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We report measurements made on hybrid arrays consisting of superconducting wires along one direc-
tion of a square geometry and Josephson junctions along the perpendicular direction. The difFerential

resistance Rd across the array as a function of normalized applied Aux per plaquette f=4&/40 exhibits

two distinct types of behavior. When the ratio P= Ls—/Lz of the geometric inductance of an array pla-

quette to the Josephson-junction inductance is much less than unity, we observe oscillations in Rd
characteristic of a one-dimensional (1D) N-junction interferometer. However, as P approaches 1, the
simultaneous suppression of interferometer oscillations and emergence of local minima in Rd at com-

mensurate fields f =p /q (where p and q are integers) signal a crossover to behavior typical of 2D super-

conducting arrays. To model the experimental system, we have performed simulations of 2D arrays of
Josephson junctions made anisotropic by incorporating difFerent coupling in the two perpendicular
directions (i.e., anisotropic XP model). In the limit of large anisotropy we find 1D interferometer
behavior; as the anisotropy is reduced, we see a crossover to the 2D behavior familiar in isotropic arrays.

I. INTRQDUCTIQN

Arrays of superconducting junctions and wires provide
excellent experimental models for investigating many
general physical concepts including frustration, commen-
surability, localization, and phase transitions in two di-
mensions. They have also generated intense interest in
their possible application as practical devices such as
high-frequency detectors and sources, Aux-fIow transis-
tors, and interferometric magnetic-fIux detectors. In this
paper, we describe a set of experimental results which
provides new insights in two areas of current interest.
First, there have been a number of studies undertaken to
investigate the e6'ects of anisotropy both theoretically'
and experimentally in various types of superconducting
arrays. These investigations of anisotropy in two dimen-
sions complement the extensive interest in anisotropic
layered materials following the discovery of high- T,
copper oxides. Second, there has been extensive work
demonstrating the efI'ects of self- and mutual inductances
of the individual cells of superconducting arrays. '
These results are especially important with respect to un-
derstanding the dynamic behavior of arrays.

In order to study systems in the limit of extreme an-
isotropy, we have fabricated "hybrid" arrays with super-
conducting wires along one direction of a square
geometry and Josephson weak links along the perpendic-
ular direction [Fig. 1(a)]. Our measurements indicate
that these devices exhibit either one-dimensional (1D) or
two-dimensional (2D) behavior depending on the magni-
tude of the inductances of the superconducting wires
compared to the Josephson inductances of the weak
links. Since the latter are strongly temperature depen-
dent while the former are not, the hybrid geometry
displays a clear crossover in the dimensional behavior of
the system as its temperature is varied.

The essential physics of superconducting arrays in a
magnetic field lies in the single valuedness of the complex
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FIG. 1. (a) Schematic diagram of a 4 by 3 plaquette (5 wire

by 4 junction) hybrid array. The junctions are represented by
crosses and the wires by solid line. (b) Geometry of the niobium
Alm after patterning. The niobium is deposited on a copper sub-
strate (not shown) to form an array isomorphic to (a) ~ The
four-probe measurement is made as indicated.

order parameter. This requires the total winding of the
phase of the order parameter around any closed loop to
be an integral multiple of 2~, with contributions coming
from applied and induced fields and currents. Loops with
phase windings of 2vrn (for n an integer) are said to con-
tain n magnetic-Aux quanta, and the field-dependent ar-
ray behavior is often conveniently described in terms of a
superlattice of vortices each containing a single quantum
of fIux. In particular, the collective vortex behavior is the
result of competing interactions due to the mutual repul-
sion between vortices and their attraction to potential
minima in the geometry of the array. At fractional
fillings p/q (where p and q are integers), these interac-
tions can be more favorably resolved than at nearby in-
commensurate fillings, giving rise to local extrema in the
values of many properties of the arrays (e.g. , critical
current and superconducting —normal transition tempera-
ture). These extrema are the signatures of commensurate
states for which the lattice of vortices is 1ocked to the ar-
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ray geometry in a stable configuration, and they are
characteristic of 2D systems. In particular, it is generally
believed that the commensurate configurations of a
square geometry can be described' by the repetition of a
pattern of p Xq vortices arranged on each q Xq supercell
(or at least small q).

