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The quantum easy-plane ferromagnetic two-dimensional XXZ model is approached by the pure-
quantum self-consistent harmonic approximation that reduces it to an effective classical model.
Quantum fluctuations weaken both the effective exchange, leading to a reduced Berezinskii-
Kosterlitz-Thouless transition temperature with respect to the classical model, and the effective
easy-plane anisotropy. The latter vanishes when the anisotropy is smaller than a cutoff value, lead-
ing to an instability that could be interpreted as a crossover to a strongly quantum regime where a
picture of classical-like renormalized vortices is inadequate.

The two-dimensional (2D) classical XY (or planar)
model is known to undergo the topological transition due
to vortex-pair unbinding! that is usually referred to as
the Berezinskii-Kosterlitz-Thouless (BKT) transition.>™*
At difference with this classical model, the quantum
one necessarily deals with three-component spins, even
though the out-of-plane spin components could not ex-
plicitly appear (if A = 0) in the Hamiltonian:

A= =35 (88t + SY8la +38050a) - (1)
id

The index i = (i1,72) runs over the sites of a two-
dimensional Bravais lattice, and d = (d;,d;) represents
the displacements of the z nearest neighbors of each site.
The quantum spin operators S; satisfy the SU(2) com-
mutation relations [S§, S'JB] = 16y e"‘ﬁ'YS’;’ and belong to
the spin-S representation, |S;|? = S(S+1). They inter-
act through the exchange integral J, with an easy-plane
exchange anisotropy A (0 < A < 1). Adopting a clear and
widely used terminology, we call the system described by
the above Hamiltonian the quantum “XXZ model” (for
A =0, “XX0 model”).

Its actual classical counterpart, obtained by consider-
ing Eq. (1) as a classical Hamiltonian with the spins taken
as three-component vectors with some fixed length 5, is
different from that of the classical XY model, since the z
components of the spins are allowed to fluctuate:

E T T zz
H=-3 2; (Si stia + 57 8iia T A8 3i+d) 5 (2)
i,

where |s;]2 = 1. For convenience we use the energy scale
e = J5? and define the reduced temperature ¢t = kgT'/e .

In the classical 2D XXZ model a BKT transition is
still expected®® at a finite temperature t.(\), which
decreases weakly with A, and eventually drops to zero
logarithmically®® in the isotropic limit, when the easy-
plane anisotropy A — 1 . Early simulations” confirmed
the theoretical asymptotic dependence of ¢.(AS1). The
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BKT critical temperature of the classical XX0 model on
the square lattice is ¢.(0) ~ 0.70,® to be compared with
that of the XY model, t. ~ 0.89.%:10

However, the thermodynamic behavior of the quan-
tum 2D XXZ model is still a rather controversial sub-
ject. The main point is whether the quantum model dis-
plays the same behavior of its classical counterpart, or
the transition itself is (or can be) destroyed by quantum
fluctuations. Many approaches have been used to an-
swer this question, at least in the XX0 case; for instance,
real-space renormalization group,’*'? high-temperature
expansions,’® quantum Monte Carlo'*™18 (QMC).

Since the quantum system (1) preserves the rotational
symmetry around the z axis, by universality arguments it
should undergo a BKT transition,? * with only quantita-
tive modifications of the critical temperature and prefac-
tors due to quantum fluctuations. For the extreme case of
the spin-% 2D XX0model this has been recently stated by
Ding and Makivié,'™'® who performed extensive quan-
tum Monte Carlo simulations showing the signatures of
the BKT phase transition at 7./J ~ 0.35. They conclude
that quantum effects modify the quantitative prefactors,
but not the universality class of the transition.

