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EfFect of memory and dynamical chaos in long Josephson junctions
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A long Josephson junction in a constant external magnetic field and in the presence of a dc bias
current is investigated. It is shown that the system, simulated by the sine-Gorgon equation, "re-
members" a rapidly damping initial perturbation and final asymptotic states are determined exactly
with this perturbation. Numerical solving of the boundary sine-Gordon problem and calculations of
Lyapunov indices show that this system has a memory even when it is in a state of dynamical chaos,
i.e., dynamical chaos does not destroy initial information having a character of rapidly damping
perturbation.

Dynamical chaos is one of the most interesting phe-
nomena in the theory of Josephson junctions. This
phenomenon is not only of theoretical importance but
also of practical importance, because many devices are
founded on Josephson junctions, in particular, supercon-
ducting quantum interference devices (SQUID's). Dy-
namical chaos in these devices is another source of noise.
Furthermore, a long Josephson junction (LJJ) serves as
a very good system for studying nonlinear phenomena
such as an excitation of Buxons and antifluxons, their
propagation, interaction, scattering, and breakup. Inves-
tigations of the last few years showed that a LJJ detects
deeper characteristics than had seemed. Even in the sim-
plest case, when a bias current and an external oscillating
field are absent, the presence only of a constant external
magnetic field leads to the most interesting phenomenon
connected with the selection of the solution of the sta-
tionary Ferrell-Prange equation. The fact is that this
equation has not only provided one solution by given
boundary conditions; the number of these solutions in-
creases with the strength of the external magnetic field
and the total length of the junction.

Recently we have shown that the selection of a solu-
tion is carried out with the form of a small and rapidly
damping initial perturbation in time in the nonstation-
ary sine-Gordon equation and what is more surprising an
asymptotic solution of this equation coincides with one
of the stable solutions of the stationary Ferrell-Prange
equation. Two circumstances are remarkable here: (1) A
small perturbation inQuences very much the evolution of
the system with t ~ oo; in a sense it defines the charac-
ter of asymtotic solutions. (2) One can say that in spite
of the fact that a small perturbation is a rapidly damp-
ing one, the stable asymptotic solution "remembers" the
initial perturbation. In other words, the nonlinear sys-
tem, i.e. , a LJJ, described with the sine-Gordon equation
shows an effect of memory. However, in Ref. 12, the
I JJ is studied solely under the infiuence of an external
constant magnetic field. Therefore, it is of interest to
investigate the LJJ Rom the point of view of the effect
of memory not only in the presence of an external con-
stant magnetic 6eld but also under the inBuence of a dc
bias current through the junction causing an excitation
of dynamical chaos. How will the effect of memory in the

presence of a dc bias current be shown? Will this effect
take place in the states of dynamical chaos in general?
Below we will try to give answers to these questions.

We write down the sine-Gordon equation in the pres-
ence of a dc bias current in a LJJ in the form

hatt

(x, t) + 2ppt (x, t) —p (x, t) = —sin rp(x, t) + P, (1)

where p(x, t) is the Josephson phase variable, x is the
distance along the junction normalized to the Josephson
penetration length A J,

@p is the Aux quantum, j, is the critical current density
of the Josephson junction, d = 2AI, + b, Al, is the London
penetration length, b is the thickness of the dielectric
barrier, t is the time normalized to the inverse of the
Josephson plasma frequency uJ,

2vrcj, i/2

—= H(I, t) = Ho (t —oe 't" cost), (2)

where I is the total length of the junction normalized to
A J Hp is the external constant magnetic field perpendic-
ular to the junction and normalized as well as H(0, t) and
H(L, t) to 2 &' &, a is the controlling (perturbation) pa-
rameter characterizing the rapidly damping in the time
perturbation, and tp is the characteristic time of this
damping perturbation normalized to w J

Equation (1) with boundary condition (2) is solved nu-
merically. In contrast to the case P = 0 considered by
us, the picture of magnetic field evolution in the junc-

C is the junction capacitance per unit area, p is the dis-
sipative coeKcient per unit area, and P is the dc bias
current density normalized to j .

We write down the boundary condition for Eq. (1) in
the form

B(p(x, t)
Ox
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The results a numerical solution of Eq. (1) with bound-
ary conditions (2) and calculation of LI (6) showed that
there exist three forms of characteristic states of the sys-
tem for which the maximum LI can be as follows: (1)
A) 0, (2) 1&0, and(3) 4 &0. Thestateswithh) 0
represent the dynamical chaos states (Fig. 1), the states
with A & 0 represent the stable stationary states (Fig.
2), and the states with A & 0 represent the regular (pe-
riodic) states (Fig. 3). All states in Figs. 1—3 that are
shown as illustration are as "starting" ones (a = 0) and
they are calculated with identical values of the parame-
ters Hp = 1.25 L = 5 and p = 0.26, but with difFerent
values of P. For the chaos state in Fig. 1, P = 0.50;
for the stationary one in Fig. 2, P = 0.427; and for the
regular one in Fig. 3, P = 0.60. In Figs. 1—3 the depen-
dences of the potential pl (potentials are normalized to
the value V, —:2 ~) on time and the calculated values
LJ corresponding to them A are shown. We note that
the "starting" chaotic state, represented in Fig. 1, is the
same as in Ref. 1.

