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Effect of memory and dynamical chaos in long Josephson junctions
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A long Josephson junction in a constant external magnetic field and in the presence of a dc bias
current is investigated. It is shown that the system, simulated by the sine-Gorgon equation, “re-
members” a rapidly damping initial perturbation and final asymptotic states are determined exactly
with this perturbation. Numerical solving of the boundary sine-Gordon problem and calculations of
Lyapunov indices show that this system has a memory even when it is in a state of dynamical chaos,
i.e., dynamical chaos does not destroy initial information having a character of rapidly damping

perturbation.

Dynamical chaos is one of the most interesting phe-
nomena in the theory of Josephson junctions.!=!® This
phenomenon is not only of theoretical importance but
also of practical importance, because many devices are
founded on Josephson junctions, in particular, supercon-
ducting quantum interference devices (SQUID’s).!! Dy-
namical chaos in these devices is another source of noise.
Furthermore, a long Josephson junction (LJJ) serves as
a very good system for studying nonlinear phenomena
such as an excitation of fluxons and antifluxons, their
propagation, interaction, scattering, and breakup. Inves-
tigations of the last few years showed that a LJJ detects
deeper characteristics than had seemed. Even in the sim-
plest case, when a bias current and an external oscillating
field are absent, the presence only of a constant external
magnetic field leads to the most interesting phenomenon
connected with the selection of the solution of the sta-
tionary Ferrell-Prange equation. The fact is that this
equation has not only provided one solution by given
boundary conditions; the number of these solutions in-
creases with the strength of the external magnetic field
and the total length of the junction.!!

Recently we have shown'2 that the selection of a solu-
tion is carried out with the form of a small and rapidly
damping initial perturbation in time in the nonstation-
ary sine-Gordon equation and what is more surprising an
asymptotic solution of this equation coincides with one
of the stable solutions of the stationary Ferrell-Prange
equation. Two circumstances are remarkable here: (1) A
small perturbation influences very much the evolution of
the system with ¢ — oco; in a sense it defines the charac-
ter of asymtotic solutions. (2) One can say that in spite
of the fact that a small perturbation is a rapidly damp-
ing one, the stable asymptotic solution “remembers” the
initial perturbation. In other words, the nonlinear sys-
tem, i.e., a LJJ, described with the sine-Gordon equation
shows an effect of memory. However, in Ref. 12, the
LJJ is studied solely under the influence of an external
constant magnetic field. Therefore, it is of interest to
investigate the LJJ from the point of view of the effect
of memory not only in the presence of an external con-
stant magnetic field but also under the influence of a dc
bias current through the junction causing an excitation
of dynamical chaos. How will the effect of memory in the
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presence of a dc bias current be shown? Will this effect
take place in the states of dynamical chaos in general?
Below we will try to give answers to these questions.

We write down the sine-Gordon equation in the pres-
ence of a dc bias current in a LJJ in the form

Pre(x,1) + 2704 (2, 1) — Pz (x,t) = —sinp(z,t) + 6, (1)

where ¢(z,t) is the Josephson phase variable, z is the
distance along the junction normalized to the Josephson
penetration length A,

A __( C@O 1/2
7= 87r2jcd) ’

Py is the flux quantum, j. is the critical current density
of the Josephson junction, d = 2\ +b, Az is the London
penetration length, b is the thickness of the dielectric
barrier, t is the time normalized to the inverse of the
Josephson plasma frequency wy,

o= ()"

C is the junction capacitance per unit area, vy is the dis-
sipative coefficient per unit area, and 3 is the dc bias
current density normalized to j..

We write down the boundary condition for Eq. (1) in
the form

9¢p(z, 1)

_ _ Op(x,t)
Oz =H(,1) = )

T

z=L
= H(L,t) = Hy (1 — ae™t/* cos t) ,  (2)

=0

where L is the total length of the junction normalized to
AJ, Hy is the external constant magnetic field perpendic-
ular to the junction and normalized as well as H(0,t) and
H(L,t) to %—d, a is the controlling (perturbation) pa-
rameter characterizing the rapidly damping in the time
perturbation, and to is the characteristic time of this
damping perturbation normalized to w;l.