In this work we face the quantum 2D XXZ model
by the pure-quantum self-consistent harmonic approxi-
mation (PQSCHA),'® an approach we recently proposed
that extends the effective potential method?®:2! to gen-
eral nonstandard Hamiltonians (i.e., without a separated
quadratic kinetic part) in order to eventually also treat
quantum spin systems. By the PQSCHA the thermody-
namics of the quantum model (1) can be reduced to an ef-
fective classical problem, where the quantum part of fluc-
tuations is accounted for at the self-consistent harmonic
level through temperature-dependent renormalized inter-
action parameters, thus embodying a full quantum treat-
ment of spin waves. Even though the approach is es-
sentially semiclassical, one has the great advantage of
fully accounting for the role of nonlinear excitations like
solitons?? or vortices, whose character is essentially clas-
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sical and whose effects are extremely relevant for the ther-
modynamics of the system. Therefore, the PQSCHA is
mainly useful in treating low-dimensional systems, where
such nonlinear excitations exist and are at the origin of
peculiar behavior, that the usual perturbative semiclassi-
cal theories are unable to describe. By the PQSCHA we
can switch on the quantum effects in the 2D XXZ model
starting from the classical limit, and evaluate their conse-
quences on the critical behavior, showing that the BKT
transition of the 2D XXZ model shifts towards lower tem-
perature.

The derivation of the effective Hamiltonian of the 2D
XXZ model® parallels the one made in an application?? of
the PQSCHA to the quasi-one-dimensional spin-1 easy-
plane ferromagnet CsNiFj3, where we found excellent
agreement with experimental and numerical data in a
wide temperature range. As shown there, we use the
Villain transformation?® in order to represent spins in
terms of canonically conjugate variables. This spin-boson
transformation preserves the commutation rules, but ne-
glects the so-called kinematic interaction due to the lim-
ited spectrum of S7 , so that it gives a better description
when the spin system has a good easy-plane character
and the spin states with large fluctuations of S7 are less
relevant to the thermodynamics. The rule of Weyl or-
dering, which is inherent in the PQSCHA,'® leads to set
S=85+ %, and the effective Hamiltonian reads

3 : T T z _z
Heg = oy Jeft Z (Si siratsysiia + Aesrs] Si+d)
i,d
+NeG(t) . (3)

Asin Eq. (2), {s;} are classical normalized spin variables.
Within the PQSCHA,° quantum effects are embodied in
the following dimensionless interaction parameters:

Jet(t, S,2) = (1 —1Dy)? e~ 37 , (4)
Aeﬂ'(t,s, A) = ( — —;—DJ_)~1 e%DH , (5)
while
t inh t
G(t) = Nzkzln <S1nfkfk> B iln(l _ip))
_eA%’D” [ZD_L + (1 - D.L)D”] (6)

is an additive renormalization that does not enter the cal-
culation of operator averages. The self-consistent renor-
malization parameters

1 bx _
DL=1—V-(T+1)¥;;(cothfk——fkl> , (7)

1 a —1
Dy = mg(l—mi(cothfk—fk ), (®

represent the pure-quantum square fluctuations'®2? of

the z components of the spins and of the relative az-
imuthal angle of nearest-neighbor spins, respectively, and
are decreasing functions of ¢ and S, vanishing both for
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t — oo or § — oco. They depend on ¢, S, and A through
the quantities

1
a12< =ze 27l (1= desr 1) » (9)

1
b =2(1—-1D,)? e 2P0 (1— ), (10)

fi = awbi/(2S+1)t, v = 27y 4cos(k-d), and k is a
wave vector varying in the first Brillouin zone. Therefore,
the exchange energy is renormalized by the factor jeg,
and the easy-plane anisotropy is weakened (Aeg > A),
due to the cooperative effect of in-plane and out-of-plane
pure-quantum fluctuations. Their temperature behavior
in the case of the square lattice is reported in Figs. 1 and
2, respectively. For S — oo, i.e., in the classical limit,
Jet — 1 and Aeg — A. We notice that the integrals of
the pure-quantum fluctuation parameters, Eqgs. (7) and
(8), get the main contribution from the high-frequency
part of the magnon spectrum wy ~ axby, since the clas-
sical asymptotic behavior for fy — 0 is subtracted; on
the other hand those effects due to the presence of non-
linear excitations (e.g., vortices) would mainly affect the
low-frequency part, i.e., they are essentially classical and
therefore they cannot sensitively change D, and D).

