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Soliton localization in disordered one-dimensional Josephson transmission lanes
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We present a study on the propagation of topological solitons (Auxons) in the strongly nonlinear sys-

tem of a one-dimensional discrete Josephson transmission line with regions of disorder. Using numerical
simulations, the probability of Auxon transmission is calculated stochastically, and in the presence of dis-

order is found to decay exponentially. The localization length is found to increase sharply with decreas-
ing disorder strength, suggesting that Auxon-solitons may become delocalized below a certain threshold
value of disorder. We describe a basic experiment to observe the predicted effects.

The Josephson transmission line (JTL) has proved to be
an ideal nonlinear system in which to study soliton dy-
namics. ' On the other hand, much attention has been
given recently to localization effects in disordered non-
linear systems, primarily the influence of nonlinearity on
the propagation characteristics of nonlinear wave packets
as solitary waves. Localization properties of solitons in
a JTL are of interest since solitons in these systems can
behave as ballistic particles traveling in regions of low
dissipation, and have not been considered before. Con-
ventionally, localization is a concept that generally ap-
plies to wave forms in disordered linear systems, and was
first described by Anderson in the context of the propa-
gation of electronic wave functions in a disordered metal.
The concept was further developed by Mott and Twose,
who showed that in one-dimensional electronic systems
of large but finite length with a random potential only ex-
ponentially localized states occur, independent of the
magnitude of the disorder or the energy of the particle.
Studies of localization effects in linear classical wave sys-
tems have also received much activity, in particular, that
of photon localization. The properties of extended,
single-frequency waves and localized wave packets '

(solitons) in one-dimensional nonlinear systems with dis-
order have been discussed recently in the literature. A
fundamental question in these studies has been whether
nonlinearity in the presence of disorder modifies or weak-
ens Anderson localization. The only experimental study
addressing this question finds that Anderson localization
is preserved, but does not consider the role of soliton ex-
citations. Of the theoretical studies, only two ' deal
directly with the effect of disorder on soliton propagation
and localization. Both find that soliton localization effects
either weaken (the transmission probability is modified
to a power law) or vanish completely in the presence of
strong nonlinearity. Neither of these systems involves
topological soliton excitations, which are not necessarily
expected to behave similarly. In particular, Ref. 8 is
concerned with the localization effects of envelope soli-
tons, which are defined by their motion in the supporting
nonlinear medium. Topological solitons are defined by
the differences in dynamic variables between two stable
states in a system with multiple stable states, and contin-
ue to exist even when their velocity is zero. Hence they

bear a closer analogy to fundamental particles, such as
electrons. This work constitutes the first study that we
are aware of pertaining to the localization of topological
solitons, and the first physically realizable system for soli-
ton localization of any kind.

In this paper, the system we consider is that of a one-
dimensional discrete Josephson transmission line (DJTL).
Both DJTL's and long-junction (continuous) JTL's sup-
port the propagation of quantized magnetic flux vortices,
or fluxons, which behave as topological solitons. "'"
The spatiotemporal behavior of fluxons in a DJTL has
been directly observed experimentally, "and can be accu-
rately modeled' ' by a spatially discretized partial
difference form of the sine-Gordon equation with loss and
bias terms [see Eq. (1)]. The continuum sine-Gordon
equation is a strongly nonlinear equation which admits
topological soliton (2m. kink) solutions. ' Although the
lossless discrete sine-Gordon equation has been shown
numerically to be stable against a traveling one-soliton in-
itial condition, the discreteness effects modify the solu-
tion to include coupling between soliton and linear
modes, which is absent in the continuum limit. ' Using
the discrete sine-Gordon model, we predict numerically
that when sufhcient disorder is introduced into a DJTL
having low dissipation, the probability of fluxon
transmission decays exponentially; i.e., the fluxon-soliton
becomes localized. %'e also compute the general
behavior of the localization length as a function of system
disorder strength and fluxon energy.

