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We study the equilibrium spin configuration of the two-dimensional (2D) Hubbard model at low

doping, when a long-range magnetic order is still present. We use the spin-density-wave formalism
and identify three diferent low-doping regimes depending on the value of z = 4Uy2D where yzD is
the Pauli susceptibility of holes. When z ( 1, the collinear antiferromagnetic state remains stable
upon low doping. As candidates for the ground state for z ) 1 we first examine the planar spiral
phases with the pitch Q either in one or in both spatial directions. Mean-field calculations favor
the spiral (7r, Q) phase for 1 ( z ( 2, and (Q, Q) phase for z ) 2. Analysis of the bosonic modes
of the spiral state shows that the (Q, Q) state has a negative longitudinal stiffness and is unstable
towards domain-wall formation. For the (ir, Q) state, the longitudinal stiffness is positive, but to
the lowest order in the hole concentration, there is a degeneracy between this state and a whole
set of noncoplanar states. These noncoplanar states are characterized by two order parameters,
one associated with a spiral, and the other with a commensurate antiferromagnetic ordering in
the direction perpendicular to the plane of a spiral. We show that in the next order in the hole
concentration this degeneracy is lifted, favoring noncoplanar states over the spiral. The equilibrium,
noncoplanar configuration is found to be close to the Neel state with a small spiral component whose
amplitude is proportional to the square root of the hole concentration. These findings lead to a new
scenario of spin reorientation upon doping in Hubbard antiferromagnets.

I. INTRODUCTION

Magnetic properties of the Cu02 layers in high-
temperature superconductors have been recently attract-
ing intense interest as magnetism is possibly a major con-
tributor to the mechanism of superconductivity. There
are numerous reasons to believe that the magnetic prop-
erties of weakly doped cuprates are quantitatively cap-
tured by the efFective two-dimensional (2D) theory for
one degree of freedom per CuO2 unit which is provided
by a one-band. Hubbard model

'R= —) t; at a. +U. ) n;gn;l .

Here o. is a spin index, n = a~a, and t, ~ is a hop-
ping integral which acts mainly between nearest (t) and
next-nearest (t') neighbors. We will assume that t' is
negative.

At half-61ling, the ground state of the 2D Hubbard
model exhibits a long-range commensurate Neel order
provided t' is not very large. It has been known for many
years3' that holes introduced into a commensurate anti-
ferromagnet give rise to a long-range dipolar distortion of
the staggered magnetization. In 2D this eKect was stud-
ied in detail by Shraiman and Siggia. They found that
in the simplest scenario, the dipolar distortion leads to
a spiral spin configuration with the momentum (7r, Q) at
any nonzero doping. The incommensurate (vr, Q) phase
was also obtained in the early perturbative studies of
the Hubbard model with small U, and in several other
mean-field and self-consistent calculations.

In this paper, we use the spin-density-wave (SDW) ap-
proach and study the structure of magnetic correlations
in the Hubbard model at small but Gnite doping when
long-range magnetic order is still present. We will show
that, depending on the strength of the interaction be-
tween the holes, three diferent solutions of the Hubbard
model at low doping are possible: (i) a commensurate
Neel phase at small interaction (precise criteria will be
derived below), (ii) phase separation at sufficiently strong
interaction, and (iii) an intermediate homogeneous in-
commensurate phase which, however, divers from the
planar spiral suggested by the mean-field analysis. This
incommensurate phase is noncoplanar in spin space, and
its properties are much closer to the properties of a com-
mensurate (m, m) spin configuration than those of a planar
spiral.

The analysis presented here is related to other works on
incommensurate magnetic phases at Bnite doping. Pre-
vious mean-6eld studies of the Hubbard and t-J mod-
els ' ' have focused on the three configurations with
ordering momenta (n, m), (m, Q), and (Q, Q), and have
shown that in a certain range of parameters, any of these
configurations can have energy lower than that of the
other two states. Our energy analysis is consistent with
their results. These mean-field studies also found that
for short-range repulsion, the (Q, Q) phase is likely to
be unstable towards domain-wall formation, ' while the
(m, Q) phase is stable. Shraiman and Siggia developed
a macroscopic theory of the bosonic excitations in the
(vr, Q) spiral phase. Surprisingly, to the lowest order in
density they found a peculiar degeneracy in the ground-
state energy for the planar spiral state and for a whole set
of noncoplanar magnetic configurations with the plane
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of the spiral varying in space. This degeneracy is also
present in our microscopic calculations reported below.
However, the further assumption of Shraiman and Siggia,
that the next-order terms in doping concentration stabi-
lize the planar spiral state, is inconsistent with our micro-
scopic calculations which favor a noncoplanar spin con-
figuration for the same range of parameters as in Ref. 12.

The paper is organized as follows. In Sec. II we con-
sider the mean-field theory of the spiral phases in the
Hubbard model and compare the ground-state energies
of diferent phases. In Sec. III we compute the disper-
sion of the bosonic excitations in the (n, Q) and (Q, Q)
spiral phases to the lowest order in hole density and find
that the (Q, Q) spiral has negative longitudinal suscep-
tibility, while the (vr, Q) spiral has an infinite number of
zero modes. We will identify the set of magnetic states
which are degenerate in energy with the planar (vr, Q)
spiral. In the next section, we show that the degener-
acy is lifted by the next-to-leading order terms in hole
density. We compute the ground-state energy and find
the equilibrium spin configuration at a finite doping. We
then discuss the properties of this equilibrium state, in
particular, the behavior of the dynamical spin suscepti-
bility. Finally, Sec. VI states our conclusions.

