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Density-density response of dilute He- He mixtures at low temperatures
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An attempt is made to describe the dynamical structure factors of 'He- He mixtures recently mea-
sured by Fkk et al. [Phys. Rev. B 41, 8732 (1990)] in the polarization potential approach, which is for-
mulated to include the structure factor S34 Good qualitative agreement of calculation and data is

achieved. It turns out that virtual phonon-roton excitations provide significant strength to the particle-
hole peak of the structure function and that virtual quasiparticle-quasihole excitations contribute
significantly to the phonon-roton peak.

I. INTRODUCTION

Dilute solutions of He in He are interesting Fermi
liquids whose Fermi momentum can be varied by chang-
ing the He concentration. They provide us with a means
to study Fermi liquids at densities not attainable by the
pure system. The properties of this unique type of Fermi
liquid have been investigated since the early 1960s mostly
by thermodynamic measurements. From those data Bar-
deen, Baym, and Pines, in a pioneering work, ' deter-
mined the effective interaction between the He quasipar-
ticles in dilute solutions. The interaction turns out to be
weak and attractive at low wavelength, and it is obtained
as the sum of the strongly repulsive "direct" interaction
between the He quasiparticles and the equally strong at-
tractive "indirect" phonon exchange interaction.

Neutron-scattering experiments are able to map out
the structure factor S(q, co) in a wide range of momen-
tum transfer q and energy transfer ~. Focus of the first
neutron-scattering experiments on He- He mixtures was
the phonon-roton peak of the structure factor and its
shift relative to the position of this peak in pure He. '

Theoretical investigations of the structure factor also
concentrated on this shift. Recently high-quality data
became available in a wide range of momentum and ener-

gy transfers. A typical data set is reproduced in Fig. I.
It clearly shows two distinct peaks; the lower energy
peak is usually called particle-hole peak, since it is as-
sumed that it essentially stems from He quasiparticle-
quasihole excitations. The higher energy peak is general-
ly attributed to collective phonon-roton excitations. In
this work we will show that virtual phonon-roton excita-
tions contribute significantly to the lower energy peak,
and that, conversely, virtual quasiparticle-quasihole exci-
tations provide significant strength to the higher energy
peak of the structure function. This is the consequence
of a strong He- He interaction.

The calculation is performed within the polarization
potential approach proposed by Pines and co-workers.
The polarization potentials determined for pure He (Ref.
8) and He (Ref. 9) are suitably extrapolated for the cal-

II. STRUCTURE I"ACTOR, SUSCEPTIBILITY,
AND CROSS SECTION

The inelastic neutron-scattering cross section for unpo-
larized neutrons is related to the structure factor S(q, co)

by
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FIG. 1. Measured spectrum at q =11 nm ' for a 5% mixture
at temperature T =0.07 K and density n =21.97 nm (Ref. 7).

culation of He- He mixtures. Our approach describes
qualitatively well the data of Fkk et al. in a wide range
of momentum and energy transfers. Most striking is the
very significant contribution of the interference term S34
to both peaks of the structure function. Moreover, the
decrease of strength in the lower energy peak with in-

creasing momentum transfer observed in the data is
reproduced by this calculation.

Previous work within a similar approach has been done

by Pedersen and Cowley and Hsu, Pines, and Aldrich.
However, there are many differences to the present work
which will be outlined in the following. Lucke and
Szprynger calculated structure factors for the kinematic
region around of the roton minimum using a very
differen approach. A qualitative discussion of the role

S34 guided by sum-rule calculations has been recently
published by Boronat et al. '
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d Q'dE' S(q, co) .
N k'

(2. 1) only, and that I3I3 in Eq. (2.5) can be replaced by 3I3I3
with z indicating the third component in spin space.

Here, k, E and k', E' are the momentum and energy of
the incoming and scattered neutrons, respectively;
q=k' —k is the momentum transfer and co=E' —E is the
energy transfer to the sample. The total number of heli-
um atoms contained in the sample with volume V is
denoted by N =N3+N4, ' the corresponding particle den-
sity is X/V=n =n3+n4 W.e furthermore introduce the
concentration x3 of the He atoms in the mixture so that
n3=x3n and n~=(1 —x3)n Un. its are chosen such that
Boltzmann's constant kz = 1 and Planck's constant A= 1.