The simple DJTL geometry that we employ for our
analysis is shown in Fig. 1. A DJTL consists of a one-
dimensional (1D) array of parallel connected supercon-
ducting quantum interference device (SQUID) loops. We
consider three distinct regions along the transmission
line: first an injector region, on which a fluxon is induced
to propagate with the application of a voltage pulse at
one end and large biasing currents at each junction node;
second, a steady-state region of low dissipation into
which the fluxon travels; third, a disordered region, em-
bedded in the second region. The dynamics of a propaga-
ting fluxon in the DJTL can be represented by the follow-
ing second-order differential-difference equation, which is
simply obtained by applying the resistively shunted junc-
tion (RSJ) model' and KirchhofFs laws (see Fig. 1):
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FIG. 1. Geometry of the discrete Josephson transmission
line.

the operating temperature of the DJTL is well below the
critical temperature of the superconductor (T (0.1Tc).
It is within the steady-state region (R 3 of Fig. 1) that dis-
order is then included in our system by a random varia-
tion of the critical currents of the junctions at each node
j: IC =I&(l+Eg ) in Eq. (1), where g is a Gaussian-j
distributed random number for which (g ) =0 and

(gJ ) —(gJ. ) =1.The strength of the applied disorder is
defined by the parameter c. Since the Auxon attains a ve-
locity v, (Is ) at different times, depending on the value of
Iz, the starting point of R3 varies with I~. Once in the
disordered region, the Auxon can be viewed as traveling
nearly dissipationlessly through a random one-
dimensional "effective" potential of the form

8'(P, ) =Ic(1+Eg, )[ I —cosP, j

@Od p~ 40 dp,

C'o @'o
(pJ i pJ )+ — (p) $J+, ) —Is =0 .—

The independent variable P is the difference between the
phases of the order parameters of the superconducting
layers in the jth junction, while @0 (h /2e =2.07X10
Wb) is the fiux quantum. The first three terms on the
left-hand side of Eq. (1) are three current paths in the
junction: the displacement current, dissipative currents,
and the tunneling supercurrent. The fourth and fifth
terms reAect the inductive coupling between junctions,
and the sixth term is the applied bias current. We refer to
C., 8, and IC as the capacitance, shunt resistance, and

critical current of the jth junction; L is the inductance of
the jth SQUID loop. Unless specified otherwise, our pa-
rameter set for a11 simulations is taken to be L, =L =0.9J
pH, I&—=I& =0.42 mA, and C=CJ=1.1 pF for every

1
node j. Our choice of parameters is motivated by the
geometries of DJTL's used in actual experiments. "

In the injector region (R 1 of Fig. 1), the junctions are
overdamped (R—:R.= 1 0) for operation in the proper
nonhysteretic mode, and in the presence of a Lorentz
force with Iz-Ic the induced Auxon pulse achieves a
constant (steady-state) velocity. After a short propagation
time the Auxon passes into R 2, a region with low dissipa-
tion (R ~ ~ ), where it decelerates until it reaches a new
steady-state velocity v, (I&). In order for the fluxon to
achieve a steady-state velocity v„asmall biasing current
must be applied in R2 (Iz &(Ic). If Iz =0 in R2, the
Auxon eventually comes to rest, since it continually radi-
ates small-amplitude linear waves' while in motion, and
hence has a uniform drag force. In a DJTL these linear
waves are in the form of oscillating loop currents in indi-
vidual SQUID loops (analogous to spin waves). We have
explicitly observed this type of damping in our system.
The quasiparticle tunneling current in each junction is
another source of dissipation, and is assumed negligible if

It is important to note here that the Auxon-soliton is not
a pointlike object, but an extended macroscopic one. A
fiuxon at rest spans a total of LIc /+0 (-5.5 for our case)
junctions of the DJTL; this Auxon width is only slightly
modified (decreased) by relativistic effects in this region,
which are taken to be small since the steady-state velocity
is a fraction of the speed of light in the DJTL. It follows
that disorder in this system occurs on a scale less than the
size of a Auxon. The spatial distribution of disordered
sites is constant, with the junction ("lattice" ) spacing
defining the characteristic length scale, and the disorder
strength ( E ) is variable.