II. SPIB.AL PHASES

In this section, we describe spin-density-wave (SDW)
calculations for the Hubbard model at and near half-
filling. Let us start with the commensurate Neel state.
The SDW approach for this state has been discussed sev-
eral times in the literature ' and we will use the re-
sults of these studies. At half-filling, the fermionic spec-
trum consists of conduction and valence bands separated
by the energy gap A = U(S, ). The dispersion rela-
tion for the valence fermions is Ek ———E + e+ where
E = QA + (~

—)2 and e = —2t(cosk~+cosk„), e+ =
4~t' cos k cos k„~. This dispersion has a maximum at four
points (+7r/2, +sr/2) in the center of each of the edges of
the magnetic Brillouin zone, provided that t' is not too
large. In the neighborhood of these points, Ek can be
presented as E& ———4 +p~~/2m~~ +p&/2m~. Thus, near

(vr/2, n/2), we have p~~
= (k —k„)/2, p& ——(k + k„)/2,

m~~
= (4t') i, m~ = (4J —4~t'~) i where J = 4t /U is

the inverse bandwidth. For both La- and Y-based ma-
terials, t' J and therefore both masses scale as 1/J.
Note that the minimum at (vr/2, vr/2) is rather robust,
even if t' = 0, and the mean-field spectrum is degenerate
along the whole edge of the magnetic Brillouin zone; the
actual dispersion still has four minima at (+n/2, +sr/2)
due to quantum fluctuations (not included in our present
SDW treatment). i ' s

At finite doping, the chemical potential moves into a
valence band, and the states near the maximum of Ek
become empty. These states are often referred. to as
hole pockets. For a commensurate spin ordering, all four
pockets become equally occupied. Performing then sim-
ple calculations, we obtain that in the presence of holes,
the ground-state energy of the (m, 7r) phase changes to

E(n, n)

4gmgm((
(2)

We will also need the expression for the static magnetic
susceptibility of the (n, vr) state. In the SDW formalism,
the susceptibility is obtained by summing up the series
of bubble diagrams, and the result is

+ () x(q)
1 —Uy(q)

'

where for 4 ) t, t'

~k ~k+q1— 1

Ek —Ek+

1+ k 6k+ 1

k k+q

The prime at the summation signs indicates that the
summation is over the magnetic Brillouin zone. Near Q =
(vr, vr), the static transverse susceptibility should obey
the hydrodynamic relationis y+~ (q) = 2&o2/p, (q —Q) 2,

where No is the on-site magnetization, and p, is the spin
stiKness. At half-filling only bubbles containing valence
and conduction fermions are allowed, and performing
simple calculations, we obtain p, = po = J[l—2(t'/t)2]/4,
where J = 4t /U. At finite doping, there is also a con-
tribution to the stifFness from the last term in (4) which
contains only valence fermions. This last contribution is
proportional to the Pauli susceptibility, which in two di-
mensions does not depend on carrier concentration. As a
result, in the SDW approximation, the spin stifFness ac-
quires a finite correction at an arbitrarily small deviation
from half-filling, '

p. = po(1 —z),

where

4U Pauli 2U. v./mmmm))
+2D

1r

We see that if z ( 1, the Neel state remains stable at
finite doping, while if z & 1, it becomes unstable, and
we have to consider incommensurate states as possible
candidates to the ground state. In the naive mean-field
calculations discussed so far, we have z U/J )) 1,
which implies that the commensurate state becomes un-
stable immediately upon doping. However, we have ex-
plicitly verified that all our conclusions are valid for ar-
bitrary ratios of t/U and t'/t provided that magnetic or-
der at half-filling is commensurate, and the hole pockets
are located at (+vr/2, +sr/2). We therefore will consider
z as an imput parameter which can, in principle, have
any value. Some rigorous results about the dispersion of
bosonic excitations at arbitrary t, t, U will be presented
in Appendix B.

It is worth emphasizing that even in the large U limit,
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the value of z can in fact be of the order of unity. The
point is that the mean-field results at large U must be
taken with caution in view of a strong self-energy and ver-
tex corrections which both contribute powers of U/tS
Self-consistent consideration of these corrections indi-
cates that they do not change the momentum dependence
of the vertices at small q —Q, but reduce the overall scale
of the effective interaction between holes &om U to U, ff
which is of the order of the bandwidth J. ' ' This in
turn implies that z is in fact simply a number, indepen-
dent of U/t. Furthermore, strictly speaking, instead of
U,ff we have to consider the total scattering amplitude
of two holes, T. In two dimensions,

Ueff

g+ mg, 1 mUffyy
4~ og 4~

Hence T and, consequently, z vanish logarithmically as
the hole concentration b oc ~p& tends to zero. This
always makes the collinear antiferromagnetic state stable
at very low doping. However, the range of doping where
logarithmic corrections are important is likely to be very
small, and in this paper we simply set T = U ff and
consider z = O(l) as a doping-independent parameter.
For simplicity, throughout the paper, we will focus on
large U and present the results for the quantities not
related to Pauli susceptibility, only to the leading order
in t/U

We now consider incommensurate spin conGgurations
at Gnite doping. I et us first focus on the two simplest
candidates: the spiral states with the ordering vectors
(vr, Q) and (Q, Q). As before, we will label the or-
dering momentum as Q [Q can be either (7r, Q) or (Q, Q)].
The spin order parameter now has two components, and
in terms of the fermionic operators is expressed as

Sq ———) (aa ta„+q ~)—:Sq,+= '
k

posite spins and thus contain no spin labels. In this situ-
ation, there is no doubling of the unit cell, and the sum-
mation over momenta in (8) is extended to the whole first
Brillouin zone (—m'/a ( k „(n/a).

The gap 4 is related to the parameters of the Hubbard
model via the self-consistency condition

where the summation goes over the momenta of occupied
states.

Consider now specifically the spiral (vr, Q) state. The
mean-Geld fermionic spectrum for this state is not sym-
metric with respect to the reflection k„~ —k» although
it is still symmetric with respect to A: —+ —k . Con-
sequently, the minima at (+7r/2, 7r/2) have lower hole
energy than those at (+7r/2, —vr/2).