For a He- He mixture the structure factor can be
separated into four terms, "

S(q, co) =o4S«(q, co)+2o.34S34, (q, co)

+o'3S33 (q, co) +o'3S33 (q, co), (2.2)

x,",(q ~)
S;.(q, co)=-

n~(1 —e ~
)

(2.3)

with T denoting the temperature. The susceptibilities
are written in terms of the density operator
p;(q, t) =gk exp[iqrk(t)], where the sum extends over all
particles at positions rk of species i:

g~. (q, co)= ——I dte' '(Ot[p, (q, t),p (
—q, 0)]t0),

with a' the coherent and o' the incoherent nuclear
scattering cross section. These cross sections and the in-
terference term cr34 can be expressed in terms of the
scattering lengths b' and b' by cr' '=4vrtb' 't and
o. 3=44+ Re(b3b&). Measured values for the scattering
lengths' used in this paper are b3=5.74(7)—1.483(2)i
fm, b 3

= 1.7(2)+2.568(3)i fm; b4 =3.26(3) fm and
b 4

=0, since He has spin zero. The values in
parentheses are the uncertainties in the last digit. As is
obvious the real part of b 3 is rather uncertain; a new mea-
surement is presently under way. '

The separation of S (q, co) into S44, S34 S33 and S33 is
theoretical, and only S(q, co) can be determined experi-
mentally. The structure factor is related to the imaginary
part of the (retarded) dynamic susceptibility
g(q, co)=g'(q, co)+iy"(q, co) via the fluctuation dissipa-
tion theorem (i,jE t 3,4] )

III. POLARIZATION POTENTIAL APPROACH

Ab initio calculations of Eqs. (2.4) and (2.5) for He- He
mixtures are extremely difticult. Therefore, Pines and co-
workers ' ' have advocated the polarization potential ap-
proach to determine the susceptibilities. The polarization
potential approach utilizes semiphenomenologically
determined parameters to describe experimenta1 data
within a simple intuitive framework. This procedure has
been successful for pure He (Ref. 8) and He; it is for-
mally equivalent to standard random-phase approxima-
tion. We will use this approach to calculate the suscepti-
bilities of He- He mixtures. Related work has been done
previously by Pedersen and Cowley and by Hsu, Pines,
and Aldrich.

In the polarization potential approach the susceptibili-
ty pe of pure He is obtained from

X4.4 (q co)
x«(q, ~)=

1 —V44(q, co )y44'(q, co ) +i e
(3.1)

(3.2)

the first term corresponding to an excitation of a (nonin-
teracting) He quasiparticle from the He condensate at
density n4. The quasiparticle carries an effective mass
m4 (q) and energy e4(q)=q /2m4. The second term,
n4A4(q), represents the static limit of the multiparticle
response. The renormalization parameter a4(q) and the
multiparticle contribution A~(q) have been obtained
from experimental data as is explained in detail in Refs. 8
and 9.

For He one has to distinguish between coherent and
incoherent contributions

Here V«(q, co) is the polarization potential to be dis-
cussed in more detail in the following section. The
"screened" susceptibility y&4'(q, co), which describes the
response to the external probe plus the induced polariza-
tion field, consists of two terms,

2
O, c n4q

y«'(q, co)=a4(q) +n4A4(q),
m 4 (q) [co —e4(q)+ ie]

(2.4)

t0) denotes the ground state of the mixture.
Analogously, for y33(q, co) the density operator in Eq.

(2.4) is replaced by the spin-density operator
3(q t)= lX.ak exp[iqrk(t)]:

+33(q, co) = — J dte '"'(Ot [I3(q, t);I3( —q, 0)]t0)

(2.5)

The Pauli matrices are denoted by o.. In the following we
shall assume that the sample is isotropic, so that all sus-
ceptibilities and structure functions depend on q = tqt

X4'(q, ~)=
1 —V33'(q, co)g3'~'(q, co)+i e

(3.3)

with the spin-symmetric and spin-antisymmetric polar-
ization potentials V33 and V33, respectively. The
"screened" susceptibility y33'~'(q, co) consists of a single
particle contribution given by a temperature-dependent
Lindhard function L (q, co; m 3, T) (Ref. 14) corresponding
to excitations of noninteracting quasiparticles (fermions)
with an e6'ective mass m3 and a multiparticle contribu-
tion A 3~'(q),

gP'(q, co) =a3~'(q)n 3L (q, co; m 3, T)+n3 A 3~'(q) .

