure within the con-
tinuously shifted temperature interval TJ-~T;~TJ.+„of size

where the critical exponent varies between y=l close to
T,= 6.25 K (Ref. 12) and @=2 for T=2T, . This behavior is
explained by a series of crossovers from 2D Heisenberg to
2D xy, 3D xy and, eventually, dipolar critical behavior. A
similar behavior might also be expected for the diluted sys-
tem. Again, a direct subtraction of best-fit curves, Eq. (3),
from the measured data does not prove the Griffiths conjec-
ture because of the ambiguities outlined above. Therefore,
similarly as in the case of Fe& Zn F2 we prefer a linear
regression analysis starting from the logarithmic form of Eq.
(3), Iny' =lnC —yln(T —T,), where T, = 3.9 K. In a manner
analogous to Eq. (2) we introduce the quantities

FIG. 4. y vs T derived from linear regression analysis (see text)
of y' vs T of K2Cup8ZllppF4 (Fig. 2) for regression intervals
ST=0.4 (circles), 0.5 (triangles), and 0.6 K (diamonds).

8'T=nAT. It is plotted as a function of the upper boundary

Tj+„. This procedure has been done for 8T= 0.4, 0.5, and
0.6 K, hence, n=40, 50, and 60, respectively. At variance
with the analysis applied to Fe& Zn Fz this is possible ow-
ing to the very high temperature resolution (AT=0.01 K).
Enhanced sensitivity to the onset of the Griffiths regime may
be anticipated. This is indeed the case. Whereas we observe
a nearly constant very low level value of S=2 X 10 above
T&=6.25 K, there is a steep increase of S just below Tz
owing to Griffiths-type anomalies. It is seen that the change
of slope dS/dT is sharpest for BT=0.4 K. It becomes more
smeared and shifted to higher temperatures as 8'T increases
to 0.5 and 0.6 K, respectively. This is easily understood when
considering that the influence of "noisy" data originating
from T~ Tz to S at T)TG increases with increasing width
of the interval BT. In fact, the intersection temperatures of
linear extrapolations of steep and flat portions (widths: 0.2
K) of S vs T below and above the respective bending points
reveal TG= 6.20, 6.35, and 6.47 K, respectively (Fig. 3), for
ST=0.4, 0.5, and 0.6 K. Obviously, the ST=0.4 value,
TG=6.20 K, lies closest to the expected value. As an alter-
native way to obtain TG without being puzzled by smearing
effects around TG we propose a linear extrapolation of the
slope dS/dT which is expected to vanish at TG . As shown in
the inset of Fig. 3, we find TG=6.24 and 6.29 K, respec-
tively, from the ST=0.5 and 0.6 K data sets.

Figure 4 shows the y values which are derived from the
regression analysis of the susceptibility. Similarly as ob-
served on KzCuF4, y shows a strong temperature depen-15

dence. It decreases from y=2 at T=2T, to y=1.2 at
T=1.2T, . Significant inliuence of randomness (random-
exchange critical behavior) is not evident. We rather find a
slight dependence on the width of the regression interval. It
is remarkable that the splitting of the curves sets in at a
temperature close to Tz and increases smoothly with de-
creasing temperature. Very probably this is due to the strong
T dependence of y at T~ TG . Concavity of lny' vs
ln(T —T,) yields decreasing slopes, y= —b, Ing'/b, ln(T —T,)
as 6T increases.

In conclusion, strong evidence for dilution-induced Grif-
fiths anomalies has been revealed by the temperature depen-
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dence of the parallel ac susceptibility of the 3D antiferro-
magnetic Ising system Fe& Zn F2 and the 2D ferromagnetic
Heisenberg system K2Cu& Zn F4, respectively. Instead of
very low relaxation-time experiments suggested by recent
theory we performed quasistatic, very-low-frequency sus-
ceptibility measurements taking advantage of highly sensi-
tive SQUID susceptometry. At T~ TG weak singularities are
superimposed to the global mean field (Fe, ,Zn, F2) or qua-
sicritical (K2Cui, Zn F4) susceptibility signal without vis-
ibly changing its analytical shape. They merely give rise to
enhanced noise when performing linear regression analysis
without changing the Curie-Weiss-type model functions. Un-
fortunately, we are not aware of adequately modified model
functions, which account for the weak singularities and,

hence, would yield optimal fits in the Griffiths regime. Ob-
viously theoretical expressions of the static response function
in the Griffiths regime are needed. A heuristic description
should be possible by using the finite-size limited local criti-
cality of the susceptibility and appropriate cluster distribu-
tion functions as in the case of the field-induced Griffiths
phase. ' More theoretical research in this field is clearly de-
sirable.
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