Suppose that the concentration of holes Glling the
lower-energy pocket is xi and filling the higher-energy
pocket is x2 (xi + x2 ——x). Simple calculations then
show that the ground-state energy of the (m, Q) phase is
given by

Z( q) = tq(x, —x—,)+ +
t2q2 vr(x2i + x22)

4A 2gm~m~(
(12)

U
q = —(xi —x2).t

where q = q„= z' —Q. The first term refiects the decrease
in total energy due to the e+ term in the spectrum, the
second term results from the redistribution of the energy
levels below the Fermi level, and the last term corre-
sponds to the increase of the total energy due to unequal
occupation of pockets. Minimizing the total energy of
the (vr, Q) state with respect to q we obtain to the lowest
order in hole concentration

1S:q= y ) (a',ga -q,g) = (Sq)' .
k

(8) For the energy of the (vr, Q) state, we then have

Ek' ——e+ + E

where as before E = gb, + (e ), but now

k+Q/2 + ~k —Qj2
2

eA:+q/2 ek —q/2
(1O)

2

Note that for XY ordering, these new electron states
appear as hybridization of the original electrons with op-

For deGniteness, we choose the order parameter to be in
the XY plane. Without a loss of generality one can also
choose S~ to be real. The real space spin configuration
described by (8) is then S& ——Sq cos(Q . R), and SR ——

Sq sin(Q . R), where R denotes the lattice site.
The SDW calculations proceed in the same way as be-

fore: One has to decouple the interaction term in (1)
using (8) and diagonalize the quadratic form. Perform-
ing the computations, we obtain

( q) 7r(xi —x2) vrx

4gmgm(( 4gmgm)(
(14)

We see that the ground-state energy of the (vr, Q) phase
becomes smaller than that of the (7r, vr) phase at z ) 1,
exactly when the stiffness for the (vr, 7r) phase becomes
negative. In the latter case, we also have xi ——x and
x2 ——0, which implies that only two out of four pockets
are occupied, and q = (U/t)x. A similar analysis was
performed in Ref. 9.

Finally, consider the (Q, Q) phase. Now the fermionic
spectrum is not symmetric with respect to either the

-+ —k or k„m —k„reflections The poin. t (vr/2, z /2)
becomes the only absolute minimum of the hole spec-
trum. Suppose that the concentration of holes filling the
lowest-energy pocket is xi, Glling the two intermediate-
energy pockets is x2, and filling the highest-energy pocket
is xs (xi + 2x2 + xs ——x). Then the ground-state energy
of the (Q, Q) phase is given by



ANDREY V. CHUBUKOV AND KAREN A. MUSAEI. IAN

E(Q Qi 2tq( ) +
t2q2 ~(x2, + 2x22+ x2s)

2A pm~ m~~

The inverse pitch of the spiral q = vr —Q is found by
minimizing the energy:

U
q = —(x~ —xs).

The total energy then assumes the following form:

(Q, Q) state has the lowest energy at z ) 2.
Observe, however, that in the latter case,

02E~& &~/ctx2 (2 —z) is negative. On general grounds,
this result suggests that the homogeneous solution is un-
stable. We will see in the next section that the longi-
tudinal stiffness for the (Q, Q) state is in fact negative—this will be another argument in favor of an inho-
mogeneous ground state. On the other hand, for the
(vr, Q) phase in its region of stability (1 & z & 2) we
have BE~ '~i/Ox ) 0; i.e. , the homogeneous solution is
stable.

E(Q Q) I(» —») (1 —z)
2gm&m

+(x —2x,)'+ 4x', ].

III. COLLECTIVE EXCITATIONS

It is immediately obvious that if z & 1, then the lowest
possible energy is achieved when xz ——x2 ——x3) and

q = 0, i.e. , in the (vr, vr) phase. If z ) 1, then xs ——0.
Minimizing the energy with respect to xq, we find

when z & 2 and

when z ) 2. In the former case only the highest-energy
pocket has no holes, and the total energy is equal to

(~ ~)
+mmmm(( 6 —z

(20)

It is straightforward to see that it is always higher than
the energy of the (vr, Q) phase, given by Eq. (14). In case
of z & 2, only the pocket with the lowest hole energy is
occupied, and the total energy is

(Q g) 7rx
( )

2gmgm((
(21)

Comparing (2), (14), and (21), we observe that the Neel
state is the minimum for z & 1 and the (vr, Q) spiral
phase has the lowest energy at 1 & z ( 2, while the

Now we proceed to examining the stability of the spi-
ral states by considering collective bosonic excitations. It
follows from general considerations that in a spiral phase
one should have a Goldstone mode with one velocity re-
lated to the spin rotation in the plane of the spiral, and
two Goldstone modes with another velocity related to the
rotations of the plane of the spiral around the A and Y
axes. The former Goldstone mode results in the diver-
gence of the total static susceptibility y+ (q) at the wave
vector q = —Q, while the latter leads to divergences of
the total y" (q) at the wave vectors kQ.

The spectrum of collective excitations is determined
by the poles of dynamic susceptibility

dte* '(TS'(t) S' (0)) .

Here S' represents either one of the three spin densities
S+,S,Sz or the charge density p. For the (~, vr) state,
fiuctuations in transverse spin channels are completely
decoupled from fiuctuations in the density and longitudi-
nal spin channels. Dynamical susceptibility is then a 2 x 2
problem. For planar spiral states, however, all four chan-
nels are coupled, and the dynamical susceptibility has to
be found by solving a set of four coupled Dyson equations.
Doing the standard SDW manipulations, we obtain that
the poles of dynamical susceptibility are given by solving
D(q, ur) = 0 where D(q, w) is the determinant of a 4 x 4
matrix given by

( 1 —Uy+
++

~v -(e+2Q)
—U~2&+'

( q)
U~2&

& qi

—U~-e+2Q -e—+
&q+2g, -(~+2@)—Z
X +zQ (q+Q)

—U-~2 -'
v g(++2@) (~+@)

—U~2y'

+Q —(a+20)
1 —2Uy '~

( ~)
—2U ~e+Q, —(a+9)