1D ladder geometries are not expected to show such
commensurate structure at fractional fillings. Simula-
tions of 1D ladders for which the "rungs" are continuous
wires" exhibit commensurate behavior only at integral
fillings of the arrays (i.e., fields for which every plaquette
has the same number of vortices) and never at fractional
fillings. On the other hand, a system of N weak links in
parallel (i.e., a ladder with weak links on the rungs) ex-
hibits the same behavior as an optical interferometer with
N slits as far as its "transmission" (i.e., current-carrying)
properties are concerned. The structure found in the
dependence of the 1D array properties on the applied
field is quite distinct from the 2D commensurate states
referred to above.

Our results indicate that the presence or absence of
commensurate structure in hybrid arrays is closely tied to
where phase differences are present in the system. When
the phase differences in our hybrid arrays occur predom-
inantly across the weak links, the phase topology of the
system is equivalent to that of independent X-junction in-
terferometers in series and the behavior of the system is
consistent with this 1D geometry. However, at low tem-
peratures, where the loop currents can be much larger,
phase gradients along the wires become considerable as
well, and the properties of the system then reAect the 2D
nature of the phase gradients. To support our experi-
mental results and interpretation, we have simulated the
hybrid arrays using an anisotropic version of the XF
model by modeling the phase gradients along the wires
with localized phase drops across weak links. The simu-
lation results exhibit behavior very similar to the experi-
mental data, namely the existence of a crossover between
1D and 2D behavior as phase differences become compa-
rable in the two directions.

We should also mention that the very sensitive depen-
dence of interferometer properties on an applied magnet-
ic field suggests the potential application of our devices as
multijunction superconducting quantum interference de-
vices. For the usual 1D interferometer, the enhancement
of field sensitivity gained by increasing the number of
junctions used in parallel is necessarily accompanied by a
proportionally decreased resistance and hence a de-
creased signal level. However, our hybrid geometry (in
its 1D limit) allows the same increase in sensitivity while
maintaining the signal level due to its equivalence to
many identical interferometers in series. Thermally in-
duced Aux noise in this system will be dictated by a single
loop area, and the presence of many loops should provide
substantial averaging of this noise over the entire area.

In the next section, we review the theoretical descrip-
tion of superconducting loops in a magnetic field. Then
experimental details and results are presented in Secs. III
and IV, respectively. Section V contains the numerical
simulations, and in Sec. VI we discuss our results. Our
conclusions are summarized in Sec. VII.

II. THEORETICAL BACKGROUND

f poX J dl+ f A dl =2~n,0 (2)

where k is the bulk penetration depth of the supercon-
ductor and po is the magnetic permeability of free space,
and the fiux quantum 40=%'/2e =2.07X10 ' Wb. This
constraint, known as Auxoid quantization, is central in
governing the behavior of multiply connected supercon-
ductors in a magnetic field. We can generalize this condi-
tion by including the possibility of phase differences Acp

at weak links in the loop:

C'o
fpoAJdl, +4+ -g b,y =n@o,

2%
(3)

where the sum is over the weak links in the loop and we
have made use of the fact that f A dl = f8 dS is just
the Aux N through the loop.

We can simplify Eq. (3) further if we assume an isolat-
ed superconducting wire loop of cross section 3 and cir-
cumference l along which A, is constant and around which
a current I is Bowing. We also assume an arbitrary num-
ber of identical weak links with critical current i, for
which the current-phase (Josephson) relation is
I =i, sin(b, y). Further, noting that the net fiux 4 is the
sum of the applied Aux 4,„„and the Aux N;„d induced by
the circulating current, we obtain

n 40 4, =poA—, J/+ @;„d+ g sin
C'o . , I
2& l~

LkI +L I+Q—LJI, (4)

where the sum is over all weak links and in the final form
we make the linear approximation sin x =-x to em-
phasize the similar role played by each of these induc-
tances. Equation (4) refiects that the phase gradient in-

duced by the difference of the applied Aux N, from an
integral number of Aux quanta neo must be made up by
the three inductive terms on the right-hand side:
Lk —= (poA, )(l/A) is the kinetic inductance of the loop,
Lg is the geometric self-inductance of the loop, and

L& ——No/(2vri, ) is the Josephson inductance of the weak
links.