(3.4)
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The temperature dependence of the present calculation
stems entirely from the temperature dependence of the
Lindhard function. Possible temperature dependence of
the screened He susceptibility has been neglected. Fur-
thermore, it is emphasized that the screened susceptibili-
ties are determined in the free-gas approximation so that

Interactions between the He and He channels are in-
troduced via

744(q ~)
1 —V34(q, co)+33(q, co)+44(q, co)+i@

X33(q ~) V34(q ~)X44(q ~)
X34 S~

1 —V34(q, co)f33(q, co)g44(q, co)+is

F33(q, ~)
X33 qi~

1 —V34 (q, co)@33(q,co )f44(q, co) +i E

(3.5a)

(3.5b)

(3.5c)

assuming V34 V43 These equations are equivalent to
the matrix equations used by Pedersen and Cowley.

A simple conclusion can be drawn immediately from
these equations: Inserting Eq. (3.3) into Eq. (3.5c) one ob-
tains after a little algebra

with

O, c
X33

O, c
0+33

(3.6)

VO V33+ V34X44 . (3.7)

The He quasiparticles effectively interact via the poten-
tial Vo, which is the sum of the "direct" interaction V33
and the phonon exchange interaction V34+44 It has been
shown by Bardeen, Baym, and Pines' that these two in-
teractions nearly cancel each other in dilute mixtures. In
fact, for dilute mixtures and q, co—+0, Vo is weakly attrac-
tive, while V33 and V34 are strongly repulsive.

For practical calculations we rewrite Eqs. (3.5) as fol-
lows:

O, c O, c O, c
c +44 +44 V33+33

+44 (3.8a)

O, c O, c
c +44 V34+33

X (3.8b)

X33=
O, c O, c O, c

X33 +44 V44+33

D D
(3.8c)

with

D = 1 —
V44+44 V33+3'3 + ( V33 V44 V3g )+33 +44 + i 6 .

(3.9)

For V~&3 = V~4 = V3~ the last term in Eq. (3.9) drops out.
In fact, in He- He mixtures V33 V34 and V44 are of
similar strength, and Pedersen and Cowley have set them
equal in their calculations. This approximation can be
somewhat improved as will be explained in the following
section.

For certain q and co the imaginary part of y33 is zero or
very small. In this situation we obtain two well-separated
peaks, one of which is sharp. The position of this peak is
determined from Eq. (3.9) by setting ReD =0:

(F44)
' —V34%3=0 (3.10)

Superficially this equation looks identical to the result ob-
tained by Hsu, Pines, and Aldrich (HPA) [Eq. (3.8) in
Ref. 6]. However, there is an important difference: HPA
calculate f33 with the potential Vo defined in Eq. (3.6),
which is very weak for dilute mixtures. Instead, V33
should be used, and this potential is rather strong. The
procedure followed by HPA does not treat phonon ex-
change consistently.

At this point another remark concerning the work of
HPA (Ref. 6) is in order: HPA neglect g4. While this
does not affect the determination of the peak position [see
Eq. (3.9)], consideration of this term is crucially impor-
tant for the determination of the peak strength.

IV. POLARIZATION POTENTIALS
AND EFFECTIVE MASSES

Essential ingredients of the polarization potential ap-
proach are a number of phenomenological parameters:
the effective masses m, the polarization potentials V, ,
and the multiparticle and renormalization parameters 3,
and a;. This is a formidable set of parameters and noth-
ing much would have been achieved if they were com-
pletely free and independent. In fact, here we do not
determine any new parameters, but want to employ those
determined by Aldrich and Pines for pure He (Ref. 8)
and pure He (Ref. 9) suitably extrapolated for the
present calculation of He- He mixtures.

The polarization potentials can be separated into a sca-
lar and vector part corresponding to coupling to the den-
sity and current density, respectively,

CO

V„(q,~)=f;,(q)+, g;, (q) . (4.1)
2 'J

For He we also distinguish between spin-symmetric po-
tentials f,',g,

' and spin-antisymm. etric potentials fJ,g;i.
The polarization potentials are effective quantities (pseu-
dopotentials), which in principle depend on density, con-
centration, and temperature. The determination of these
potentials is complicated and involves consideration of
various experimental results as, e.g. , Landau parameters
obtained from thermodynamic data.