U~2 '
U-~2 '+U ~~2y ~ ( ~)

2U ~v+Q —(v+9)
1+2Uy~~ —

( -) )

The expressions for the irreducible susceptibilities are
presented in Appendix A. A similar expression for
D(q, u) was recently obtained by Cote and Tremblay 2

in their SDW analysis of collective excitations in a 2D
Hubbard model on a triangular lattice at half-filling. For
our present consideration, it is essential that at zero fre-

+Z ZP

v —(a+9) e+2Q —(a+9) v+9 —(v+9)
at any q, and therefore static transverse spin fiuctuations
deco'/e from the longitudinal spin Quctuations and den-
sity fluctuations (we remind the reader that spin ordering
is in the X'Y plane). We now consider the transverse and
longitudinal fiuctuations separately.
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A. Longitudinal spin fluctuations

Consider Grst the solution for the density and longi-
tudinal spin fluctuations. At q = —Q, the evaluation of
the expressions in Appendix A yields at zero frequency

(z —4)/8U, and y+: — —y- = g& 1/(2Q„) = ]/U'.
Elementary manipulations then show that there is indeed
a Goldstone mode at q = —Q. Expanding around this
point, we obtain after straightforward but lengthy calcu-
lations, that to quadratic order in q+ Q

(23)

The q+ Q term comes from the expansion of 1 —Uy+ +
Uy++ —,and the ~ term comes from y+ and yq, —(q+2Q) '

We also introduced z = 4Uy2D(ur) where y2D(u) is the
susceptibility of a 2D Fermi gas at finite frequency,

(24)

where to the leading order in the hole density,

b
Cd I

ii
fAi

(q+ Q)'p~
(25)

A(q, ~)
x (q~~) =

D( )
(26)

The numerator can be evaluated right at q = —Q, w = 0
where it reduces to

and py v x is the Fermi momentum of holes. At zero
frequency we indeed have z = z.

The explicit expression for the total longitudinal sus-
ceptibility y is

&(—Q o) = (X+@q
—X+~q q) (1 —UX+q q)(1+ 2UX"q q) + 2U'X+@,Xq', (27)

(x,', —,) ' = ~(v+ Q)' (&
—

2 )
—

2z
. (28)

Substituting the values for irreducible susceptibilities, we
obtain that A = 1/2U and does not depend on z. For
the total longitudinal susceptibility we then have

where the spin-wave velocity c = v 2J is the same
as in the (vr, vr). This result agrees with the macro-
scopic consideration by Shraiman and Siggia and
with the Schwinger-boson analysis by Gan, Andrei, and
Coleman.

This expression is valid for the (x, Q) phase and for the
(Q, Q) phase at q = q&. We see that the stiKness for lon-
gitudinal fluctuations is pL, oc (1 —z/2). For the (vr, Q)
phase (1 ( z ( 2), the stifFness is positive, while for
the (Q, Q) phase (z ) 2) it is negative. This last result
implies that the homogeneous (Q, Q) phase is in fact un-
stable. This agrees with our observation in the previous
section that BF~~ &l /Oxz is negative.

The negative longitudinal stifFness of the (Q, Q) phase
was earlier obtained by Dombre in the macroscopic cal-
culations in the framework of the Shraiman-Siggia model.
He argued that this instability leads to a formation of
domain walls, but can be prevented by a long-range
Coulomb int;eraction. Phase separation at large z is also
a possibility. We, however, have not studied inhomoge-
neous spin configurations.

It is also essential to observe that z behaves as a
constant (= z) only at frequencies comparable to (q +
Q)p~' , at larger &equencies, the dynamical susceptibil-
ity y2D(ur) rapidly decreases, and near a spin-wave pole

2J (q + Q), we have &2D(&) - p~lq+ Ql/~ «1.
Then, near the pole, to the lowest order in the hole den-
sity we have

B. Transverse spin Huctuations

We now consider the magnet;ic susceptibility yq q
as-

sociated with the out-of-plane fluctuations. We found
above that; this channel is coupled to density and longi-
tudinal spin fm.uctuations only dynamically. For the full
stat;ic susceptibility we then have a simple random-phase-
approximation (RPA) formula

(30)

zz
Xq, —q

1 x' ftq l' f q2')

2U U qUx) 0 q2)
x' (tq) ( q21

Uxf E q') (31)

From the above considerations, we expect the Goldstone
modes in y" to be at q = +Q. Consider first the (7r, Q)
spiral. Using Eq. (A1) from Appendix A, and expanding
near q = +Q, to the lowest order in the hole density we
obtain

[c (q+ Q) —~ ] (29)
where q = vr —q and q = m —Q. The second term
comes from the integration over the regions away from
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Ux ( ~ m((+m~)l ——x
t i 8 gm((m~ )

(32)

and

2U

2xs ( q') ( 2) q'
(33)q') . & .)

Notice that the correction term in q which explicitly de-
pends on the mass ratio does not show up in the expres-
sion for y '.

We see that the Goldstone mode in y ' (1—
2Uy") i at q = +q survives as it should, but (y")
still does not have a form of a quadratic expansion around
the Goldstone points (Fig. 1). For 1 ( z ( 2, when
the (m, Q) phase is a candidate for the ground state,
1—2Uy, and hence y is negative in the region q & q .
This implies that the (a, Q) planar spiral phase is also un-
stable, and one should look for other candidates for the
ground state.