Let us examine the specific set of parameters, i.e. , the
definite point in parameter space, corresponding to the
chaotic "starting" state: Hp ——1.25, L = 5, p = 0.26,
P = 0.44, and a = 0. If we input now the rapid damping
of the time perturbation determined by the controlling
parameter a, the system does not remain in the previous
chaotic state as the calculations show, but wanders be-
tween all three forms of states, chaotic, stationary, and
regular, when this parameter changes. By calculations
the following hierarchy of times was used: tp « 7„«T,
where w„ is the characteristic time of the relaxation pro-
cesses (7„ is the time of relaxation to asymtotic states)
and T is the time of observation. The values of the
characteristic times in our calculations were as follows:
tp = 5, 7 60, T = 2000. At first sight, one might have
expected that initial perturbations at the time interval
T damping at the time about tp would be forgotten and
they will have no inHuence on the evolution in the large
time interval. LWe notice that r„ is not equal to p
exactly ~„))p in our case. This is connected with the
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FIG. 2. The potential &pI (a) and the Lyapunov index (b)
in a stationary state by P = 0.427. Other parameters are the
same as those in Fig. 1.

FIC. 3. The potential yz (a) and the Lyapunov index (b)
in a regular state by P = 0.60. Other parameters are the same
as those in Fig. 1.
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system's non ineari y.l 't The value of ~„ is defined from nu-
merical calculation of our problem

& j, ~
~~.~

shown the results of the calculation of LI's with values
of the parameters for Ho, L, p, anand ~~ mentioned above
and by specific values of the parameter a. As we can see
from Fig. 4 three typical clusters of states take place: a
cluster of chaotic states ch (in Fig. 4 the follouIing values
o e pf th arameter a correspond to t em:m: a=0 0175,

r a = 0.290,.180, 0.280), a cluster of regular states r (a =
0.300, 0.320), and a cluster of stationary states s (o, =
0.190, 0.195, 0.285). For the cluster ch the value of the
I.I is A 5 x 10 . for the cluster r, A —10; and for

—athe cluster 8, A = —10
In Fi . 5 the potentials on the junction pq depending

on time for three values of the parameter a diÃering from
each other on 0.005 and belonging to cluster c, a =
0.280 [Fig. 5(a)]; to cluster s, a = 0.285 [Fig. ( )];

the parameter a ea s ot l d to a transition between all three
characteristic states of the system.

In Table I transitions between chaotic ch, stationary 8,
and regular r states are represented y g

f 4 000 to 4.155 at the Axed remainingparameter a rom . o
parameters indicated above.

We note that the transitions between the states, re-
duced in Table I and stipulated by a change of the pertur-
bation parameter a, correspond to th " ' g"
chaos (a = 0). Thus, by the given values of Ho, L, p, and

is chaotic or not. Such asymptotic behavior of the system
says that dynamical chaos essentially diKered from sta-
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TABLE I. States of a LJJ.
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FIG. 4. The Lyapunov indices A vs parameter a: ch is the
cluster of chaotic states (a =0, 0.175, 0..180 0.280~ r is the
cluster of regular states (a = 0.290, 0.300 0.320~ and 8 is

95 0.285, . Thethe cluster of stationary states (a = 0.190, 0.195, 0, e
values of other parameters are just the same: Hp = 1.25,
L = 5, T = 0.26, P = 0.44.
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FIG. 5. The potential yq vs t belonging to the cluster ch,
a = 0.280 (a), to the cluster s, a = 0.285 (b), and to the
cluster r a = 0.290 (c). Other parameters are the same as
those in Fig. 4.
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tistical chaos by which any perturbation damps rapidly
and a system relaxes to its final state (for example, to the
state of thermodynamical equilibrium) completely "hav-
ing forgotten" an initial perturbation; i.e., the final state
does not depend on this perturbation. As we see, a sys-
tem in the state of dynamical chaos in contrast to a sys-
tem being in the state of statistical chaos "remembers"
the initial perturbation and, in any sense, Bnal states and

transitions between them are deBned with the very ini-
tial perturbation. It makes it possible for us to recognize
this memory effect in the system described with the sine-
Gordon equation with dissipation and in the presence of
an external magnetic Beld and a bias current. Thus, the
dynamical chaos originating in a nonlinear system does
not destroy initial information; i.e., the nonlinear system
has a memory in the states of dynamical chaos as well.
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