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Flux pinning and critical current in layered type-II superconductors in parallel magnetic fields
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We have shown, within the Ginzburg-Landau theory, that the interaction between vortices and

normal-metal layers in high-T, superconductor —normal-metal superlattices can cause high critical-
current densities j,. The interaction is primarily magnetic, except at very low temperatures T, where the

core interaction is dominant. For a lattice of vortices commensurate with an array of normal-metal lay-

ers in a parallel magnetic field H, strong magnetic pinning is obtained, with a nonmonotonic critical-
current dependence on H, and with j, of the order of 10 —10' A/cm .

I. INTRODUCTION

Soon after the discovery of the layered high-
temperature (HTC) superconductors, a mechanism of
vortex pinning was proposed intrinsic pinning of vor-
tices due to their interaction with the layered structure.
When the magnetic field and the transport current are
perpendicular to each other and lie in the plane of the
layers, this pinning mechanism may be the dominant one,
provided that the vortex lattice is commensurate with the
interlayer spacing. Recently, experimental observations
of intrinsic pinning were reported. ' One possible ex-
planation for intrinsic pinning is the variation of the con-
densation energy when the vortex core crosses the layer,
resulting from the modulation of the superconducting or-
der parameter. This is known as core pinning. When the
vortex lattice is incommensurate with the interlayer spac-
ing, the average depinning current vanishes. Strong pin-
ning and high critical current are expected in commensu-
rate vortex lattices consisting of chains of vortices cen-
tered in regions between the superconducting layers. The
distance between adjacent vortices is then an integer mul-
tiple of the interlayer spacing.

Historically, intrinsic pinning and commensurability
effects were observed not only in conventional layered su-
perconductors, such as NbSe2, but also in artificially
prepared superconductors with a periodic distribution of
inhomogeneities. Examples of the latter include Al films
with periodically modulated thickness and Pb/Bi alloys
with a periodic modulation of Bi concentration. Much
stronger intrinsic pinning is obtained in periodic struc-
ture consisting of two difFerent materials, such as
PbIn/SnIn superlattices, and Nb/NbZr superlattices.
In such systems the intrinsic pinning can result not only
from variations in the condensation energy, but also from
variations in the electromagnetic energy. When the vor-

tex is in an asymmetric position with respect to the pin-

ning center, and the pinning center is a normal or weakly
superconducting layer, the local field and supercurrent
distribution become asymmetric as well, resulting in a
force pushing the vortex back to the center. We expect
that this magnetic pinning can also be strong in artificial
HTC superconductor —normal-metal superlattices, and
that in layered HTC superconductors it can contribute to
the intrinsic pinning. This is because in the limit of very
large tc=A, /g the vortex energy is essentially the magnetic
energy, and it can be significantly changed by the order-
parameter modulation. In effect, this modulation strong-
ly perturbs the supercurrent distribution around vortices,
and that is the main contribution to the vortex energy.
Such an enhancement of magnetic pinning is valid only
for low applied magnetic field. If the magnetic field is
large, the distance between vortices is small, and the field
is practically uniform. Then we expect that the core pin-
ning is dominant. The magnetic pinning of a vortex sys-
tern in a layered superconductor is the strongest in com-
mensurate configurations, where the pinning centers act
synchronously, ' and the field is close to "matching"
fields at which the nondeformed hexagonal vortex lattice
is commensurate with the periodic pinning potential.
Theoretically, pinning in modulated structures was stud-
ied by Dobrosavljevic" and by Martinoli' in the London
limit, and by Ami and Maki'3 in the Abrikosov (high-
field) limit. An extensive review of experimental and
theoretical work on pinning by artificial periodic struc-
tures is presented by Lykov. ' Recently, magnetic pin-
ning of a single vortex parallel to a superconductor—
normal-metal —superconductor (S/N/S) junction wa~
studied by Davidovic and Dobrosavljevic-Grujic, '

whereas intrinsic pinning in a superconductor-
superconductor (S/S') superlattice was considered by
Tachiki, Takahashi, and Sunaga. ' In previous work'

0163-1829/95/51(2)/1270(7)/$06. 00 51 1270 1995 The American Physical Society



51 FLUX PINNING AND CRITICAL CURRENT IN LAYERED. . . 1271

we have shown that when the normal-metal coherence
length giv is small compared to the superconductor
penetration depth A,z, the magnetic pinning interaction
increases rapidly with the N-layer relative thickness
a~/g&. Then, since the coherence length in a normal
metal is inversely proportional to T, it follows that the
pinning force can be an increasing function of tempera-
ture. This behavior can produce a "stabilization" effect
in the critical current.

