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Calculation of the strain-induced shifts in the infrared-absorption peaks of cubic boron nitride
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The effects of strain on the zone-center TO phonon frequencies of cubic BN (and, hence, the positions of the

infrared-absorption peaks) are calculated using an ab initio pseudopotential linear-combination-of-atomic-
orbitals method. The calculated phonon wave number for the unstrained material is 1063 cm, in excellent
agreement with the experimental value. The calculated line shift is —34 cm per 1% isotropic strain, and for
uniaxial strain, is —61 and 10 cm per 1% strain for phonon polarizations parallel and perpendicular to the

strain axis, respectively. The Poisson ratio of the material is calculated to be 0.316. These results are expected
to be useful in the experimental characterization of homogeneous and inhomogeneous strain in cubic BN thin

films using infrared spectroscopy.

I. INTRODUCTION

Cubic boron nitride, a material which has many properties
similar to diamond, was first grown by Wentorf in 1957. Its
properties of hardness, ' high thermal conductivity, and
chemical inertness make it of considerable technological in-
terest. As a III-V semiconductor, it can be doped n- or
p-type and has a high electrical breakdown strength, making
it a promising material for high-power transistor appli-
cations. "The wide band gaps of the III-V nitrides make them
of interest for short-wavelength (blue to ultraviolet) optical
devices. Although the first growth' of cubic BN was
achieved by a high-temperature, high-pressure process using
a variety of catalysts, recent growth methods have concen-
trated on thin-film deposition techniques.

In any thin-film growth process, the level of homoge-
neous or inhomogeneous internal strain of BN thin films is
an important measure of the quality of the film and may also
provide important clues to the growth mechanisms of the
films. It is difficult to measure the strain of BN thin films
accurately by x-ray scattering or transmission electron mi-
croscopy (TEM). For x-ray methods, the signal from the film
can be difficult to resolve from the substrate scattering, and
for TEM, the sample must be specially prepared in a struc-
turally invasive way which may alter the internal strains. On
the other hand, Fourier transform infrared (FTIR) spectros-
copy allows one to measure accurately the zone-center
transverse-optical (TO) mode phonon frequencies of the ma-
terial in the films. ' ' With FTIR methods, the signal from
cubic BN is very clearly distinguished from that of hexago-
nal BN or of the substrate. However, in order to use this
measurement to infer the strain of the films, it is necessary to
know how the phonon frequencies vary with material strain.
Although the zone-center TO frequency has been measured
both for bulk samples and for thin films, ' and has
been calculated for the bulk material, the effect of strain on
the frequency has not, to our knowledge, been measured or
calculated previously. A reasonably wide range of values
(1050—1100 cm '), ' ' has been reported for the mea-
sured IR peak in thin films.

It is therefore of interest in the context of thin-film growth
(and in view of the possibilities of strained-layer super-

lattices ' involving BN) to provide accurate calculations of
the strain-induced shifts of the zone-center phonon frequen-
cies in boron nitride. Similar calculations have been per-
formed in the past for diamond. ' In general, total-energy
band-structure methods can be used in conjunction with the
frozen-phonon method to calculate phonon frequencies for
semiconductors with a typical accuracy of a few percent or
better. ' ' ' In this approach, the displacement of ions asso-
ciated with a particular phonon mode is "frozen in" and the
total energy of the solid (excluding the classical kinetic en-

ergy of the ions) is calculated as a function of the magnitude
of the ion displacements. The total energy is then fitted to a
polynomial expression in the phonon displacement. The qua-
dratic term of this fit determines the effective "spring-
constant" of the mode, and hence, in conjunction with the
mass associated with the mode, determines the phonon fre-
quency.

The zone-center TO modes are the modes relevant to the
IR activity. Because the present calculations do not include
the long-range electric field associated with the macroscopic
electric polarization of LO phonons in a polar material, such
as cubic BN, the frequencies calculated are for the zone-
center TO modes. Thus, the phonon frequencies calculated
correspond to the frequencies of the associated IR peaks.
Which modes will be observed in a given experiment is de-
termined by the detailed selection rules for coupling of the
radiation to the phonon modes and will depend on the angle
of incidence and the polarization of the IR beam relative to
the strain axis of the film. For example, in a film with a
homogeneous uniaxial strain axis normal to the surface, only
one peak will be observed at normal incidence although there
are two distinct zone-center TO phonon frequencies,
whereas, for off-normal beam incidence, two distinct absorp-
tion peaks should be observed.

II. CALCULATIONS

In the case of cubic BN, the cubic symmetry of the ma-
terial allows us to characterize completely the first-order ef-
fects of strain on the zone-center TO mode frequencies by
specifying three fundamental types of frequency shift: (1) the
shift of all TO modes when the system is subjected to iso-
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tropic strain; (2) the shift of modes with polarization parallel
to the strain axis in a system subjected to uniaxial strain; and

(3) the shift of modes with polarization perpendicular to the
strain axis in a system subjected to uniaxial strain. Each of
these effects has been calculated by evaluating the change in
the phonon frequencies when the system is subjected to
strain along high symmetry directions. Although the direc-
tion of strain does not affect the linear coefficients for fre-

quency shifts in a cubic material, high symmetry directions
were used in order to reduce the computational complexity
of the total-energy calculations, where small but finite strains
and phonon displacements are imposed.