Proceeding as in Ref. 22, and defining the classical av-
erage with the effective Hamiltonian

(+Yg=21 <H;/dsi> (--) e PHer (11)

one can express averages by means of classical-like for-
mulas involving the effective Hamiltonian. For instance,
the in-plane correlations take the form

P ~, 1
(5787) = §2 (1 1D1)? e 2P1elh (sFs?) . (12)

1.0 T H T

J eff
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t
FIG. 1. The effective exchange coupling jes(t, S, \) vs t,
for different values of S; A = 0 (solid lines); A = 0.7 (dot-
ted lines); A = 0.8 (dashed lines). The energy unit is
e =JS% = J(S + 1)?. The intersections of the solid lines
with the straight dash-dotted line graphically solve Eq. (15).
The curves for finite A are cut off for t < t,(S, A).
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FIG. 2. Xeg(t,S,A) vs t, for S = 1 and for S = 3/2, at
different values of A. For high values of A the curves reach
the isotropic value Aeg = 1, and identify the corresponding
cutoff temperature ¢4.

with
o 1 S gaeid % (omnp 1) L
Dy N@S+D) zk:e bk(co fe — fi ) - (13)

Since ’D{li is bounded, the asymptotic behavior of the
correlations in the transition region is just the same of the
effective classical model, so that the critical behavior of
the latter is preserved. It follows that the BKT temper-
ature t.(S,A) of the quantum system is connected with

its classical counterpart t,(;d)(/\) by the self-consistent re-
lation

te(S,A) ( 1)(
— 2 = (Aeg(te, S, A) ) - 14
jeﬂ'(tcys7 /\) ¢ H( ¢ )) ( )
The simplest situation occurs for A = 0, so that also

Aefg = 0 and one can use the value of the classical tran-
sition temperature quoted above, i.e., Sf‘)(o) ~ 0.70.24

Equation (14) can be rewritten in this case as

t.(S,0)
tgd) (0)

This equation is solved graphically in Fig. 1, and the
resulting values are reported in Table I. In the case of
S = 1 the solution extrapolates to t.(3,0) ~ 0.36, a
value that agrees with the quantum Monte Carlo result'”
(0.353 &+ 0.003), and has to be compared with the val-
ues found by high-temperature expansions'3® (0.39) and
by real-space renormalization group techniques'? (0.40).
However, this agreement is not enough to draw a definite
conclusion about the extreme case of the spin—% XX0
model, because the present theory gives high values of
the renormalization parameters, D, (t = t.) ~ 0.3 and
D) (t = t.) ~ 0.7, signalizing the deeply quantum char-

= Jest(te, S,0) . (15)
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acter of the system.?

Although the self-consistency of Eq. (14) is rather in-
volute for A # 0, one sees that t.(S,A) ~ t.(S,0) for A
not close to 1. Indeed, reasoning as in the graphical solu-
tion made for A = 0, one can take into account two facts.
First, as a consequence of the behavior of the classical

transition temperature t£CI)(/\) [discussed after Eq. (2)]
the straight line of Fig. 1 does not rotate sensitively un-
til A — 1, where it rapidly becomes vertical due to the
logarithmic drop to zero of t£01)()\). Second, it appears
that jeg(t, S, A) depends very weakly on A.

Another remarkable effect clearly appears in Fig. 2.
Provided that X is large enough, the curve A.g(t, S, A) as
a function of ¢ can cross the value 1 (isotropic limit) at a
finite cutoff temperature t,(.5,A). This means that out-
of-plane fluctuations become so strong that the assump-
tion of a dominant easy-plane character of the system®22
(justifying the use of the Villain transformation??®) be-
comes inconsistent. When this happens, the effective
Hamiltonian breaks down for temperatures ¢t < t,, since
a? becomes negative at small k. Such instability could be
only a consequence of the approximation used to study
the system by a semiclassical method, but it could also be
the signature (even if only qualitative) of a true physical
effect, namely the isotropization of the effective-classical
model. This phenomenon is related to the strength of
quantum fluctuations, which make the system no more
effectively easy plane. In particular it should be unable
to support stable vortexlike excitations, nor, therefore,
to display a standard BKT transition, if the effective
isotropization sets in at a temperature higher than the
critical one.