With the aim to obtain strong magnetic pinning at a
relatively high temperature, we consider a S/N superlat-
tice with S layers consisting of a HTC superconductor,
with large ~&, and N layers of a normal metal with small
coherence length, comparable to that of S. The external
magnetic field H is assumed to be parallel to the layers,
and to lie in the range H„&H-H, &, where H, &

is the
lower critical field for penetration in N layers, and H, &

that of bulk S. This choice of fields guarantees the stabil-
ity of vortex structures commensurate with the superlat-
tice, since for H~H,

&
vortices penetrate in the form of

vortex chains centered in the N layers. ' The period of
such a first-order commensurate structure is ma, where a
is the superlattice period and m =1,2, 3. . . . In relatively
low fields, where the distance between vortices is compa-
rable to A,z, we expect the main first-order commensurate
structure m =1, for which the pinning force is the larg-
est, to be stable provided that a —A,z. Such a choice of
the superlattice period allows one to consider the m = 1

configuration only. Also, in the considered range of fields
the pinning strength can be regarded as field independent.
A preliminary report on this research is presented in Ref.
17.

In Sec. II, we derive the expressions for vortex-lattice
magnetic free energy, Gibbs energy, and pinning force us-
ing the London approximation of the Ginzburg-Landau
(GL) theory for dirty metals. We work in the limit
~s »1 4' ks and ax «ks where as 4s and ~s are
the GL parameter, coherence length, and penetration
depth in the superconductor, respectively, and a& is the
N-layer thickness. The assumption of small normal-layer
thickness allows an analytic solution of the London equa-
tion, similarly to the single-vortex case. ' The condensa-
tion energy and the corresponding pinning force are cal-
culated within GL theory, using the results of Ref. 15.
The critical current is determined by the maximum of the
total, magnetic and core pinning force from the force-
balance equation. In Sec. III we present our results, i.e.,

I

dependence of the pinning force on the magnetic field,
temperature, and on the parameters characteristic for the
S and N layers. We show under which conditions the
strong intrinsic pinning is primarily magnetic. The
critical-current density j„(FI) exhibits typical nonmono-
tonic behavior, with a maximum at the corresponding
"matching" field. A short discussion (Sec. IV) of the re-
sults and of the peak-effect mechanism concludes the pa-
per.

II. PINNING ENERGY, PINNING FORCE,
AND CRITICAL CURRENT

We consider the main commensurate (m =1) vortex
lattice, choosing the superlattice period a-kz, so that
the lattice is stable in a domain of external magnetic field
near H„. The stability domain is determined as a func-
tion of characteristics of the S and N layers and of the
temperature T (see below). The external magnetic field H
is assumed parallel to the z axis, the yz plane being paral-
lel to the superlattice layers.

In the m =1 configuration the vortices are situated at
the position (Fig. 1)

r; J=(ia+c)e„+(j—
—,')Le, i j =0, +1,&2, . . .

where the intrachain vortex distance I. is a function of
the external field H and of the vortex-lattice displacement
c from the middle of the central (arbitrarily chosen) N
layer. We note that in the ground state c =0, but to cal-
culate the pinning force we consider the case cAO as
we11. By assuming both S and N metals are dirty and
working in the high-T, limit, (a.s »1), we calculate the
magnetic energy density of the system of vortices (in
physical units) in the modified London approxima-
tion ' '

(2)

Here 3 is the area occupied by vortices, A. (r) =A,s/g (r)
is the spatially dependent magnetic penetration depth,
and g(r) is the normalized periodic order parameter, with
period a. For N layers much thinner than S layers,
a »a~, and in low fields g(x) can be constructed by
periodic repetition of the zero-field solution obtained in
Ref. 15 for a single S/N/S junction. The latter is
different from 1 only in a small interval that includes the
N layer and adjacent regions in S of order gs, '

b
tanh

2ks

cosh[(x —c)/g~ ]

cosh(aiv /g~ )

g(x)= '