In order to calculate the frequency shift of type (1) above,
the frequencies of phonons with ion displacement along the
[111]and [001] directions were calculated for 4 and 0%
isotropic compressive strain. (Strain is specified with refer-
ence to the measured lattice constant of cubic BN, 3.615A.
The equilibrium lattice constant calculated in the present ap-
proach by minimization of the energy with respect to lattice
constant is 0.82% smaller than the experimental value. ) To
obtain the coefficient for the frequency shift of type (2)
above, the frequency of the phonon with ion displacements
along the [111] direction was calculated for 4 and 0%
uniaxial compressive strain along the [111]axis, giving the
strain shift for TO modes with polarization parallel to the
strain axis. Finally, to obtain the coefficient for the frequency
shift of type (3) above, the frequency of the phonon with ion
displacements along the [001]direction was calculated for 4
and 0% uniaxial compressive strain along the [110] axis,
giving the strain shift for TO modes with polarization per-
pendicular to the strain axis. All frequency shifts are as-
sumed to be linear in the strain over the range of 0—4%
strain.

The total energy calculations were performed as follows.
The energy of the solid was calculated within the local
density approximation using the self-consistent linear-
combination-of-atomic-orbitals pseudopotential method of
Chan, Vanderbilt, and Louie, as described in detail in Refs.
35—37. The single-particle wave functions for the valence
electron states were represented as a linear combination of
localized Gaussian orbitals f (r) =K(r)exp[ —ur ] centered
on each atom, where K(r) =1, x, y, or z are the s and p
cubic harmonics. Sixteen orbitals on each boron atom (with
Gaussian decay constants co=0.17, 0.535, 1.684, and 5.3
a.u. ) and sixteen orbitals on each nitrogen atom (with
m=0. 23, 0.674, 1.978, and 5.8 a.u.) were used. The self-
consistent potential (Hartree and exchange correlation) was
represented in plane waves up to an energy cutoff of 64 Ry.
The local exchange-correlation potential was calculated us-
ing the form of Hedin and Lundqvist. The ionic pseudopo-
tentials used for boron and nitrogen were of the Hamann,
Schluter, and Chiang type and were identical to those used
in Ref. 37. Brillouin-zone integrals were performed using a
uniform grid of 125 points in the full zone, with point-group
symmetry reducing this to 19 points in the irreducible zone
for strain along the [111]axis, 27 points in the irreducible
zone for strain along the [110] axis, and 24 points in the
irreducible zone for strain along the [001] axis.

Calculations were performed for a system with uniaxial
strain axis along the [001]direction in order to find the Pois-
son ratio for the material. (This is relevant for thin films

TABLE I. Calculated values of the zone-center TO phonon fre-

quency and coefficients of linear strain-induced frequency shifts (in
cm per 1% strain) for cubic BN. The experimental results quoted
are for bulk cubic BN. The shift coefficients are for (1) isotropic
strain, (2) uiiiaxial strain with phonon polarization along the strain
axis, and (3) uniaxial strain with phonon polarization perpendicular
to the strain axis.

Unstrained frequency

Calc.

1063 cm

1004 cm

Expt.

1065 cm

1055 cm
—1 d

1054 cm

Strain coefficients:

Isotropic strain (type 1)
Uniaxial strain (type 2)
Uniaxial strain (type 3)

'Present calculation.
Reference 27.
Reference 14.

"Reference 15.
'Reference 16.

—34 cm
—61 cm

+10 cm

which may have the lattice constant parallel to the substrate
constrained while the lattice constant normal to the substrate
is unconstrained. ) The energy of the system was minimized
with respect to the lattice constant in the [001] direction
while the lattice constants in the [100] and [010] directions
were held fixed at either 96 or 100% of the measured lattice
constant. The fractional change in the [001] lattice constant
divided by the fractional change in the [100] and [010] lat-
tice constants is equal to twice the Poisson ratio.

III. RESULTS

The results for the calculated equilibrium (unstrained)
value and strain shifts of the zone-center TO phonon fre-
quency are given in Table I. The calculated TO zone-center
phonon frequency at the calculated equilibrium lattice con-
stant is 1063 cm '. This is in perfect agreement with the
range of measured values for the bulk material. ' How-
ever, this agreement must be considered partly fortuitous
since the calculated equilibrium lattice constant is 0.82%
smaller than the measured value. The calculated value of the
phonon frequency at the experimental lattice constant is
1034 cm '. Nevertheless, whether one uses the measured or
calculated equilibrium lattice constant, the value of the vi-
brational frequency is in extremely close agreement with ex-
periment, demonstrating the accuracy of the method as a tool
for calculating these quantities without fitting to any experi-
mental data. This accuracy is indeed typical of these calcu-
lations for systems of this type. Given the accuracy with
which the frequency shifts can be measured with FTIR meth-
ods, the present calculations of the strain-induced frequency
shifts can be said to be more than accurate enough for the
purposes of using the IR peak shift to calibrate the isotropic
and uniaxial strain in cubic BN thin films.

In the calculation of the Poisson ratio, it is found that a
change of 4% in the x-y lattice constant causes a change in
the relaxed z dimensions of 2.53%, giving a Poisson ratio of
0.316.
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IV. CONCLUSIONS

In conclusion, the strain-induced shifts of the zone-center
transverse-optical phonon frequencies of cubic boron nitride
have been calculated using a first-principles total-energy
band-structure method. The calculated results for the un-

strained material are in excellent agreement with the mea-
sured values for bulk cubic BN. The effects of strain have
not been measured previously and are calculated for the first
time here. In conjunction with FTIR spectroscopy measure-
ments, the calculated results for the effects of strain on the

mode frequencies provide a means of determining homoge-
neous and inhomogeneous, isotropic and uniaxial strain in
cubic boron nitride thin 6lms.
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