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Quantum efFects on the Berezinskii-Kosterlitz-Thouless transition
in the ferromagnetic two-dimensional XXZ model
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The quantum easy-plane ferromagnetic two-dimensional XXZ model is approached by the pure-
quantum self-consistent harmonic approximation that reduces it to an effective classical model.
Quantum Quctuations weaken both the effective exchange, leading to a reduced Berezinskii-
Kosterlitz-Thouless transition temperature with respect to the classical model, and the effective
easy-plane anisotropy. The latter vanishes when the anisotropy is smaller than a cutoff value, lead-
ing to an instability that could be interpreted as a crossover to a strongly quantum regime where a
picture of classical-like renormalized vortices is inadequate.
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where Js;~ = 1. For convenience we use the energy scale
e = JS and define the reduced temperature t = k~T/e .

In the classical 2D XXZ model a BKT transition is
still expecteds at a finite temperature t, (A), which
decreases weakly with A, and eventually drops to zero
logarithmically in the isotropic limit, when the easy-
plane anisotropy A ~ 1 . Early simulations confirmed
the theoretical asymptotic dependence of t (A(1). The

The two-dimensional (2D) classical XY (or planar)
model is known to undergo the topological transition due
to vortex-pair unbinding that is usually referred to as
the Berezinskii-Kosterlitz-Thouless (BKT) transition. z 4

At difference with this classical model, the quantum
one necessarily deals with three-component spins, even
though the out-of-plane spin components could not ex-
plicitly appear (if A = 0) in the Hamiltoniari:

R. = —-,'J ) (8,. S., + S.,"S.," + AS.,*S.,* ) . (1)
lqd

The index i—:(ii, i2) runs over the sites of a two-
dimensional Bravais lattice, and d—:(di, dz) represents
the displacements of the z nearest neighbors of each site.
The quantum spin operators S; satisfy the SH(2) com-

mutation relations [SP, SPI = i Su e ~~S~ and belong to

the spin-S representation, ~S;~ = S(S+1). They inter-
act through the exchange integral J, with an easy-plane
exchange anisotropy A (0 ( A ( 1). Adopting a clear and
widely used terminology, we call the system described by
the above Hamiltonian the quantum "XXZ model" (for
A = 0, "XXO mod. el").

Its actual classical counterpart, obtained by consider-
ing Eq. (1) as a classical Hamiltonian with the spins taken
as three-component vectors with some fixed length S, is
diR'erent from that of the classical XYmodel, since the z
components of the spins are allowed to fluctuate:

BKT critical temperature of the classical XXO model on
the square lattice is t, (0) 0.70,s to be compared with
that of the XY model, t, 0.89.

However, the thermodynamic behavior of the quan-
tum 2D XXZ model is still a rather controversial sub-
ject. The main point is whether the quantum model dis-
plays the same behavior of its classical counterpart, or
the transition itself is (or can be) destroyed by quantum
fluctuations. Many approaches have been used to an-
swer this question, at least in the XXO case; for instance,
real-space renormalization group, ' high-temperature
expansions, quantum Monte Carloi4 is (QMC).

Since the quantum system (1) preserves the rotational
symmetry around the z axis, by universality arguments it
should undergo a BKT transition, with only quantita-
tive modifications of the critical temperature and prefac-
tors due to quantum fluctuations. For the extreme case of
the spin-2 2D XXO model this has been recently stated by
Ding and Makivic, ' who performed extensive quan-
tum Monte Carlo simulations showing the signatures of
the BKT phase transition at T,/J 0.35. They conclude
that quantum effects modify the quantitative prefactors,
but not the universality class of the transition.

In this work we face the quantum 2D XXZ model
by the pure quantum self co-nsistent harm-onic approxi
mation (PQSCHA), an approach we recently proposed
that extends the efI'ective potential method ' to gen-
eral nonstandard Hamiltonians (i.e. , without a separated
quadratic kinetic part) in order to eventually also treat
quantum spin systems. By the PQSCHA the thermody-
namics of the quantum model (1) can be reduced to an ef
fective classical problem, where the quantum part of Quc-
tuations is accounted for at the self-consistent harmonic
level through temperature-dependent renormalized inter-
action parameters, thus embodying a full quantum treat-
ment of spin waves. Even though the approach is es-
sentially semiclassical, one has the great advantage of
fully accounting for the role of nonlinear excitations like
solitons or vortices, whose character is essentially clas-

0163-1829/95/51(18)/12840(4)/$06. 00 51 12 840 Q~1995 The American Physical Society



51 BRIEF REPORTS 12 841

sical and whose effects are extremely relevant for the ther-
modynamics of the system. Therefore, the PQSCHA is
mainly useful in treating low-dimensional systems, where
such nonlinear excitations exist and are at the origin of
peculiar behavior, that the usual perturbative semiclassi-
cal theories are unable to describe. By the PQSCHA we
can switch on the quantum effects in the 2D XXZ model
starting from the classical limit, and evaluate their conse-
quences on the crit, ical behavior, showing that the BKT
transition of the 2D XXZ model shifts towards lower tem-
perature.