When undergoing steady-state motion in the presence
of disorder, we find that the Auxon has a finite probability
of being nearly elastically reAected by the j' disordered
site for a given random distribution g'. After this initial
reAection, a Auxon-soliton remains trapped in the region

To quantitatively measure localization effects on
Auxon-solitons in our system we calculated the probabili-
ty of transmission stochastically, through Monte Carlo
methods. Specifically, the transmission probability distri-
bution is given by

N
T (E,Iti)= —g t(Eg', Iti)

k=1

for % trials, where the function t (Eg, Iti ) is the probabili-
ty of fiuxon transmission (either 1 or 0) through the jth
junction on the ith trial run. For each random trial, Eq.
(1) is solved for the phase P. over the entire geometry
shown in Fig. 1, beginning with the creation of a Auxon-
soliton at one end, and continuing until an elastic
reAection of the propagating Auxon occurs from the jth
disordered site. Once the Auxon approaches its steady-
state velocity and is near the disordered region, its
motion is continuously tracked by simultaneously moni-
toring the phase P. and the inductor current
IJ =@0(PJ—P~+ &

)/2mLJ. . In particular, we detect the
"collective coordinate" of the Auxon, which we define in
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this discrete system as the maximum of the inductor
current pulse, coincident with the center of the 2~ phase
kink.

Figure 2 shows the distribution of Eq. (3) calculated
over a range of disorder strengths E, at the biasing
current value Iji = 1.3 pA. Equation (1) is solved for each
event r (eg' ,Is .) using fourth-order Runge-Kutta methods
with a time step of 0.01 ps, which for our choice of model
parameters is approximately equal to 1/100 the Joseph-
son plasma period of the system. Disorder (in region 8 3)
begins at junction j =50; this is close to where we es-
timated that fiuxon had achieved a steady-state velocity.
In Fig. 2 the disorder strength E is expressed as a percen-
tage, in parentheses beside each curve. The total number
of events X computed for each distribution T is locatedJ
beside the value E. In general, the tails of the distribu-
tions are exponential, with a very small transient occur-
ring near T =1. The transient becomes more prominent
for increasing E, and may be similar to the one observed
in the transmission coefficient calculated in Ref. 8 for a
nonlinear system in which envelope-soliton localization
occurs. The transient in that case was attributed to the
increasing inAuence of nonlinearity in the system. On the
other hand, the transient we observe may simply be due
to the Auxon-soliton having a "kinetic energy" from the
injector region slightly above the steady-state value.
Referring to Fig. 2, we see that for large values of0 E,

( 15%%uo, top graph), T falls off steeply from 1 and very
l

0

very
sttle transmission for the Auxon-soliton is allowed

beyond the point where the disorder began. As E is de-

creased (bottom graph), T d.eclines more slowly from 1

at large j, and the distance over which the Auxon is
transmitted with unit probability in the disordered region
increases. Vfe observe similar distributions for biasing
currents two orders of magnitude below IB = 1.3 pA.

To gauge quantitatively the rate of fallo8' of T- as a
function of IB and E, we assume a form

—(j —jo)/&(E, I&)
) E, B —e

for the transmission probability distribution, where
A,(c,I~) represents a localization length, and perform a
two-parameter nonlinear fit to each distribution shown in
Fig. 2 for jo and k. The small transients are neglected in
the fits. Figure 3 displays the resulting function A, (e I ).B

e observe that the localization length approaches
infinity asymptotically at small E, and becomes constant
(nonzero) at large E. The asymptotic growth of A, at small
E is sharpest at lower values of IB, and on the log-log
scale of Fig. 3, the curves appear to suggest that a "mo-
bility edge" for fluxon-soliton transmission in this 1D
nonlinear system may occur at a finite value of disorder
strength (E,b) for a given input energy (Ij) ). To quantify
the assumption that at E~E,b the Auxon-soliton be-
comes delocalized and propagates without distortion, we
will require further computation, preferably on a super-
computer. The present simulations took place with an
optimized algorithm on HP 715 workstations; for exam-
ple, the distribution contributing to the largest observed
value of the localization length in Fig. 3 (A, =33 560 junc-
tions at Iji =1.3 pA and a=1%) required over 1 month
of integration time on several machines, yielding only 428
events.