Unfortunately, even for g44 we cannot take over direct-
ly the potentials determined for pure He, since the He
density n4 changes due to the presence of the He atoms.
In order to compare our calculation with available exper-
imental data we need a model of the variation of the
different potentials with density. At present, we do not
have such a model at our disposal and must rely on suit-
able approximations. It has been noted by Pedersen and
Cowley, that the polarization potentials vary approxi-
mately linearly with total density n,

SVP( ) SVP( )
(4.2)
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An analogous Ansatz is taken for g; (q). The superscript
SVP indicates that the quantity is determined at saturat-
ed vapor pressure of pure He (Ref. 8) or He, respec-
tively. Incidentally, in the measurements of Fkk et al. ,
pressure has been applied such that n =n 4 for different
concentrations X3, i.e., in this case f~(q)=f44 (q) ac-
cording to Eq. (4.2). It is assumed implicitly in Eq. (4.2)
that f33 f34 f44 However, this is not consistent with
the results of Bardeen, Baym, and Pines' for dilute mix-
tures. They show that for q ~0, f33 ( I + 2a )f44,f34 ( I+a)f44, and f33f44 f34 a f—

44, where
a =0.28 is the relative increase in effective volume result-
ing from the replacement of a He atom by a He atom.
We use these relations between the potentials f; for all q..

For pure He and He the effective mass is related to
the bare mass I; and to the vector polarization potential
via m (q) =m;+n;g;;(q). The term n3g33(q) is, however,
very small in dilute mixtures of He in He. More im-
portant is the correction to the He mass resulting from
"dressing up with a He cloud, "

m 3 =m3+n3g33(q)+n4a34(q)

and analogously

m „* =m4+ n4g44(q)+ n 3a43(q) .

(4.3a)

(4.3b)

For dilute mixtures of He in He the last term in Eq.
(4.3b) may be safely neglected. Calculation of a34 is
dificult, and we will use here the effective mass as deter-
mined by thermodynamic measurements' with a concen-
tration dependence as given in Ref. 1 ~

The parameters a3 and A3 in pure He turn out to be
quantitatively similar to o.4 and A4 in pure He. ' For
this reason we will set them equal in this calculation and
do not consider any density or concentration dependence.
Numerical values are taken from Refs. 8 and 9.

V. RESULTS AND COMPARISON
WITH EXPERIMENTAL DATA

Fkk et al. recently measured dynamic structure factors
of He- He mixtures at temperatures between 0.07 and
0.9 K for He concentrations of 1 and S%%uo and for
momentum transfers between 9 and 17 nm ' (Fig. 1).
We shall call the lower energy peak of the structure fac-
tor P-1 and the higher energy peak P-2. In previous pub-
lications (e.g. , Ref. 7) P lhas been calle-d particle-hole
peak and P™2phonon-roton peak; we do not, however,
follow this convention since —as shown below —S33 S44,
and S34 contribute significantly to both peaks. For the
present comparison of the calculations with the data it is
enough to consider three important characteristics of
each peak: strength (po), peak position (coo=p&/po), and

peak width [I =2+(p2/po —IM&/po)]. These characteris-
tics are calculated from the moments
p„= Jdcoco"S(q, co), where the integral extends over P1-
or P-2, respectively. Above about q =15 nm ' the two
peaks overlap and separate moments cannot be defined.
This kinematic region will be discussed at the end of this
section.

In Fig. 2 we compare the calculated with the measured
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peak positions for a S%%uo mixture at 0.07 K with density
n =21.97 nm . The calculated position of P-2 is found
to be somewhat above the data. Therefore, the present
calculation predicts a shift of P-2 from its position for
pure He at the same density which is too big. The calcu-
lated position of the P-1 is slightly below the data for q
smaller than 13 nm '. The present calculation has been
done with a constant (i.e., q independent) He effective
mass as described in the previous section. Agreement be-
tween data and calculation could be improved by choos-
ing a q-dependent effective mass m 3 as has been used,
e.g. , in Ref. 16.

HPA obtained significantly smaller shifts of P-2 in
better agreement with experiment. Therefore, this prob-
lem must be addressed in more detail. As was pointed out
in Sec. III one obtains the position of P-2 from ReD =0 if
Imy33'=0. Therefore, for n =n4 (as has been assured in
the experiments) a peak at the same position as
for pure He at SVP would be obtained if V33+33'—( V33V44 V34)+33+44 0. The second term in this ex-
pression (-a as shown in the previous section) is small
compared to the first term. The peakshift is therefore
essentially determined by V33+33 This term is rather big
in the maxon region and drops to zero in the roton re-
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FIG. 6. Contribution of o.33S33 2o34S34 044S44 and o33S33
to the zeroth moment of P-1. Convention of the plotting sym-
bols as in Fig. 5. (x3 =5%, T =0.07 K, n =21.97 nm '.)

gion, since V33 vanishes there. HPA obtained smaller
shifts in the maxon region since they inconsistently re-
placed V33 by Vo as has been discussed in Sec. III. On
the other hand, it is experimentally without doubt that
the peakshift is small. It is the real part of g33 of the
HPA formulation we employ here which most probably
needs revision, since contributions corresponding to vir-
tual multiparticle excitations have only been included in
the static limit. This issue will be addressed in a forth-
coming publication.