/x —c /+b —a„
tanh

2ks
/x c/ &Q~

where
+2/iv Qiv

b = —sinh ' coth
2 s N

In the following, we express all of the physical quantities

in standard reduced units, ' taking A,z as the unit of
length, &2H, as the unit of the magnetic field, and
(Hs) /4m as the unit of energy density. In reduced units
the magnetic energy density E„d is given by
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FIG. 1. The main commensurate vortex lattice m =1, dis-

placed by distance e from its ground-state position.

E„d= I Ii + (VXh) d r,1 p 1

g

where h(r) is the solution of the generalized London
equation

where h (0,0) is the magnetic field at the vortex at the (ar-
bitrarily chosen) origin, generated by all other vortices in
the lattice, and N, is the number of vortices on A.

For az &(1, an approximate solution of Eq. (6) at a
given 0 can be found in a manner similar to that of the
single-vortex solution, ' by noting that the order parame-
ter g(x) is diFerent from 1 in a small interval around
each defect, of thickness —1/as. Outside these intervals,
the solution of Eq. (6) with g(x)=1 is asymptotically
equal to the exact solution and can be determined using
the boundary conditions at the X layers' and the symme-
try requirements imposed by the periodicity of the mag-
netic field distribution in the vortex lattice. In this way
we find li (0,0) (see the Appendix), and, from Eq. (7), E

+~ 1+1-[(Q~—1)/Q][sinhgc sinhg(a —c)/sinhga]
Z'( g ~ —1)+2g [coshga —( —1)']/sinhga

where g=&4m2l2/L +1, and I =fdx(g —1) is the

pinning strength,

bKS
I =2&2 coth v'2 KS

&&s+g~sinh coth
N 2

The corresponding Gibbs energy density is

aL Ks

I'(Q —1)sinhQ (a —2c)/sinhga
„1"(Q —1)+2Q [coshga —( —1)']/sinhga

(12)

6 7?t E P??

aL

and L=L(c,H) is obtained from the vortex-
configuration stability condition

~6m
BL

Here, we do not perform a rigid translation of the vortex
lattice, but instead calculate the optimal intravortex dis-
tance L for each vortex-lattice displacement C.

The magnetic pinning force f =dG /dc is thus given
by the derivative ofE, Eq. (8),

From Eq. (12) one can see that the greatest value of pin-

ning force is obtained for the lowest allowed value of c,
which we denote by c and which is, within the present
approximation, of the order of 1/zs. As in the single-

vortex case, ' we choose this critical value c* so that
E (c) is smooth and goes linearly to E (c=0) when

C (C
E (0)+f (c*) '=cE (c') . (13)

To determine the critical state of the vortex system, we

have to solve simultaneously Eq. (13) for the critical dis-

placement c* and Eq. (11) for L(c'). This is done nu-

merically, and the divergences which appear in the sums

of Eqs. (8), (12), and (13) as a consequence of the London
approximation are eliminated by a cutofF of the sums at

I,„=(L /2n)as
For a given set of material parameters characterizing

the system, the critical state has to be determined for
each given value of temperature T and of applied magnet-
ic 6eld H. The results are meaningful provided that H
belongs to the range of fields where the vortex lattice in

the ground state (c =0) is stable.
Since we are dealing with strong pinning, we expect

that in the ground state the system of vortices "jumps"
from one commensurate configuration with period ma to
another when 0 is varied, with m large near H„and end-

ing at m =1 near H, &
for a -A.s. %'ith further increase of

field, the first-order commensurate structure m = 1

breaks, and new incornrnensurate or higher-order corn-
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~/2f du g (x)X,(x)cosu
8a~~L —~ra

3g (x)+ cos Q
4

(14)

where x =(v'2/as)tanu, X,(x)=1, for ~x —c
~

)a&, and
X&(x)=0 for ~x —c~ (a&. Note that it is assumed here
that a&=0 and g, =i/2/as. ' Numerical calculations
done for several examples show that in each case the core
pinning-force density

BE'
Bc

(15)

is an order of magnitude smaller than the magnetic force
density f, so that the total pinning-force density is max-
imized at nearly the same point c=c* as determined
from Eq. (13), and the critical configuration is almost un-
changed.