Equation (1) with boundary condition (2) is solved nu-
merically. In contrast to the case 3 = 0 considered by
us,'? the picture of magnetic field evolution in the junc-
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tion turns out to be more complicated by 3 # 0 as will be
shown below. Physically this is connected with the fact
that the energy balance in the junction in the presence
of bias current is such that the energy brought into the
system with this current can make up for the energy loss
because of dissipation or exceed it. And so one can expect
that at few values of 8 a state of junction will differ little
from the stationary one described by the Ferrell-Prange
equation. At sufficiently large values of 8 asymptotic reg-
ular (periodic) solutions that represent waves—fluxons
and antifluxons—moving along the junction and inter-
acting among themselves and with junction boundaries
and also nonregular solutions that represent dynamical
chaos will take place.! Our calculations showed that if
an asymtotic state at a = 0 (further we shall call the
state at @ = 0 as “starting”) is regular, by introduction
at the initial moment of a rapidly damping perturbation
defined with the controlling parameter a as well as in a
stationary case, examined in Ref. 12, the selection of the
asymtotic solution by a given set of parameters Hy, 7,
L, and 3 is determined with this parameter a; i.e., the
system “remembers” the form of the rapidly damping
perturbation and chooses the way of further evolution in
accordance with this. (It is noteworthy that the effect
of memory discussed here happens in a dissipative sys-
tem and so it is not connected with the reproduction of
a signal as it takes place, for example, in noncollision
plasma in the effect of plasma echo.!*) Furthermore, our
calculations show that if the “starting” state is regular
(periodic), stationary states can also arise by introduc-
tion of perturbation (a # 0) which is a surprise in itself.
However, the most remarkable fact is that the system is
very sensitive to a rapidly damping perturbation as well
as in the dynamical chaos conditions; i.e., the system has
memory in this case too.

For the quantitative description of different character-
istic states we used Lyapunov indices. We write down
Eq. (1) in the form

Yt = V7 (3)
Vi = =29V + gz —sing + B,
or, what is the same, in the form
ze = F(2), (4)

where z is the vector with the components ¢ and V,

z = ( ;‘i ), and F'(z) is defined as follows:

_ \%
F(z)=F(p,V) = (_27+<pzz—sintp+,3).

Let z(t) be a solution of Eq. (4). Then we can write

down the equation for variations:

OF(:(1),,

v = (2). ®

w2

We define the Lyapunov index (LI) as
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A= lim i @I (6)
theo o [[w(0)]|

where ||w|| is the vector norm that we define as the Eu-
clidean norm,

L
]2 = / (w? + w2) da. (7

Depending on the direction of the initial vector w(0),
different LI’s will exist and their number will be infinite.
The definition of LI (6) for system (3) is a natural general-
ization of a LI for finite-dimensional dynamic systems.3

The maximum LI plays a very important role because
it is precisely this maximum that determines the motion
character—exponential growth, decay, or zero change—
for the majority of the trajectories of the system. A set
of initial data w(0) for which formula (6) gives LI's dif-
fering from the maximum one is negligibly small and by
numerical calculations this formula gives the maximum
LI as a rule.
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FIG. 1. The potential ¢; (a) and the Lyapunov index (b)
in a chaotic state by 8 = 0.50. The values of other parameters
are Ho =1.25, L =5, v = 0.26, a = 0.
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The results a numerical solution of Eq. (1) with bound-
ary conditions (2) and calculation of LI (6) showed that
there exist three forms of characteristic states of the sys-
tem for which the maximum LI can be as follows: (1)
A>0,(2) A <0,and (3) A <0. The states with A > 0
represent the dynamical chaos states (Fig. 1), the states
with A < O represent the stable stationary states (Fig.
2), and the states with A < 0 represent the regular (pe-
riodic) states (Fig. 3). All states in Figs. 1-3 that are
shown as illustration are as “starting” ones (a = 0) and
they are calculated with identical values of the parame-
ters Hy = 1.25, L = 5, and v = 0.26, but with different
values of 3. For the chaos state in Fig. 1, 8 = 0.50;
for the stationary one in Fig. 2, 8 = 0.427; and for the
regular one in Fig. 3, 8 = 0.60. In Figs. 1-3 the depen-
dences of the potential ¢; (potentials are normalized to