We can examine two specific applications of Eq. (4).
First, consider the case of no weak links (Lf =0). The
kinetic inductance Lk ~ A. diverges near T, of the wires,
in which case the difference neo —N, is balanced by
LkI with only a very small current I and therefore practi-

Because the superconducting order parameter ~6~e'~
must be single valued, its phase y is required to wind by
an integral multiple of 2m along any closed loop of super-
conducting material:

)Vq dt=2~n, (1)

where n is an integer. If we rewrite Vy in terms of the
current density J and magnetic vector potential A along
the loop, Eq. (1) leads to
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cally no induced Aux @;„d=L~I. However, in general the
geometric inductance per unit length L /I =pain(s/r),
where s is the radius of the loop formed by the wire of ra-
dius r, and so L /l will be of order po. Since
Lk/I =poA, /2 =pa(A/r) and A, ((r for pm-scale sam-
ples at temperatures not near T„we will always have
L »Lk except very near T, .

When weak links are present, we must consider the ra-
tio 13=Lg /L—z

=2irLsi, /C&o. For sufficiently small

i, (P((1), the Josephson term in Eq. (4) dominates, and
we can neglect the induced flux. However, as i, ap-
proaches 4o/2m. Lg (i.e., as J33~1), the phase winding due
to the induced Aux L I is comparable to the phase drops
across the junctions and can no longer be ignored. Note
that P=2~ when the maximum induced flux L i, is equal
to 4O.

A collection of loops in an array exhibits much more
complicated behavior due to effects such as frustration
arising from shared links between loops and mutual in-
ductances between loops. Nevertheless, we find that the
various inductances for a single loop in Eq. (4) still play
similar roles in this more complex system. For the
reasons described earlier, the kinetic inductance I k will
still be negligible for pm-scale loops, and so the relation-
ship between L and LJ will be central in determining the
behavior of the array.

III. EXPERIMENTAL DETAILS
0

Our experimental samples consist of a 2500 A thick Cu
film beneath 2500 A of Nb patterned to form supercon-
ducting wires in one direction and superconducting-
normal-metal —superconducting (SNS) Josephson junc-
tions in the perpendicular direction [see Fig. 1(b)j. After
depositing the underlying normal-metal layer, the wafer
is repatterned to define the array geometry. The Cu sur-
face is Ar ion etched immediately prior to dc magnetron
sputtering of Nb followed by a final liftoff. The lattice
spacing for the square geometry is 10 pm, the junction
width is 2 pm, and the gap between the superconducting
electrodes which form the junctions is 2.2 pm. On each
wafer we simultaneously fabricate square arrays consist-
ing of 10X10, 20X20, 40X40, 80X80, and 400X400
plaquettes, as well as single Josephson junctions. Each
plaquette of the hybrid arrays is formed by two junctions
along with the superconducting wires which connect
them.

Measurements were made using standard four-probe
techniques. Figure 1(b) shows our usual lead
configuration, in which the current is injected on one end
of the first wire and extracted from the opposite end of
the last wire. To measure the difFerential resistance
Rd —=d V/dI, we used a PAR 5302 lock-in amplifier
operating at 28.86 Hz with rms current ranging from 1 to
50 pA; using a 1:100coupling transformer, typical sensi-
tivities were about 200 pV. To suppress digital noise
from the lock-in and from the computer controlling the
data acquisition process, we used room temperature LC
low-pass (Erie) filters on all leads to the samples.

The arrays were cooled to 350 mK in a He cryostat

T
i, =Io 1

Bcs
exp[ —d /gz( T)],

where d is the separation between the superconducting
electrodes, TBcs is the bulk transition temperature,
Io is the zero-temperature critical current and
=QA'U&l& /6m kz T is the dirty-limit normal-metal
coherence length (l&-200 A and U&

—1.6X10 m/s are
the mean free path and Fermi velocity, respectively). The
data for I,(T) of the arrays in zero field fit this tempera-
ture dependence well, with g&( T = 1 K)=2400 A.