In the critical state, we determine the critical-current
density of the supercurrent Aowing along the y axis from
the force-balance equation. ' In physical units,

mensurate structures are formed. The stability domain of
the m =1 vs m =2, 3, . . . commensurate structures can
be determined by comparison of Gibbs free energies at a
given T. Staying in the vicinity of a matching field, we
have not attempted to determine the high-field end of the
m = 1 structure, which occurs when the energy of elastic
deformation exceeds the pinning energy.

So far, we have considered the magnetic energy only.
However, when c is of the order of the coherence length,
the core of the vortex passes through a region where
g (x)%1, so along with the magnetic interaction, the core
interaction must be taken into account. For a& «a, as
assumed before, the core energy density E' can be calcu-
lated by multiplying the core energy (per unit vortex
length) of an isolated vortex' by the number of vortices
per unit area n, =1/aL Usin. g the same reduced units as
for the magnetic energy, we get

4ir c 2H, 2ir
(20)

III. RESULTS AND DISCUSSION

a~(t) = [a~ /As(0) ]V 1 —t

respectively.
Strong magnetic pinning occurs when a~ az, where

a~ -(1/as )lulls. ' On the other hand, the validity of our
approximate calculation requires a& «a. These condi-
tions imply, for g a( T)=g s( 0) and a/As(0)=2, that
~agIz(T, )-1 0. For fixed zagIz(T, ), the magnetic pin-

ning strength I is an increasing function of temperature
t. At fixed t, I increases with a&/gz(T, ) (Fig. 2). The

200.00

The pinning force depends on two kinds of parameters:
intrinsic (e.g. , the thickness of the layers az, as =a —az,
the coherence lengths gz(T, ),gs(0), and the Ginzburg-
Landau parameter lrs) and extrinsic (e.g., temperature
and external magnetic field). Taking gz(T, )=ps(0), we
illustrate our results on the example a/A, s(0)=2 and
~z =100. We are then left with one intrinsic parameter,
az/gz(T, ), where T, is the transition temperature of the
superlattice.

Note that the temperature dependence enters via As(t)
and H, (t), where t = T/T, is the reduced temperature,
and via the temperature dependence of the coherence
length in the N phase in the dirty limit
g~ ( T)=g ( T, ) T, /T. Since A s( t) =k s (0)Iv'1 t it f—ol-
lows that the period of the superlattice in reduced units is
temperature dependent, a ( t) = [a /As(0) ]i/1 t . —The
thickness and the coherence length of the N layers, in re-
duced units, have the temperature dependences

g (t)=[/ (t, )/& (0)]~/(1 —t)/t

and

Jcr = (16) 1 50.00

where f,„=f,„+f',„ is the maximum of the total
pinning-force density. Since in commensurate
configurations all pinning centers act simultaneously, " '1 00.00

(17)

where f, is the pinning force per unit vortex length, and
thus

c(f, ),„
Jcr =

In reduced units,

50.00

0 ~ 00 1 1 1 I I I I 1 I ) I I 1 I I I I I f ( I I I i I I I I i
i

I I I I I I I I I ) 1 I I I I I '1 I I
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f, =aL (c')f
since B=2ml[lr&aL (c ) ], and

(19) FIG. 2. Dependence of the pinning strength I on reduced
temperature t for a~ g&I(T, )=7, 9, and 11, a&=100, and

a/A, z(0) =2.
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above behavior can be understood analogously to the case
of a single S/N/S junction magnetic pinning is strong
whenever the screening in N layers is weak. The order
parameter g& in X decreases with increasing t and/or
az /gz(T, ): in both cases the screening weakens and 1
increases.