the value V, = h—;’f) on time and the calculated values

LJ corresponding to them A are shown. We note that
the “starting” chaotic state, represented in Fig. 1, is the
same as in Ref. 1.
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FIG. 2. The potential ¢; (a) and the Lyapunov index (b)
in a stationary state by 8 = 0.427. Other parameters are the
same as those in Fig. 1.
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Let us examine the specific set of parameters, i.e., the
definite point in parameter space, corresponding to the
chaotic “starting” state: Ho = 1.25, L = 5, v = 0.26,
B = 0.44, and a = 0. If we input now the rapid damping
of the time perturbation determined by the controlling
parameter a, the system does not remain in the previous
chaotic state as the calculations show, but wanders be-
tween all three forms of states, chaotic, stationary, and
regular, when this parameter changes. By calculations
the following hierarchy of times was used: to < 7, < T,
where 7, is the characteristic time of the relaxation pro-
cesses (7, is the time of relaxation to asymtotic states)
and T is the time of observation. The values of the
characteristic times in our calculations were as follows:
to =5, 7. = 60, T = 2000. At first sight, one might have
expected that initial perturbations at the time interval
T damping at the time about ¢ty would be forgotten and
they will have no influence on the evolution in the large
time interval. [We notice that 7. is not equal to vy~ 1,
exactly 7. > v~ ! in our case. This is connected with the
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FIG. 3. The potential ¢; (a) and the Lyapunov index (b)
in a regular state by 8 = 0.60. Other parameters are the same
as those in Fig. 1.

-0.01




12 740

system’s nonlinearity. The value of 7, is defined from nu-
merical calculation of our problem (1), (2).] In Fig. 4 are
shown the results of the calculation of LI's with values
of the parameters for Hy, L, v, and 8 mentioned above
and by specific values of the parameter a. As we can see
from Fig. 4 three typical clusters of states take place: a
cluster of chaotic states ch (in Fig. 4 the following values
of the parameter a correspond to them: a = 0, 0.175,
0.180, 0.280), a cluster of regular states r (a = 0.290,
0.300, 0.320), and a cluster of stationary states s (a =
0.190, 0.195, 0.285). For the cluster ch the value of the
Llis A = 5 x 1072; for the cluster r, A ~ —1073%; and for
the cluster s, A ~ —107L.

In Fig. 5 the potentials on the junction ¢; depending
on time for three values of the parameter a differing from
each other on 0.005 and belonging to cluster ch, a =
0.280 [Fig. 5(a)]; to cluster s, a = 0.285 [Fig. (5b)];
and to cluster 7, a = 0.290 [Fig. (5c)] are shown; their
LD’s are represented in Fig. 4. Thus, a small change of
the parameter a leads to a transition between all three
characteristic states of the system.

In Table I transitions between chaotic ch, stationary s,
and regular r states are represented by a change of the
parameter a from 4.000 to 4.155 at the fixed remaining
parameters indicated above.

We note that the transitions between the states, re-
duced in Table I and stipulated by a change of the pertur-
bation parameter a, correspond to the “starting” state of
chaos (a = 0). Thus, by the given values of Ho, L, v, and
B a final asymptotic state is determined with the param-
eter a independently of this, whether the “starting” state
is chaotic or not. Such asymptotic behavior of the system
says that dynamical chaos essentially differed from sta-
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FIG. 4. The Lyapunov indices A vs parameter a: ch is the
cluster of chaotic states (a =0, 0.175, 0.180, 0.280), = is the
cluster of regular states (a = 0.290, 0.300, 0.320), and s is
the cluster of stationary states (a = 0.190, 0.195, 0.285). The
values of other parameters are just the same: Ho, = 1.25,
L=5,v=0.26 0 =0.44.
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TABLE 1. States of a LLJJ.
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FIG. 5. The potential ¢; vs t belonging to the cluster ch,
a = 0.280 (a), to the cluster s, a = 0.285 (b), and to the
cluster r, a = 0.290 (c). Other parameters are the same as
those in Fig. 4.
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tistical chaos by which any perturbation damps rapidly
and a system relaxes to its final state (for example, to the
state of thermodynamical equilibrium) completely “hav-
ing forgotten” an initial perturbation; i.e., the final state
does not depend on this perturbation. As we see, a sys-
tem in the state of dynamical chaos in contrast to a sys-
tem being in the state of statistical chaos “remembers”
the initial perturbation and, in any sense, final states and
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transitions between them are defined with the very ini-
tial perturbation. It makes it possible for us to recognize
this memory effect in the system described with the sine-
Gordon equation with dissipation and in the presence of
an external magnetic field and a bias current. Thus, the
dynamical chaos originating in a nonlinear system does
not destroy initial information; i.e., the nonlinear system
has a memory in the states of dynamical chaos as well.
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