IV. EXPERIMENTAL RESULTS

Figure 2 shows the zero-field dynamic resistance Rd as
a function of dc current Id, for a 20 X 20 plaquette hybrid
array for temperatures between 0.8 and 1.4 K at 0.1 K in-
tervals. We take the array critical current I, to be that
current corresponding to the peaks in Rd as is usual for
single junctions. ' Extracting the single junction critical
current i, using i, =I, /21 (for an array width of 21 junc-
tions), we find i, varies from 1.7 pA at 1.6 K to 21 pA at
0.8 K.' For measurements made in the resistive regime

I
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I
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FICx. 2. Measured dynamic resistance Rd as a function of dc
current Id, for a 20 by 20 plaquette hybrid array at tempera-
tures ranging from 0.8 to 1.4 K in 0.1 K intervals in zero mag-
netic field.

enclosed within a double p-metal shield which reduced
the stray fields to less than 50 mG. The temperature was
controllable to above the Nb transition temperature and
stable to +3 mK below 2 K. Perpendicular fields were
applied to the sample using a solenoid surrounding the
vacuum can of the cryostat, and dc currents Id, were su-

perimposed on the ac bias allowing us to measure
Rd (H, Id, ) at various temperatures.

The transition temperature of the niobium was 8.3 K.
In zero magnetic field, the asymptotic resistance of the
square arrays for Id, »I, measured with the same lead
configuration as in Fig. 1(b) was approximately 4 mA at 2
K. Single SNS junctions had negligible capacitance, very
small resistance (a few mQ), and were nonhysteretic.
Their critical current i, was a strong function of tempera-
ture T. For overdamped SNS junctions, de Gennes' de-
rived that
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(in which case vortices are fiowing across the array), we
can assume uniform field penetration and current fiow (at
least in a time-averaged sense).

Figure 3 shows a plot of Rd( f) (where f =@/@o is the
normalized applied fiux per plaquette) for three different
array sizes for P=0.08 (corresponding to a temperature
of 1.6 K). The observed structure is essentially that of an
N-junction interferometer (note that along a given
column of the array, N junctions form N-1 plaquettes), in
which the total current crossing the device is

Ã —1

I (f, yo) = g i, sin(2irn f +yo),
n=0

where yo is the (arbitrary) phase difference across the
lower-most junction and i, is the single-junction critical
current, and in which the field is assumed to be uniform
(i.e., the geometric inductances are equal to zero). Max-
imizing the current at any given field yields the field-
dependent critical current
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FIG. 4. Computed I,(f) (dotted) and R„(f) (solid) plots for
an 11-junction interferometer. The Rd(f) curve was obtained

using the Ambegaokar-Halperin expression for V(I/I„I, /T)
for a single junction (see text for details).

sin(¹rf )I, =i,
sin(~f )

(6)
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FIG. 3. Measured Rd(f) at 1.6 K (where P=0.08) for a
10X 10, 20X20, and 40X40 plaquette hybrid array. The maxi-
ma in R„occur at f= n /11, n /21, and n /41 for the three ar-
rays, with n an integer, as expected for a 11, 21, or 41 junction
interferometer.

This dependence is illustrated for N =11 by the dotted
curve in Fig. 4.

Consider the field-dependent resistance R (f) of an
ideal interferometer at zero temperature measured with a
bias current of small amplitude I„;„&i,. The oscillations
of I,(f) above and below Ib;„ lead to pulselike sharp
transitions in R (f) between zero resistance and the
normal-state resistance R&. As can readily be seen from
the plot of I,(f) in Fig. 4 (dotted line), the maximum
value of Ib;„ that will still modulate R (f ) for every local
maximum of I,(f) is Ib;„=i, At fin.ite temperatures, the
sudden jump from zero resistance to R~ at I =I, is re-
placed by a more gradual transition (as dictated by the
Ambegaokar-Halperin theory for a single overdamped
junction at finite temperature' ) and so the pulselike
jumps in R (f) become more rounded. This is the basic
explanation for the behavior of our data in Fig. 3.