We have noted that the spatial width of the Auxon-
soliton is fixed in our system for all simulations, and is
larger than the spacing of disordered sites (5.5:1 ratio).
The eFect of Auxon width on the transmission properties
of the Auxon through disorder was brieAy investigated.
The Aux quantization condition implies that the Auxon
width becomes larger with decreasing SQUID loop in-
ductance L~. If we decrease L in the DJTL by a factor
of 2 (approximately doubling the width), and change the
capacitance and injector resistance to keep the speed of
the injected Auxon the same (so that only the tluxon
"mass" is increased), we find that Auxon transmission is
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greatly enhanced. Indeed, at v=5% for I~ =1.3 pA, the
Auxon travels with unit probability -34 times longer,
and the subsequent localization length is —12 times
greater. A decrease in the Auxon width by a similar
amount does not allow the Auxon to have a sufhcient
kinetic energy to propagate past the injector region.

While the focus of this paper has been on the theoreti-
cal analysis of Auxon-solitons in a disordered DJTL to
quantify localization effects, we would like to comment
on a possible experimental implementation. One could
fabricate a DJTL with an overdamped, high-bias injector
region and an underdamped, low-bias steady-state region.
Both overdamped" and underdamped' DJTL's have
been fabricated to study Auxon-soliton dynamics. The
disorder in the DJTL is realized by exposing an appropri-
ate length of the steady-state region to a radiation source
(i.e., x rays, y rays, or a particles). There are numerous
experimen'. al groups around the world who are already
routinely performing experiments in the detection of soft
x rays, a particles, neutrinos, and dark matter using su-
perconducting tunnel junctions. ' Control of the ener-
gy' and dosage' of soft x-ray irradiation has been
achieved as has controlled irradiation using the electron
beam in a scanning electron microscope (SEM) with a
liquid-helium-cooled sample stage. Columnation of soft
x rays into localized, movable spots with diameters as
small as 5 pm have also been achieved, ' and electron ir-
radiation via SEM can be focused into a movable 100 A
diameter spot. The breaking of Cooper pairs and sub-
sequent production of quasiparticles in the individual
tunnel-junction electrodes would perturb the critical
currents in these junctions. The effect of quasiparticles
produced in an x-ray-absorption event on the supercon-
ducting energy gap has been considered in some detail in
the literature. Critical current suppression in Joseph-
son junctions in a DJTL due to x-ray absorption has also
been discussed. The effective lifetime of such excitation
events is on the order of microseconds due to phonon

trapping effects. The source activity should be chosen
so that each junction undergoes an absorption event once
every few relaxation periods. One then injects a Auxon
into the injector and detects it at the end of the disor-
dered region, using standard single-ilux-quantum (SFQ)
electronics (dc-SFQ and SFQ-dc converters). The ratio
of detected Auxons to injected Auxons would be a direct
measure of the transmission coefficient. Parameter varia-
tions in typical superconducting electronics foundries is
around 3a. =5—10%, and therefore an appropriate bias
current should be chosen so that measurable Auxon local-
ization occurs at higher disorder strengths. Perturba-
tions due to phonons from substrate absorption events
and dissipation due to tunneling of excited quasiparticles
should also be taken into account. Methods for decou-
pling of junctions from substrate phonons using a base
electrode trapping layer, back etching of the sub-
strate, and Bragg mirrors are discussed in the litera-
ture. In addition, a localized Auxon will not dissipate in
the DJTL and should be removed before the next injec-
tion by pulsing the bias current to a high enough value to
delocalize it.

In summary, we have demonstrated through dynamic
numerical simulation that Auxon-solitons localize in a
disordered 1D discrete Josephson transmission line with
low dissipation. The stochastically calculated transmis-
sion probability distribution as a function of disorder
strength and Auxon energy is exponential; the resulting
localization length asymptotically increases at small, but
finite, disorder strength, suggesting that the Auxon delo-
calizes below a threshold value of this strength. That we
are aware of, this work constitutes the first such study of
the localization properties of topological solitons. The
localization effects of disorder on Auxon-solitons that we
calculate in this 1D system should be observable in a real
experimental implementation; we have given brief
specifications for such an implementation.
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