For completeness, consider also the transverse suscep-

pockets, while the last term comes &om the integration
inside the hole pockets. We see that at q = +q; i.e. , at
q = +Q, y" precisely equals 1/2U, and y" diverges as
it indeed should. At the same time, neither of the last two
terms in (31) has a form of a quadratic expansion around
q = +Q. To the lowest order in hole density, q = Ux/t,
and the last two terms in (31) cancel each other at any
q Q. This means that g" is infinite in a whole range
of momenta which in turn implies that there exists an
infinite number of other states which are degenerate in
energy with the spiral states to the leading order in hole
density. In Appendix 8 we show that this degeneracy is
in fact a quite general phenomenon and it exists for an
arbitrary ratio of t, t', and U. Furthermore, we found
that at least to the leading order in t/U, yz' s

= 1/2U
for q = (vr, q„) and arbitrary q„. This last result means
that there exists a whole line of zero modes in y' . At
q = (q»q„), we found that y" = 1/2U+ O((q )4).
For typical q q x, the last term is O(x ); i.e. , it
contains two extra powers of x compared to the terms
we consider.

We will discuss the set of degenerate states in the next
section, and here merely notice that the degeneracy is not
related to any kind of broken symmetry and, therefore,
should be lifted by higher-order terms in the expansion
in the hole density which we are proceeding to discuss.

It is not difBcult to make sure that the contributions
to y' from the regions far from the hole pockets form
regular series in powers of q; odd powers of q disap-
pear due to momentum integration. As typical q q,
the next-to-leading order terms have an extra factor of
q oc x . On the other hand, the expansion near pockets
involve only fermions with momenta near k = (vr/2, vr/2)
and k = (—m'/2, n/2); i.e. , there is no summation over
rnomenta. As a result, the next subleading term in y'
from hole pockets has an extra power of x rather than x .
We computed this term explicitly by expanding in (Al)
and in the ground-state energy (f'rom which we extract
q) beyond the leading order in hole density, and obtained

(x (q~-o)) '

PIC. 1. The out-of-plane static susceptibility for the planar
(7r, Q) spiral. The susceptibility is negative around (vr, n),
indicating instability towards spontaneous magnetization in
the out-of-plane direction.

tibility in the (Q, Q) phase. At q g q„, the total trans-
verse susceptibility is positive already at the quadratic
order in q:

2
1 —2Ug" = (q —q„) .

However, along the Brillouin xone diagonal, at q = q„=
q, g) " is again zero, to order O(x ), at arbitrary q. We
performed calculations to order O(x ) and obtained

1 —2Uy" =16x
~

1 ——
~

1 ————( q') 2 q'
q2) z q2

(35)

The total transverse susceptibility g" = y" /(1 —2Ug")
then has one zero associated with the Goldstone mode at
q = q, and another "accidental" zero at

2
1 ——

z (36)

Between these two zeros the total static transverse sus-
ceptibility is negative, indicating an instability. Contrary
to the previously found instability of the (Q, Q) state
towards domain-wall formation, the latter instability is
unlikely to be removed by including the long-range com-
ponent of Coulomb interaction. We, however, have not
performed any further calculations for the (Q, Q) phase.

The result that the planar spiral phase is unstable con-
tradicts the assumption made by Shraiman and Siggia
that the subleading terms in the expansion over x stabi-
lize the planar phase. On the contrary, our results indi-
cate that they do not.

C. Uniform susceptibility

We conclude this section with a brief consideration of
the uniform susceptibility of the spiral states. The key
point here is that the spiral ordering in the XY plane
away from half-6lling couples the Huctuations along X
and Y directions, which at half-filling constituted longi-
tudinal and transverse Quctuations. We have found in
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Sec. II that in the (vr, 7r) state, longitudinal fluctuations
acquire a correction proportional to the Pauli suscepti-
bility, while transverse fluctuations do not. In a spiral
phase, these fluctuations are coupled, and as a result, the
uniform static susceptibility of the ordered state acquires
a finite correction immediately away from half-filling,

0 = ) Eg(ci Cg dI dQ) (4O)

with the energy in the valence (d) and conduction (c)
bands given by

g+-(o, o) = + (37)
E = (E + A'+E') +2' (4i)

where

1
E" —E"o N E„~ E@+

+I +q +~
Er —q +&

(38)

For Q = (vr, a), y2D = y2D = gm~~m~/2m. However, for
finite q = Ux/t, the tq term in the denominator in {38)is
the dominant one, and performing calculations we obtain

1 2J2

The ground-state energy, to order O(xz), is given by

(qs)2t2—tq'x +
2U

(42)

where q* = q(b ~~/A) and 4 = A& + A~~. For U )) &

we indeed have 4 = U/2. We also assumed in (42) that

Since we now have two order parameters, there are
also two self-consistency conditions. The condition on
the out-of-plane order parameter L~ is

We see, therefore, that the steplike correction to the uni-
form susceptibility is relatively small at J (( t. No-
tice also that fluctuations in the Z direction are de-
coupled &om the XY fluctuations, and hence pop
(1/8 J) + O(x) without any steplike corrections.

We now proceed to the analysis of the states degenerate
with the planar spiral to the lowest order in the hole
density.

1 - 1

U „2Ei' (43)

1+
2Ea ( +2 + E2

(44)

and the condition on the in-plane order parameter L~~ is

IV. NONCOPI ANAR STATES

To specify the set of degenerate states, we first return
to our results obtained to order O(x ) and observe that
the zero modes in y" are centered around (vr, vr). A
zero mode in the transverse susceptibility at (vr, vr) im-
plies that the system is indifferent towards generation
of a spontaneous commensurate antiferromagnetic order
along the Z direction in addition to the incommensurate
spin ordering in the XY plane (Fig. 2). We, therefore,
consider a set of states having two different SDW order
parameters A~ = U{S~) and A~~ = U(S~~), where (S~)
and (S~~) are the magnitudes of the off-plane and in-plane
components of the on-site magnetization, respectively.
Performing the mean-field decoupling of the interaction
term and the diagonalization of the Hubbard Hamilto-
nian, we obtain

) w E+

+~(+ E
=0. (45)

However, solving this equation to order O{x ), we find
that

U
q = —X

t (46)

which is exactly what one would obtain by simply min-
imizing the ground-state energy (42) with respect to q'.
As a result, substituting q' into (42), we obtain that the
ground-state energy does not depend on L~,

In the limit L~ ~ 0, the latter expression reduces to
(ll) as it should. However, for any nonzero A~~, the two
self-consistency conditions have to be satisfied simulta-
neously, which implies that the inverse pitch of the spiral
is no longer a free parameter. Specifically, the compati-
bility of the two conditions requires that

E =Ux
~

——S ~—:E& '&i
('2

)

FIG. 2. Spin configuration of a noncoplanar state. Arrows
with thick ends point out of the plane, while those with thick
tails point into the plane. This configuration is different from
the double spiral considered in Ref. 8(b).