We can use the above explanation to calculate the ex-
pected behavior of Rd(f) for an 11-junction interferome-
ter, as shown in the solid curve in Fig. 4. Using I,(f)
from Eq. (6), the field-dependent d V/dI was derived from
the Ambegaokar-Halperin form for V(I/I, ;I, /T). We
have taken I/I, o=0.045 [where I,o=I,(f =0)] to ap-
proximate our experimental ac bias current Ib;„=i,/2.
The ratio I,o/T was obtained from fits' of the zero-field
experimental Rd(I) curves at 1.6 K to the Ambegaokar-
Halperin theory. Although this theory was intended for
a single junction we find that it works reasonably well in

fitting the array Rd(I) curves for f =0. For simplicity
we maintain this form as an approximation for R„(I) at
all fields. Using this procedure our calculated behavior
for Rd(f) (solid curve in Fig. 4) provides a good descrip-
tion of the experimental data for the 10 plaquette by 10
plaquette array at 1.6 K presented in Fig. 3 (bottom
curve), with an accurate rendering of the oscillation posi-
tions and amplitudes.

The 20X20 and 40X40 arrays (Fig. 3) show the same

type of oscillation of Rd (f), but the oscillation amplitude
relative to the overall background modulation decreases
with array size. For data on the 400X400 arrays (not
shown), there is only a smooth background variation in

Rd between integral values of f; the interferometer oscil-
lations are too weak to resolve. From the excellent agree-
ment between the Rd(f) measurements on the hybrid ar-

rays (Fig. 3) and the calculated Rd(f) for a 1D inter-
ferometer (Fig. 4), we conclude that when P((l, each
column of the hybrid array is decoupled from neighbor-
ing columns and behaves like an X-junction interferome-
ter. The overall behavior of the array is just that of
(N —1) independent identical interferometers in series.

Figure 5 shows several measured R„(f) curves for the
20 X 20 array as the temperature decreases (and thus as i,
and P increase). The 1.6 K data are the topmost plot and
subsequent curves were obtained by lowering the temper-
ature in 0.1 K intervals. [As a basis for comparing the
Rd(f) curves at different temperatures, we kept the max-

imum of Rd at each temperature at about 2 mQ using a
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I these ideas at greater length in Sec. VI, but first we
present the results of numerical studies which lend fur-
ther support to the hypothesis just outlined.

V. SIMULATIONS

l i & i i I i i I i I i i « I & & s i I

0.00 0.25 0.50 0.75 1.00
Normalized Flux @l@p

FIG. 5. Measured Rd(f) curves for a 20X20 plaquette hy-
brid array at different temperatures (at 0.1 K intervals). At 1.6
K (top curve, corresponding to P=0.08) the features are those
of an 11-junction interferometer, while at 0.8 K (bottom curve,
corresponding to P=0.96), the structure shows only the signa-
tures of low-order commensurate states at f= 1/2, 1/3, 2/3.

variable dc offset current. ] As the temperature is
lowered, there is a qualitative change in the structure of
the Rd(f ) curve. The interferometer oscillations gradual-
ly decrease in amplitude, while there is a simultaneous
development of broad, deep minima at the most strongly
commensurate fields (f =1/2, 1/3, and 2/3). For T~ 1

K (P ~ 0.6), the interferometer behavior has almost en-
tirely disappeared, leaving only the commensurate field
structure. We have also observed the same behavior on
the 10X 10 array with somewhat less pronounced minima
at f =1/3 and f =2/3.

We have already described how for P && 1 the hybrid
arrays are well modeled by a 10 interferometer. Howev-
er, the low-temperature curves in Fig. 5 (where P is of or-
der 1) are typical of data found for a standard 2D square
Josephson junction array. ' We are now faced with an
obvious question: what drives the crossover from the
small P (high temperature) behavior characteristic of 1D
systems to the P= 1 (lower temperature) results typical of
20 systems?

At sufficiently high temperatures, the junctions' small
critical currents yield Lg =C p/2~i, &&Lg It follows
from Eq. (4) that the phase gradients induced along the
wires (-LsI) are then negligible compared to those
across the junctions ( -L&I). In this limit, the only phase
drops present around each plaquette will be across the
junctions themselves, and the hybrid array will be topo-
logically equivalent to ideal interferometers in series.