In Fig. 3 we compare the calculated strength po of both
peaks with the experimental data. The q dependence of
po is reproduced quite satisfactorily. As observed experi-
mentally po of P-1 decreases with increasing q. In a
quasifree Fermi gas model the particle-hole strength
would be constant above 2k+. In the present calculation
strength from P-1 is shifted to P-2 peak as will be dis-
cussed in more detail below.

The measured and calculated widths of P-1 are com-
pared in Fig. 4. An experimental resolution of 1.2 K is
quadratically added to the calculated width. The data in-
dicate that the width increases with increasing q. This q

dependence is confirmed by the calculation.
In Fig. 5 we show for q =11 nm ' the structure factor

and its four contributions 033S3 2034S34 044S44 and
0 33S33 The very large and negative contribution of S34 to
P-1 is surprising. Part of the strength removed by S34
from P-1 appears as a positive contribution to P-2. More-
over, the contributions of S44 and S33 to P-1 are quite siz-
able. These facts clearly indicate that P-1 of the structure
factor of a He- He mixture cannot be explained by
particle-hole excitations alone. Exchange of virtual pho-
nons plays a very important role. Conversely, virtual
particle-hole excitations provide significant strength in
P-2. The calculated structure factor is folded with a
Gaussian to account for experimental resolution. The
width of the Gaussian is 1.2 K, i.e., the width of P-2
shown in Fig. 5 is purely resolution. However, the
strength of this peak is determined by the present calcula-
tion without any adjustments. Obviously, the qualitative
agreement with the measured spectrum in Fig. 1 is satis-
factory. We have made no attempt to "fine tune" parame-
ters for this calculation. To force quantitative agreement
with the data would not be useful at this point.
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FIG. 7. Contribution of o.33S33 2o34S34 and o44S44 to the
zeroth moment of P-2. Convention of the plotting symbols as in

Fig. 5. (x3=5%, T=0.07 K, n =21.97nm .)
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An overview on the separate contributions of o.33S33,
2o 34S34 044S44, and o 33S33 to P-1 and P-2 is presented in
Figs. 6 and 7. Here we have plotted the zeroth moment
of each contribution separately. These figures indicate
that the discussion above for q =11 nm ' applies for all
q.

In Fig. 8 results of the calculation for q =17 nm ' are
presented. Here the complicated interference of
particle-hole and phonon-roton dynamics is even more
obvious. The figure clearly demonstrates that it is not
sensible to separate off a particle-hole peak from the data
by suitably fitting the measured peak by two overlapping
Gaussians as has been attempted in Ref. 16. Again, the
calculated peak position is somewhat too high for quanti-
tative agreement with the data. The data show a single
peak with a less-pronounced shoulder than the calcula-
tion on the low energy side. '

A more refined model for the polarization potentials,
effective masses, and multiparticle parameters than em-
ployed in this paper would be certainly desirable. This
could improve quantitative agreement of calculation and
data. Furthermore, the treatment of multiparticle excita-
tions needs improvement: The multiphonon continuum
which is apparent in the data above I' 2(see F-ig. 1) has
not been addressed in the present calculation. However,
much more important for the energy regime considered
in this paper is the consideration of virtual multiparticle
excitations in the real part of g33 and y44 beyond the stat-
ic limit. These contributions may be essential to achieve
better quantitative agreement between data and calcula-
tion. Moreover, sum rules can only sensibly be calculated
after multiparticle contributions have been included. In
the present calculation the f-sum rule, for example, is
badly violated in the maxon region.

In summary, an attempt has been made to describe the
density-density response of He- He mixtures at low tem-
peratures within the polarization potential approach.
The calculation achieves reasonable qualitative agree-
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FIG. 8. Calculated structure factor for q =17 nm '. Con-
vention of the plotting symbols as in Fig. 5. (x3=5%, T=0.07
K, n =21 ~ 97 nm .)

ment with data recently measured by FAk et al. More
importantly, it is shown that both peaks of the response
function are significantly influenced by particle-hole and
phonon-roton excitations alike, and that the notion that
the lower energy peak of the response function essentially
stems from quasifree particle-hole excitations is too
naive.
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