In fact, let us use the graphical solution procedure in
order to estimate the expected quantum critical temper-
atures. In Fig. 1, the curves for jeg(t,S,\) are cut for
t < tq(S,A), making the solution impossible for values
of A larger than a cutoff value A4(S). The relation that
defines Ag(S) is to(S,Aq) = t4(S,Aq). For instance, at
A = 0.8, the curves for jeg (dashed lines in Fig. 1) cor-
responding to the four lowest spin values have a finite
ty, and are then cut for t < t,(S,A). It appears that
for § = % there is still a temperature range where the
effective system is easy plane and can show a BKT be-
havior, since there is still an (approximate) solution of
Eq. (14), i.e., an intersection with the straight line, but
for S = 1 and % the solution has already disappeared.
Of course, such a breakdown cannot be observed in the
XX0model. We find A\,(S) = 0.58, 0.75, 0.84, 0.89, 0.94,
0.97, respectively, for S = %, 1, %, 2, 3, 5.

Our result could explain why clear experimental evi-
dence of BKT behavior in quasi-two-dimensional ferro-
magnetic easy-plane materials has never, to our knowl-
edge, been obtained: since the real compounds do not

TABLE I. Estimated BKT critical temperatures ¢.(S, A) of the quantum XXZ model, for some
values of S and A = 0 and 0.5. The values in the last column (§=o00) are the classical ones (Ref. 24).

S 1/2 1 3/2 2 3 5 oo
t.(S,0) 0.36 0.49 0.57 0.61 0.65 0.68 0.70+0.01
t.(S,0.5) 0.33 0.45 0.52 0.56 0.61 0.64 0.66+0.01
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show very strong anisotropies, their values of X are rather
close to 1, so that quantum fluctuations could effectively
destabilize the vortex picture. One of such materials,
the spin-} compound K;CuF,, for which J = 11.36K
and A ~ 0.99, has been studied experimentally?® with
the purpose of checking classical renormalization group
analyses,® whose prediction is that its 3D ordering tran-
sition at T' = 6.25 K (due to the small interlayer coupling
J' ~ 6.8x107* J) sets in due to an incipient in-layer BKT
transition that causes the correlation length to rise, en-
hancing the effect of interlayer coupling. However, these
experiments do not permit us to assess unambiguously
a BKT character.?® For instance, magnetic susceptibility
and correlation length data do not allow us to distinguish
between a power-law and a BKT exponential behavior.
In addition, Moussa and Villain?? have successfully de-
scribed the experimental outcomes for the spin dynamics
of the same compound using an isotropic Hamiltonian.
Actually, the interlayer coupling is an extra complication
for a clear theoretical description of such a system. The
recently developed ultrathin magnetic films are promis-
ing in this respect, even though finite-size effects are rel-
evant also in macroscopic samples.?®

The situation seems to be different for antiferromag-
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nets: Quantum Monte Carlo calculations for the spin—%
2D XXZ model indicate the existence of the BKT transi-
tion even down to A = 0.98,2° with tc(-é—, 0.98) ~ 0.25; in
addition, experimental data for the quasi-2D easy-plane
spin-1 compound BaNiz(POy4)2 (A ~ 0.96) have been suc-
cessfully explained in terms of quasi-diffusive vortices,3°
also implying BKT behavior.

Summarizing, we have shown that the PQSCHA is
well suited to investigate the properties of the strongly
anisotropic quantum easy-plane 2D XXZ model, giving
results that agree with those of simulations'” and other
theoretical approaches!?'3 also in the extreme quantum
case § = %; the critical behavior of the quantum XX0
model may thus be considered rather well understood.
When the anisotropy is small (A — 1), however, the sit-
uation is less clear. Considering the results of our cal-
culations for the ferromagnetic XXZ model and the cur-
rent status of the experimental work discussed above, we
think that no firm conclusion can be presently reached,
and the existence and the character of the transition in
quantum weakly anisotropic quasi-two-dimensional sys-
tems has still to be regarded as an intriguing open prob-
lem, which deserves more accurate experimental and the-
oretical investigation.
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