At lower temperatures, the marked increase in i, leads
to LJ =L, in which case the phase differences across the
junctions and wires are comparable. This situation in
which phase drops can occur along all four sides of each
plaquette (two with junctions, two without) is topologi-
cally equivalent to a (possibly anisotropic) 2D square
Josephson-junction array. For this reason, the observed
experimental crossover from the high-temperature 10
behavior to the low-temperature 2D behavior can be at-
tributed to the development of significant phase gradients
along the wires at low temperatures. We will discuss

where

d
2e dt

is the voltage across the junction between nodes a and b,
y, (yb ) is the phase of node a (b), Rz is the normal-state
junction resistance, and A is the vector potential. We
use the London gauge A =Hxy so that the integral

f A dl is nonzero only for paths along the y direction,
in which case it equals 2vr&x, (yb —y, )/@c, where yb(y, )

is the y coordinate of node b (a) and x, is the x coordi-
nate of node a. Current conservation at node a yields

gi,b=O
b

(9)

The previous section concluded with a description of
the hybrid arrays which suggests that they may be fruit-
fully modeled as anisotropic square Josephson-junction
arrays (i.e., anisotropic XY' systems), using different
Josephson coupling strengths in the two perpendicular
directions. Since phase drops arise from current fiow
when inductances are present in the system [see Eq. (4)],
replacing the wires by junctions with Josephson induc-
tance LJ is simply an approximation by which we can
substitute a junction inductance LJ~ =4&/2vri, ~ for the
wire's geometric inductance L . Let us define the junc-
tion direction as x and the direction parallel to the super-
conducting wires as y. In our XP model, the junction
critical currents in the x and y directions are
i« =Np/27TLg x and i, y =4p/2~LJ y The high-
temperature interferometer limit of the hybrid array cor-
responds to the extremely anisotropic limit in which the
anisotropy ratio a=LJ /Lz~=i, /i, „diverges, and the
crossover to the 20 arrays is expected as a approaches
unity (in this model a corresponds to 1/P). We should
stress that for our experimental system it is the anisotropy
of the inductances in the two perpendicular directions,
not the critical currents, which dictates the anisotropy in
the phase drops. The critical current of the wires is still
much larger than the junction i, 's even at the lowest tem-
peratures studied and plays no significant role in the
behavior of the system.

The simulated arrays consist of XXM superconduct-
ing nodes. Current is injected via superconducting bus
bars connected to the edge nodes by junctions with criti-
cal current i, . ' These simulations were made using the
overdamped resistively shunted junction model to de-
scribe the junctions. As in earlier simulations' we solve
the coupled differential equations obtained from current
conservation at each node. The current i,b from node a
to a neighboring node b is

2~ b ~ahi,b =i, sin yb
—y, — A dl +

C)p a R~
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for all nodes except the bus bars, where the sum of the
currents is equal to the externally applied current.

Equations (7)—(9) give (N XM)+ I coupled first-order
differential equations (the phase of the left bus bar can be
arbitrarily chosen to be 0) for the phases as a function of
time. We use free boundary conditions. Starting with a
given phase configuration we integrate the phases for-
ward in time using a fourth-order Runge-Kutta method
with adaptive step size (the time step size is adjusted at
each integration step to be the largest that will maintain a
truncation error estimate on the phases of less than 10
radians). For a given dc current and magnetic field, we
let the phases relax for 500 time constants
&=A/2ei, R =LJ „/2R before averaging the voltage for
200 time constants. To find I,(f) we define I, to be the
current for which the normalized voltage per junction
V/i, R& first exceeds 0.02, and compute I, using the van
Wijngaarden-Dekker-Brent zero-crossing method at
each field.