Next, we discuss the dependence of the pinning force
and the critical current on a&/g&( T, ) and t at a fixed
value of the external field H, and on H for fixed values of
the above parameters. In each case, before proceeding
with the calculations we first verified that the m=1
configuration is the ground state of the vortex system
throughout the entire parameter space. We present
below an example of the procedure we used. To deter-
mine the ground state for t =0.6, az /gz ( T, ) =7, and
a/Az(0)=2, we have considered a few competitive
configurations of the vortices: when each X layer is occu-
pied, every second, every third (I=1,2, 3, . . . ), etc.
For the corresponding pinning strength I =4.42, the dia-
grams of the Gibbs energy densities for m = 1, 2, and 3 as
functions of H are plotted in Fig. 3. In the field range
just above H„, 0.028 & H & 0.08, the configuration nz = 1

has the lowest energy. In the above field range, it is close
to the hexagonal lattice, so considerable deformation is
not needed to achieve the commensurability.

To compare the magnetic and core pinning, we plot on
Fig. 4 the forces per unit vortex length fi and f;, pro-
portional to the corresponding parts of the critical-
current density, as functions of az/gz(T, ) for t=0.6
and H=0. 036. The core pinning force f i is calculated
for the lattice displacement where it is the greatest. It
turns out to be comparable to the critical displacement
c* for the magnetic pinning. The core pinning force sat-
urates at aiv/g& —1, where the magnetic pinning force
continues to increase, similarly to the case of a single vor-
tex. ' Note that the magnetic pinning is an order of mag-
nitude greater than the core pinning.
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FIG. 4. Magnetic pinning force per unit vortex length j, vs
the thickness of normal layer az /g~( T, ) for irz = 100,
a/A, z(0)=2, t=0.6, and H=0. 036. Inset: core pinning force

C

per vortex f &
vs the thickness of normal layer for the same set

of parameters.

Our main results are nonmonotonic dependences of the
critical-current density j„on temperature t (at fixed
value of the external magnetic field H) and on H (at fixed
t) There is. a rapid increase (Fig. 5) of j„with tempera-
ture from low t, where a& ((gz(t) and the supercurrent
distribution is almost unperturbed, up to a maximum at
t = t *. This increase is due, as in the single-vortex case, '

to the rapid increase of the magnetic pinning force with
temperature. Above the optimum temperature t" (for
given H), there is a decrease until the pinning effects are
washed out as t —+t, .
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4, 00
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FIG. 3. Gibbs energy density G™vs external magnetic field

H (in reduced units) for three configurations: m=1, 2, 3, for
t =0.6, a /l z(0) =2, sz = 100, and a& /g~( T, ) =7.

FIG. 5. Critical-current density j„vs temperature t for
a /Az(0) =2, ~z = 100, a/Az(0) =2, az/g'&( T, ) =7, and
H =0.04/(1 —t).
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FIG. 6. Dependence of the critical-current density j„on
external magnetic field H for t =0.6, a/A, &(0)=2, ~=100, and

1 =4.42, 20.82, and 98.09, which correspond to a~I/'~(T, ) =7,
9, and 11.

The dependence of the j„(H) on H is shown in Fig. 6
for t =0.6 and three different values of pinning strength
I . In each case, the current density j„(K) exhibits a
maximum at H=H, „ in the vicinity of the matching
field HM corresponding to the matching induction
B M2m. /(2 Iars+3): the vortex distances L (H,„) are
in each case close to the matching distance LM =2a&3.
With increasing pinning strength, the peaks on the j „(H)
curves in Fig. 6 become higher and larger. In physical
units, for typical values of the parameters
g I(vT, )-g s( 0)-10 A and a., =100,j„(H,„) is of the
order of 10 —10 A/cm .

IV. CONCLUSION

In this work we have investigated vortex pinning in
HTC superconductor —normal-metal superlattices. We
considered the main commensurate vortex configuration,
m =1, in the range of the applied Inagnetic field where it
is stable. For the case where the superlattice period a is
comparable to A,&, this range is close to H, &. Pinning
forces produced by such a superlattice in low fields can be
very strong because in this region the effects of the mag-
netic pinning are most pronounced. In high applied field
the overlapping of vortices smooths off the spatial varia-
tion of the local magnetic field, reducing the pinning
effect. We note that in the present case of large rc the
m = 1 configuration stability domain cannot be extended
to cover the whole range of the mixed state, from lower
to upper critical field, as assumed in Ref. 20. This would
require the superlattice period a -A. near H, &, where the
distance between vortices is of the order of A, , and a —g
near H, 2 where the vortex separation is comparable to g,
which is possible only for x of the order of unity.