The derivation of the effective Hamiltonian of the 2D
XXZmodel para, llels the one made in an application of
the PQSCHA to the quasi-one-dimensional spin-1 easy-
plane ferromagnet CsNiF3, where we found excellent
agreement with experimental and numerical data in a
wide temperature range. As shown there, we use the
Villain transformation in order to represent spins in
terms of canonically conjugate variables. This spin-boson
transformation preserves the commutation rules, but ne-
glects the so-called kinematic interaction due to the lim-
ited spectrum of S, so that it gives a better description
when the spin system has a good easy-plane character
and the spin states with large fluctuations of S,. are less
relevant to the thermodynamics. The rule of Weyl or-
dering, which is inherent in the PQSCHA, leads to set
S = S+ 2, and the effective Hamiltonian reads

t ~ oo or S ~ oo. They depend on t, S, and A through
the quantities
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f1, = a1,bg/(2S+1)t, pk = z P& cos(k.d), and k is a
wave vector varying in the first Brillouin zone. Therefore,
the exchange energy is renormalized by the factor j g,
and the easy-plane anisotropy is weakened (A,tt ) A),
due to the cooperative effect of in-plane and out-of-plane
pure-quantum fluctuations. Their temperature behavior
in the case of the square lattice is reported in Figs. 1 and
2, respectively. For S ~ oo, i.e. , in the classical limit,
j,g —+ 1 and A g —+ A. We notice that the integrals of
the pure-quantum ffuctuation parameters, Eqs. (7) and
(8), get the main contribution from the high-frequency
part of the magnon spectrum ~k akbk, since the clas-
sical asymptotic behavior for fk -+ 0 is subtracted; on
the other hand those effects due to the presence of non-
linear excitations (e.g. , vortices) would mainly affect the
low-frequency part, i.e., they are essentially classical and
therefore they cannot sensitively change D~ and D~~.

Proceeding as in Ref. 22, and defining the classical av-
erage with the effective Hamiltonian

y y+elf — jefF g S Si+d+Si 8 +d + nefFSi Si+d
j)d

+NE:G(t) .

one can express averages by means of classical-like for-
mulas involving the effective Hamiltonian. For instance,
the in-plane correlations take the form

As in Eq. (2), (s;) are classical normalized spin variables.
Within the PQSCHA, quantum effects are embodied in
the following dimensionless interaction parameters:

(S,. S.*) = S (1 — D~) e -e "
(s; s*)

1.0

(12)

-117j,tr(t, S, A) = (1 —2D~) e

117
A,tr(t, S, A) = A (1 —2D~) ' e2

while

t (sinh fk ) t
G(t) = —) ln

~ ~

——ln(1 —2D~)N q f1, ) 2
1

2D + (1 —D )'Dii

is an additive renormalization that does not enter the cal-
culation of operator averages. The self-consistent renor-
malization parameters

0.5

0.0 0.5 1.5

'D~~~
= ) (1 —pa) —( cot 8 fv —f„'), (8)N(2S+1) - b1,

represent the pure-quaritum square fluctuations ' of
the z components of the spins and of the relative az-
imuthal angle of nearest-neighbor spins, respectively, and
are decreasing functions of t and S, vanishing both for

FIG. 1. The efFective exchange coupling j,s(t, S, A) vs t,
for different values of S; A = 0 (solid lines); A = 0.7 (dot-
ted lines); A = 0.8 (dashed lines). The energy unit is

s = JS=:Z(S+ ~) . The intersections of the sohd lines
with the straight dash-dotted line graphically solve Eq. (15).
The curves for finite A are cut off for t ( tq(S, A).



12 842 BRIEF REPORTS

1.0

eff

0.5

0.0
S=1

0,2

S =3/2

0.2

X 0.1

0

A vs', forv, S=1andforS=3/2, at
of A the cur~es reachof A. For high values o

th dA = l, andi eniythe isotropic value A,g ——

cutofF temperature tq.

with

. ~ ~ -1 . 13II
1

coth fi, —fkK(2S+1) bk

ehavior of theII
'

nded the asymptotic beha '

t th ofththe transition region is jus
oft th "'tic 1 b'hodel, so t at e cr' '

ved. It follows t a eh h BKTthe latter is preserve
stem is connected with~ t S A~ of the quantum system is co

') b th self-consistent re-t tits classical counterpar y e
lation

= &&'&(~..(&., s, ~)) .j,„(t., S, A)
= ' (14)

0, so that alsouation occurs for AThe simplest situa io
use the value o e cf th classical tran-A = 0 and one can useff = use

0 ~ 24rature quoted above, i.e. ,p
Equation (14) can be rewritten m is c

'-( ) =,..(t., s, p) .
( i)