Figure 6 shows the computed I, (f) for three different
anisotropy ratios a for an 11 node by 11 node array (10
by 10 plaquette). For an anisotropy of a =20, I, displays
the structure expected for an 11-junction interferometer,
namely that of Eq. (6) with N =11. As the anisotropy is
decreased to 0.= 5 the critical current is generally
enhanced compared to the more anisotropic case, and the
amplitude of the oscillations of I,(f) decreases. When
the system is isotropic (a= 1), I, exhibits a strong max-
imum at f = 1/2 and weaker maxima at f = 1/3 and 2/3,
as is expected for a 2D array, while the interferometer
structure has completely disappeared (in Fig. 6 the a = 1

and a= 5 curves have been vertically offset by 0.1Ni, ).
An examination of the computed phase drops along

the junctions in the two directions in the presence of a
noninteger field and in the absence of a transport current
shows a marked change as the anisotropy is increased.
For the isotropic system the magnitude of the phase
drops in the x and y directions is the same on average.
As the anisotropy ratio is increased the phase drops be-
come smaller along the y direction and consequently
larger along the x direction [since the directed sum of the

I I ~ I
1

I I I ~
i

I I I I
i

I 1

phases around any plaquette must be equal to 2m f modu-
lo (2m)]. For an anisotropy as large as 20, the phase
drops are essentially all in the x direction. For example,
when f =1/2 the magnitude of the phase change along y
is at most 0.03 radians per junction rather than ~/4 radi-
ans found for the isotropic case.

VI. DISCUSSION

Let us first consider the case of no screening so that the
magnetic field is uniform (this corresponds to P=0). For
a X-junction interferometer with identical junctions, the
current through the device is given by Eq. (5). Again, I,
is found by maximizing I with respect to yo. Iff is com-
mensurate (f =p/q with p and q integers), the phase pat-
tern repeats every q cells. It is easily shown that the net
supercurrent through the q junctions of such a supercell
vanishes:

i, g sin(yo+2mnp/q ) =0 .
n=1

(10)

Thus, for commensurate fields, the transport current
through the interferometer is essentially an edge effect
due to excess cells at one edge which do not form a com-
plete supercell. In general (for pWq), I,(f =p/q)/i, &q
[and I, (f ) /i, ~ N], and commensurate fields are not
necessarily accompanied by maxima in I, . Furthermore,
in the thermodynamic limit of large N, only integer f
give nonzero I, /N.

Let us look more closely at the case of f =1/2. If the
number of junctions X is even, then I, =0 for any choice
of yo. For odd N, yo=m. /2 results in all even junctions
having a phase drop y =n/2 and all odd junctions having
y=3m/2; the resulting I, is just the critical current i, of
the single uncompensated junction which is not part of a
two-junction supercell.

We now turn to the case where each cell has a self-
inductance Lg. P is no longer zero and there can now be
current induced phase gradients along the wires propor-
tional to LgI. For f =1/2 the induced fiux per cell will

alternate between A4 and —h4, reAecting the vortex
pattern, and I becomes [adapting Eq. (5) to account for
nonuniform fiux]:

1.0 ~,'-;

0.8:—:-.—

!

V

~ t

j 2~hNI=i,sin(yo)+i, g sin yo+ g m+( —1)J
n=1 j=1 0

.4..
Q 4-- --'=-~v- ---- ------ - — -- — — ---- --' — —-------------

~7!

:: !~
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Flax. 6. Simulated I,{f) curves for an anisotropic array of 11
by 11 Josephson junctions (10 by 10 cells). The three plots cor-
respond to anisotropy ratios a of 20, 5, and 1 (the a=5 and
a = 1 plots are vertically offset by 0.1%i, ).

I is now maximized for even N by choosing
yo=mbA&/@o. The resulting I, scales with N:

mme=X sin (12)

(A similar result can be obtained for odd N. ) This simple
illustration, for which only self-inductances have been
considered, shows how a single row of Josephson junc-
tions can display a 2D-like enhancement of I, at f = 1/2
if there are phase variations along the wires connecting
the junctions. Commensurate states other than f =1/2
can be similarly shown to give rise to I, ~ N.
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Numerical calculations of I,(f) for a ten-junction in-
terferometer, taking self- and mutual inductances into ac-
count, have been performed by Miller et al. Assuming
uniform current injection, they observed that as
P=L~/LJ is increased, in addition to the standard ten-
junction interferometer I, (f ) behavior there also appears
a maximum at f =1/2, replacing the minimum present
in the zero-inductance case (/3=0), as well as possible
maxima at other commensurate f. This observation sup-
ports our simple argument presented above. [Bock
et al. have carried out a more exact calculation includ-
ing mutual inductances for a nine-junction interferometer
with an asymmetric current injection in which the
current is injected on one wire and extracted from the
other wire on the same side of the array. Their data show
no enhancement of I, at commensurate fields as P is in-
creased, but this is related to the asymmetric current in-
jection. ]