Clearly, then, all states with finite L~ are degenerate in
energy with the planar spiral, and we have to go beyond
the leading order in x to see which state actually has the
lowest energy.

The calculations to order O(x ) proceed in the same
way as in the previous section. We skip the details and
focus on the results. For the inverse pitch of the spiral
we obtained &om the consistency condition (45)
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U
q* = —x 1+2m

I

1— (48)

Here we again assumed that A~~/4 )) x ~ . We see now
that the values of q at 4~ = 0 [Eq. (32)] and at 4~ ~ 0
[Eq. (48)] are difFerent to order O(x ). The reason is, of
course, that in the case of a planar spiral there is only
one self-consistency condition to satisfy. The energy of
the noncoplanar phase, at A~~/4 )& x ~, is given by

Substituting P into (51), we obtain the ground-state
energy as a function of a single free parameter o.. The
equilibrium value of n (and, hence, of A~) can now be
obtained by a simple minimization of the energy. In a
general case, the solution of dE~ /dn = 0 is rather in-
volved, but for z close to 2, a simple analytical solution
is possible. The point is that at z = 2, the equilibrium
value of n is large [~ (2 —z) ~2], and so we can expand
(51) in powers of 1/n . We then obtain

E(~,Q) +
2U

U
2 E~. = Ei"~l + U*' —

~

1 ——
~
+( 2) 7

o2 ( z) 24u4

The energy has a minimum at
(49)

where q* is given by (48). Let us first discuss the sec-
ond term in the right-hand side (rhs) of (49). This is
a positive contribution to the energy related to the fact
that q* is no longer a free parameter. At A~ —+ 0, the
last term in the rhs of (49) disappears and the energy of
the noncoplanar state turns out to be larger than that of
the (vr, Q) state. Clearly, then, very close to A~ = 0, a
simple noncoplanar state that we consider is not the best
choice. This in fact is consistent with the form of the
susceptibility in the spiral phase which has a minimum
at some momentum different from (m, vr) [see Eq. (33)].
However, we also see that this energy difFerence is O(x4),
and for all A~ & z ~, the second term in the rhs of (49)
can be neglected compared to the third term which is of
the order x and negative for z ( 2 which we consider.
This latter term increases with Az. Moreover, Eq. (49)
does not contain a restoring force (i.e. , terms z3A4&).
Therefore, by making A~ larger and larger, we can con-
tinuously decrease the ground-state energy as long as Eq.
(49) remains valid, i.e., as long as b, ~~/A &) xi~2. When
A~ nearly reaches A, and A~~/A becomes comparable
with 2; /, the expression for the ground-state energy of
the noncoplanar state becomes more complex. In this
situation, we found

Uz Ux 3 2 Pz+ (~&)'+ 2P' ——f(~) (»)z 2 6

where

For A~~/A && x ~, n )) 1, and expanding in 1/n in (51)
we recover (49) .

The solution of the self-consistency condition (45) is
also more complex for b, ~~/A zi~ . We found

7z
12(2 —z)

(54)

For the equilibrium noncoplanar state we thus have

Ux2 6
E~ — (2 —z) 1 ——(2 —z) ',

2Z 7

12 (2 5 7 zz
z )' 122 —z

(55)

V. MAGNETIC SUSCEPTIBILITY
OF THE EQUILIBRIUM STATE

We see that the energy of the noncoplanar state is sub-
stantially lower than that of the (vr, Q) state. What is
more, the energy gain in the equilibrium state scales as
x, instead of z as in (49). This implies that the equi-
librium state with A~~ ~z, strictly speaking, does not
belong to the original set of degenerate spin con6.gura-
tions, and could be selected already in the calculations
to order O(x ). The discovery of the degenerate set of
states and of the instability of the planar spiral gave us,
nevertheless, a hint where to look for the minimum of the
energy. Notice also that BE~ /Bzz & 0; i.e. , there is no
instability towards phase separation.

Another important point concerns the chirality of the
novel state. Although the spin configuration in this state
is noncoplanar, it is not chiral in the sense that there is
no Aux through a plaquette. In other words, although
the triple product of three adjacent spins along the Y
direction, S;~ i . (S;~ x S;~+i) g 0, the triple product of
spins lying in the vertices of a minimal triangle is always
zero, since all spins along the rows in the X direction
are parallel to each other. This fact distinguishes our
noncoplanar state from the double spiral considered in
Ref. 8(b), which has staggered chirality. We emphasize,
however, that, at least in the SOW approximation, our
noncoplanar state has lower energy than the double spi-
ral.

4+
z (52)

At n &) 1 (but still, A~~ && A), this expression reduces to
(48)

In the presence of a commensurate antiferromagnetism
along the Z axis, the equation for magnetic instability be-
comes more complex as now bare susceptibilities with the
momentum transfer (n, m) are also finite, and the total
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" (x"(q~=o)) ' j0
equilibrium state

susceptibility becomes an 8 x 8 problem. In view of this,
we only computed the susceptibility to the leading order
in b,~. We found that the compatibility condition (45)
of the two self-consistent equations at L~ ~ 0 is equiva-
lent [to order O(z )] to the condition that g" diverges at
(vr, ir) (see Fig. 3). This extra zero mode exists because at
A~ ——0, the ground-state energy as a function of A~ has
an extremum (maximum). We have not performed calcu-
lations at L~ & AII, but we believe it plausible that the
spin susceptibility evolve with L~ as is shown in Fig 3.
The equilibrium state is an energy minimum (at least,
local), and we expect that the static susceptibility of this
state is positive, diverging only at the Goldstone points.
There exists, however, a subtlety in determining the lo-
cations of zero modes in this configuration, and so we will
explicitly follow the recipe of the Goldstone theorem.
This theorem states that if J is a generator of a symmetry
transformation, and the commutator [A, J], where A is
some operator, has a nonzero average value in the ground
state, then the correlator (TAtA) diverges at ur = 0. The
residue of the quasiparticle pole near the Goldstone point
is proportional to [A, J] . In our case the corresponding
operators and correlators are the following.