—2efr c&

solved graphically in Fig. 1 and the
bl I I h fresulting values are repre orted in Ta e

t t,
— 0 0.36, ation extrapolates toS = — the solu ion

ivy t Carlo result
2

e uantum on evalue that agrees witri. the q

rmalization group ecby real-space renorm
h to draw a definitecement is not enoug oHowever, this agreem

se of the spin- — XXO

tion arameters, D~ t =
hd 1 hOll'(t = t,j—0.7 signalizing t e eep y

17aeter of the system.
f F (14) is ratherp lthough the self-&»

A) t (S p) for Avolute for A 8 p& o . . the giaphical solu-Indeed, reasoning as in enot close to 1. n ee
to account two facts.= 0 one can ta e in o acction made for A =

of the e avior oh of the classical
' st as a consequence o

isc . 2''(A) [d d ft E. jtransition temperature
fFi . 1doesno ro at t te sensitively un-the straight line o ig.

es vertical due to the1 where it rapidly becomes ver ica
(A) S ond it appearlogarithmic dropro to zero of t . ec

weakl on A.

A Th' h t-

8,22of t}1t easy-plane ch
'

l t fo ti ) b-use of the Vi ain ran(j ~

nt. When this appen,comes inconsisten .
tures t ( tq, sincea s down for tempera uresHamiltonian brea s o

ch instability could bea2 becomes nega ivative at small k. Suc ins a
tion used to study

k
nce of the approxima ion
emiclassica me o, u

even if only qualitative oe, isotro ization of the effective-classical

thle vortexlike excita ions,
t' f th fF tndard BKT transi ion, i
t h h th that a tempera ureisotropization sets in a

critical one.
t e rap ica sou 't p 1 lution procedure in

i . 1 the curves for gruffatures. In Fig.
akin the solution impo

A S). The relation thatn a cutofF value Aq

(SA). Fo i t, t
d hdli i Fi. l)

is t S, Aq) = tq
A = 0.8, the curves for jeff as e in

the four lowest spin va ues ave

effective system is easy p a
still an (approxima e

ith the traight line but
lready disappeared.

an intersection wit e s
the solution as a rea

a t be observed in thea breakdown canno eOf course, such a

p)

ex lain why c ear exp
dence of BKT e abehavior in quasi-two- imen

1-g p lane materials as never,
te ge, eenb en obtained: since the rea co

m XXZ model, for sometures t, S, A) of the quantum
Ref. 24 .

pTABLE I. Estimated cri
the last column (S=oo are e= 0 and 0.5. The values cn e avalues of S and A = 0 an

S
t.(S, 0)

t, (S, 0.5)

1/2
0.36
0.33

1
0.49
0.45

3/2
0.57
0.52

2

0.61
0.56

3
0.65
0.61

0.68
0.64

0.70+0.01
0.66+0.01



BRIEF REPORTS 12 843

show very strong anisotropies, their values of A are rather
close to 1, so that quantum Huctuations could electively
destabilize the vortex picture. One of such materials,
the spin-z compound KqCuF4, for which J = 11.36K
and A 0.99, has been studied experimentally with
the purpose of checking classical renormalization group
analyses, whose prediction is that its 3D ordering tran-
sition at T = 6.25 K (due to the small interlayer coupling
J' 6.8x 10 J) sets in due to an incipient in-layer BKT
transition that causes the correlation length to rise, en-
hancing the eBect of interlayer coupling. However, these
experiments do not permit us to assess unambiguously
a BKT character. For instance, magnetic susceptibility
and correlation length data do not allow us to distinguish
between a power-law and a BKT exponential behavior.
In addition, Moussa and Villain have successfully de-
scribed the experimental outcomes for the spin dynamics
of the same compound using an isotropic Hamiltonian.
Actually, the interlayer coupling is an extra complication
for a clear theoretical description of such a system. The
recently developed ultrathin magnetic films are promis-
ing in this respect, even though finite-size eKects are rel-
evant also in macroscopic samples.

The situation seems to be diferent for antiferromag-

nets: Quantum Monte Carlo calculations for the spin-z
2D XXZ model indicate the existence of the BKT transi-
tion even down to A = 0.98, with t, (&, 0.98) 0.25; in
addition, experimental data for the quasi-2D easy-plane
spin-1 compound BaNiz(PO4)z (A 0.96) have been suc-
cessfully explained in terms of quasi-diBusive vortices,
also implying BKT behavior.

Summarizing, we have shown that the PQSCHA is
well suited to investigate the properties of the strongly
anisotropic quantum easy-plane 2D XXZ model, giving
results that agree with those of simulations and other
theoretical approaches ' also in the extreme quantum
case S = z, the critical behavior of the quantum XXO
model may thus be considered rather well understood.
When the anisotropy is small (A —+ 1), however, the sit-
uation is less clear. Considering the results of our cal-
culations for the ferromagnetic XXZ model and the cur-
rent status of the experimental work discussed above, we
think that no firm conclusion can be presently reached,
and the existence and the character of the transition in
quantum weakly anisotropic quasi-two-dimensional sys-
tems has still to be regarded as an intriguing open prob-
lem, which deserves more accurate experimental and the-
oretical investigation.
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