Strong magnetic pinning of the vortex lattice is ob-
tained when Irz is large, gIv( T, ) is small, and the tempera-

ture is not too low. In the critical state, rows of vortices
are pinned in the vicinity of X/S interfaces, the critical
displacement being c -a&/2+gz. A pronounced max-
imum of the critical current as a function of temperature
is predicted. This effect, obtained also in the case of an
isolated vortex, ' is due to the rapid increase of the mag-
netic pinning with temperature. Experimentally, such
behavior was observed in PbIn/SnIn superlattices, and
was explained by the transition of the weaker supercon-
ductor (Sn) in the normal state at a temperature near the
maximum, t-t*. In PbIn/Ag superlattices the max-
imum was not found. ' However, in the latter sys-
tems, ' ' with Irs of the order of unity and g& large, the
pinning mechanisms (and their consequences) are
different from those we considered. The important
consequence of the increase of j„with temperature is the
stabilization effect HTC superconductor-normal-metal
superlattices are predicted to be more stable against Aux

jumps than conventional materials. The critical current
has been shown to be nonmonotonic with applied field
strength. This is a clear signature of the commensurabili-
ty effect, since the maximum on the j„(H) curve is in the
vicinity of the corresponding matching field. " ' In our
case, this maximum is situated in relatively low fields, in
contrast to the usually observed peaks in high fields, due
to the loss of vortex-lattice rigidity near the upper critical
field. "

APPENDIX

477 1
h, (x)— + h, (x)

dx g dx g

g 5(x —na )e "'"'=2~
Kg

(A2)

where we have used the Poisson formula to transform the
right-hand side. By replacing x in Eq. (A2) with x+a, it
can be shown that

h, (x+a)=e "h, (x) . (A3)

This means that it is necessary to solve Eq. (A2) only in
the interval [

—a/2, a/2]. In this region, Eq. (A2) be-
comes

dhI(x)
Q hI(x)—

dX g dX

1 =2~—1 hI(x) = 5(x),
g ~s

(A4)

where Q =1+4' 1 /L . In the interior of the supercon-
ductor, g(x) is nearly 1 [g(x)—1-e ] and Eq. (A4)

In this Appendix, we calculate the free energy for a
vortex lattice displaced a distance c from its equilibrium
position. To solve Eq. (6), we take the local field to be
periodic along the y direction,

h (x y) + e2m Iv/Lh (x')=1
L „,

Then Eq. (6) becomes
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becomes

g hi —h", =0. (A5)

where 1 is given by Eq. (9). Thus

ht(c —0)=hi(c+0) . (A7b)

The solution is The next boundary condition follows from symmetry un-
der x~ —x,

At coshgx +Bisinhgx for —a /2 & x & 0,
Itt(x)= Ctcoshgx+Dtsinhgx for 0&x &c, (A6)

xEtcoshgx+Ftsinhgx for c &x &a/2 .

ht( —0)=hi(+0),
ht'( —0)—ht'(+0) =2~as,

and from Eq. (A3) we get

(A7c)

(A7d)

c+0
dhi(x)

dx c —0

2 2417 I
I (A7a)

The coefficients Al, BI, CI, D&, E&, and FI can be deter-
mined from the boundary conditions at the N layer, and
from the periodicity requirements, using Eq. (A3). Fol-
lowing Ref. 15, we integrate Eq. (A2) in the interval
( —M/2, M/2) to obtain the boundary condition for the
derivative of ht(x). Since at the end of this interval h& is
asymptotically equal to the solution h t (x ), and
ht(0)=hi(0), with accuracy ht(0)/as when aiv —1/i~s,
we get

It ——=( —1) li
a I

I (A7e)

and

h ——=( —1) It
a a

I 2
(A7f)

Using the above conditions we find the solution h (x,y).
This solution is the asymptotic limit of the exact solution
of Eq. (A4) in the limit of large its and small az/A, s. Us-
ing this asymptotic limit and with the help of Eq. (7) we
calculate the magnetic energy density, Eq. (8).
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