(1) Rotation about the z axis: J = So. If A = Sg [7c-:
(vr, 7r)], then [A, J] = —iS' b,~, and therefore y",i" (q)
diverges at q = vr. The residue of the pole is proportional
to A&. If instead we choose A = S+&, then [A, J]
iS" , and we find—adivergence in y', ~'(q) at q = +Q;
the residue of the pole is proportional to 4 .

II

(2) Rotation about the y axis: J = So. This case is
analogous to the previous one. The divergences occur
in y, ~ (ir) with the residue of the pole oc A&, and in

y,'~'(+Q) with the residue oc A~~.

(3) Rotation about the z axis: J = So. Choosing
A = S& and A = S — we find divergences in g+i (Q)
and y,~+(—Q); in both cases the residue of the pole is
proportional to A2.

II'
Combining these results, we find that in the equilib-

rium noncoplanar state, the in-plane static susceptibility

{X+-(q;m= 0)) -' equilibrium state

Q

FIG. 4. The in-plane static susceptibility for the equihb-
rium noncoplanar state and a noncoplanar state with vanish-
ing A~.

y+ in fact has two poles, one at q = (m. , 7r) and the
other at q = —Q. Then, for q not too far from (m, m),
this susceptibility can be approximated as

( )
xm + xQ

(q —vr)2 (q+ g)2 ' (56)

(57)

but here both poles are suppressed as the residue y is
proportional to AII and, therefore, to x. Again, the form

of the susceptibility is very similar to that for the (vr, a)
state. On the contrary, in the planar spiral state, both
transverse and longitudinal susceptibilities have Gold-
stone modes at q = +Q with the residue of the pole
proportional to the total on-site magnetization (Fig. 3).

VI. CONCLUSIONS

where the residues y and y are proportional to 4&
and A~~, respectively. Because A~~ i/x, the residue of
the pole at the incommensurate wave vector q = —Q is
suppressed with respect to the pole at the commensurate
wave vector (vr, n), and the form of the static susceptibil-
ity is very similar to that for the (vr, vr) state (Fig. 4).

The out-of-plane static susceptibility y ' also has two
poles,

I I

FIG. 3. The out-of-plane static susceptibility for three non-
coplanar states: one with Q~ —+ 0, another with an interme-
diate value of A&, and the third with the equilibrium value
of A~.

Here we summarize the main results of this paper.
We used spin-density-wave formalism and studied various
magnetic phases of the 2D Hubbard model at low doping
when a long-range magnetic order is st;ill present. We
found that the equilibrium spin configuration depends
on the value of the dimensionless parameter z = 4Ty
where T is the scattering amplitude of two holes (T = U
in the mean-field approximation), and y2D is the Pauli
susceptibility of holes which at low doping occupy pock-
ets located at (m/2, vr/2) and symmetry-related points in
the Brillouin zone. In 2D, Pauli susceptibility does not
depend on the carrier concentration: y2 = gm ~~rn~/27'
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We found that for z ( 1, the commensurate antiferro-
magnetic state is stable. For z ) 2, the spiral (Q, Q)
phase is the equilibrium configuration at the mean-field
level, but we found that this configuration has negative
longitudinal stiÃness and therefore is unstable against
domain-wall formation. This result agrees with the
macroscopic analysis in Ref. 9. The intermediate case,
1 ( z ( 2, is the most interesting from a theoretical
point of view. Here we found that the equilibrium con-
figuration at the mean-field level is a (m, Q) spiral intro-
duced by Shraiman and Siggia. The longitudinal stiKness
in this configuration is positive, but the transverse sti8-
ness vanishes to the leading order in hole density. This in
turn implies that the spiral phase is degenerate in energy
with many other spin configurations, and the equilibrium
state only appears as an "order from disorder" effect. We
performed calculations beyond the leading order in the
hole density and found that the equilibrium state is not a
planar spiral but rather a noncoplanar spin configuration
which contains both (vr, vr) antiferromagnetism along one
direction in spin space and a (n, Q) spiral in the orthog-
onal plane. The latter result suggests a scenario of spin
reorientation with doping for 1 (. z (. 2, difFerent from
the one suggested by Shraiman and Siggia. In their pic-
ture, upon doping spins remain in the same plane as at
half-filling, but twist into a spiral with incommensurate
momentum (vr, Q). In our scenario, the commensurate
antiferromagnetic ordering (same as at half-filling) does
not vanish, as doping only introduces a transverse com-
ponent of the order parameter which forms a spiral in the
plane perpendicular to the direction of the commensurate
order. This transverse component is small to the extent
of x, and the low-T behavior at finite doping remains
nearly the same as in the commensurate antiferromag-
net" "(Fig. 5).

It is essential that our analysis has been performed only
for frequencies smaller than the energy scale AE associ-
ated with the lifting of the degeneracy. At larger fre-

FIG. 5. Two adjacent spins in the equilibrium configura-
tion. The in-plane component S~ x is small compared
to the oK-plane component, S~~.

quencies, the static selection may be irrelevant, and one
has to solve the full dynamical problem which presents a
technical challenge.