To obtain quantitative values for the loop inductance
L, of a single hybrid array cell, we can model it as a
square superconducting washer with a square hole of side
8 pm and wire width 2 pm. Using the results of Jaycox
and Ketchen, we find for our geometry L =1S pH. Us-
ing this value, we find P=L~/Lf increases from /3=0. 08
at 1.6 K (where i, =1.7 pA) to P=0.96 at 0.8 K (where
i, =21 p,A).

We can also calculate the induced phase drop y;„d
around each loop of inductance L, in which a current J is

Rowing:

(13)

Since the current in the wires (in a noninteger field) will
be of order i„we can "tune" the maximum possible
phase drop occurring along the wires of the hybrid arrays
by changing the critical current of the junctions. In fact,
since P=L /LJ, we can see that y;„d=P i/i,
= /3si n(yz)=P[y J+ O(i/i, ) ]. So for i/E , «1 we ha've

y;„d/yJ =P. As /3 approaches 1 (where commensurate
states typical of 2D arrays are clearly seen) phase
differences along the wires and across the junctions are of
the same order, whereas when /3=0 [where interferome-
ter (1D) structure is observed] virtually all the phase
differences occur across the junctions.

In our simulations of 2D anisotropic arrays, we ob-
served a similar crossover from 1D to 2D behavior (i.e.,
from the absence to the presence of commensurate states)
as the anisotropy of the system was reduced. With an an-
isotropy ratio of a = 5 corresponding to P =0.2, we found
that the interferometer structure had substantially de-
cayed, while the maximum in I,(f) at f =1/2 became
more pronounced (see Fig. 6). In Fig. 5, the experimental
data taken at 1.2 K is comparable in the nature of its
structure (interferometer behavior fades as the f =1/2
extremum strengthens), and at this temperature P-0.3.
This very reasonable agreement implies that the replace-
ment of the hybrid array wires by junctions for the pur-

poses of simulating inductively induced phase differences
is a valid approach, at least for our geometry. We should
point out that this procedure provides a means for incor-
porating the array cell self-inductances but does not ac-
count for mutual inductance effects. The sufFiciency of
this method for computing critical currents is plausible
given that Phillips et a/. have shown that the inclusion
of self-inductances alone is adequate for describing static
array properties (such as the cell-cell energy barrier for
fiuxon motion).

VII. CONCLUSIONS

With the goal of studying superconducting arrays in
the limit of extreme anisotropy, we have fabricated de-
vices with a new hybrid square geometry consisting of
weak-link junctions in one direction and superconducting
wires in the perpendicular direction. Measurements of
the dynamic resistance as a function of field displayed
qualitatively different behavior in two different tempera-
ture regimes: the system displays 1D behavior identical
to X-junction interferometers at higher temperatures,
while the characteristic signature of 2D arrays is found at
lower temperatures. We have shown that this crossover
is mainly dictated by the significance of array loop
geometric self-inductances L relative to the Josephson
inductances LJ of the weak links. Both experiments and
numerical simulations have demonstrated this dimen-
sionality crossover when /3=L&/L&=2mL~i, /@0 is ap-
proximately 0.3.

The key to understanding this crossover seems to lie in
the topology of the phase gradients in the system. For
the hybrid arrays, when /3« 1, the only significant phase
changes occur across the junctions. This effectively
decouples each column of junctions from its neighboring
columns, and so the behavior of the system is essentially
one dimensional. As /3 approaches 1, significant phase
gradients are set up along the wires as well, resulting in
2D coupling throughout the array. We have simulated
this behavior numerically using an anisotropic XP model
where phase drops across weak links in one of the two
perpendicular directions were used as an approximation
for the current-induced phase gradients along the wires
of the experimental system. The good agreement be-
tween the experimental and numerical data attests to the
validity of this approach.
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