The above analysis is valid for the magnetically ordered
phase. We therefore cannot pretend to resolve the known
discrepancy between neutron scattering and NMR exper-
iments in I a2 ~ Sr~ Cu04, ' both of which have been
performed well inside the metallic phase. We merely note
that, as neutron data indicate, the incommensurability at
(m, Q) observed at 7.5/o and 14% doping is not correlated
with the magnetic behavior in the ordered phase. This
implies that our result, that in the ordered state suscep-
tibility is always peaked at (vr, vr), does not contradict the
neutron data.
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APPENDIX A

In this appendix we present the results for the irreducible susceptibilities in the spiral phases. Each of the suscep-
tibilities below was obtained by the standard SDW manipulations:

zz pp
Xq —q

@d(~

ei ea+g + +
+

&~+, —E~+ ~)

t+q
d

+d)p

qk Ck+ +
@x+q + ~) (A1)

(upper sign for y ' and lower for y~~); then

zp 1
Xq, —q

@d(~ (&k+, —E~ —~ E~+, —E~ + ~)

8N
EI +q+~
@d)~

1

@r @A+q + ~) (A2)
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Further,

+-
Xq —q 4g j

@a—p+&

k —Q k+q

Ek QEk+q

(
E„ i Eq —E„

1+
E~+q Ea —q + ~)

+4N
k —Q k+q1—

E
":q a+,+
E~ q E~+, &,

E~ q
—E~+q —~

1
+ d dE„ —Eq+ + su)

(A3)

++
~q, —(q+2Q)

1 A2 t 1 1+4N, E„qE&+ ~E&+~ —E„" q
—ur E„'+~ —E„" q+ ~)+a —g +&

Next,

(
+4N E qEq+ i Eq" q Eq+

+a+q +~
@a—q +&

1+
Ea —q E~+~+ ~ f

(A4)

+z)+p
~q, —(q+Q) 8N

Ea —q+&

(E.+, + E,:q) —("+,+ ~;q) ( 1

&+q k —q ( &+q k —q Ek+q Ey q+~ j

+8N )-
Ea+q ~&d

(E.:q+E.+,) —('g q + &.+,)
Ek —QE—

k+q

1
d d + d d(E„q—E„+ —~ E„q —E„+ + ~) (A5)

Again, the upper sign is for y+, lower for y+p. Finally,

p
~q —(q+Q) 8N

+a —q+& k+q k+Q

t' 1 1

~E„+ —E„q—~ E„+ —E„q+~~

8N
a+q
d

+a+@+&d

(E~+, + E~+q) —(&~+, + &,+q)
Ek+QE—

k+q

1
d d + d d+q-E+. + )

(A6)

We also have = y — = y++
q+2Q —q q —(q+2Q) ' q+Q —(q+2Q) q+2Q —(q+Q) ' q —(q+Q) q+Q —q'

APPENDIX B 1 - 1
2N - E —E"k+~ k

In this appendix, we show that the zero modes in the
transverse susceptibilities of the two spiral phases exist,
to order 2:, independent of the ratio of t/U and t'/U.
To see this, consider the transverse susceptibility right at
q = (7r, vr). We will show that y" = 1/2U; i.e. , the total

= y" (1 —2Uy") diverges despite the fact that
for the spiral states, (m, m) is not the ordering momentum.
For definiteness, we will perform the calculations for the
(vr, Q) phase. The calculations for the (Q, Q) phase pro-
ceed in the same way, and the anal result is valid for both
spiral states.

Eirpanding in (Al) to second order in q x we obtain

)~ ( k k+x) (E—
)4 E~(&

@d( k k+~ k
k

8N ) w ( k Ic+w) (E—
)4

~d k k k+m
a+m +&
~d)~

(B1)

where m' should be interpreted as the 2D momentum
(m, vr), and as before, q = n —Q. It is also convenient
to redefine the momenta such that e&+ = (ey+q + eg)/2.
For the (vr, Q) spiral, we then have
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and also

+ eq = 4~t
~

cosk sinks q (B2) E(~,g) 1 f 2 cos k„—sin k„—tax+ t q

—2t g sin ky. (B3)

Substituting (B2) and (B3) into (Bl), we find after some
simple algebra

slil ky(eA, )

2(E~ )'

( ~)2 2 z 1 ) ~ slii kscos k~

(E. )'
1 t2q2 .(sin ks) 2

2U 4% ~ - (E„)s
(t') 2 q2

~
(cosk sink„)

(&. )'
(B4)

The equilibrium q then satis6. es

tqx=t g
1 ~ ( 2 cos ks —slil ky slil kil (eA, )

In obtaining this result, we used the relation
1

~
~ sin k„cos k~

(&~ )' (B7)

(~~+. + ~~
Substituting this result into (B4), we obtain

2 1 (sin k„cos k ) (e& )
(&k )' where

2U 2

which can be derived by straightforward computations
using (B2). In (B4) and (B5), the summation is over the
whole Brillouin zone.

Notice that the pocket contribution [a term tqx in

(B4)] is the same as in the analysis in the bulk of the
paper, where we assumed that t', t (& U. This is sim-

ply related to the fact that the pockets are located at
(vr/2, her/2) where both e& and e& are small compared
to L independent of the ratio of the parameters.

We now need the exact relation between q and x, valid
to first order in x, but for arbitrary t, t', and U. To And
this relation, we again compute the ground-state energy
of the (7r, Q) spiral, but this time without assuming that
U is large compared to the hopping integrals. Doing the
same computations as in Sec. II, we find

1
~

4 sin k„
(Eq )s

1 ~w cos kyS~- E- (B9)

X.", = 2U+&(*')- (B10)

This result implies that the zero modes in the transverse
susceptibility exist at an arbitrary ratio of the parame-
ters of the Hubbard model provided that the magnetic
ordering at half-Riling is commensurate, and doped holes
form pockets at (vr/2, m/2) and symmetry-related points.

Notice that all terms with t' are canceled out. Finally,
to evaluate y' to order x, we actually need A only
for q = 0. In this case, e&

——2t(cosk + cosk„), and
integrating by parts in (B9), we immediately obtain that
A = 0 is independent of the ratio of t/U. We thus find
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