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The values P = 0.395(10), p = 1.345(10), 5 = 4.35(6) for the asymptotic critical exponents,
tJ(0)ho/k~Tc = 1.35(10), DJO/ho ——1.20(55), aM/ax+ = —0.19(6) for the universal ratios and the
ratio Jo/Js(0) = 1.70(16), involving asymptotic and correction-to-scaling amplitudes, have been
deduced from the bulk magnetic polarization data in the critical region near the ferromagnetic
(FM)-paramagnetic (PM) phase transition of polycrystalline Ni samples of different shapes through
an elaborate data analysis. These values, though close to those predicted by the renormalization-
group calculations for a three-dimensional isotropic short-range Heisenberg ferromagnet, are shifted
towards the mean-field estimates. Such a shift is taken to be evidence for a crossover to the fixed
point corresponding to isotropic long-range exchange interactions. In accordance with the theoretical
expectations, nonanalytic corrections (originating from the nonlinear irrelevant scaling fields) to the
singular behavior at Tc (Curie point) dominate over the analytic ones (arising on account of the
nonlinear relevant scaling fields) in the critical region but the reverse is true for T )) Tc. Initial
susceptibility follows the generalized Curie-Weiss law [Eq. (14) of the text with az, ——0] from Tc to
1.4T~ and the Curie constant permits an accurate determination of the atomic moment in the PM
state. Not all but only about 80% of the moments (spins) in Ni actually participate in the FM-PM
phase transition.

I. INTRODUCTION

The static critical behavior near the ferromagnetic-
paramagnetic (FM-PM) phase transition of elemental
crystalline ferromagnets such as Fe and Ni has been inves-
tigated using widely different experimental techniques by
several workers for more than three decades now. How-
ever, most of the measurements have been performed in
a temperature range which lies well outside the asymp-
totic critical region [ACR = ~e = (T —T~)/T~~ ( 10 2]

and the values quoted for the critical exponents n, P,
and p for specific heat, spontaneous magnetic polariza-
tion (Jg), and initial susceptibility (yo), respectively,
vary by as much asi 20% in Fe and Ni. Even in those
cases where the Curie temperature (T~) was approached
closer than e = 10, the data have been fitted to a
single power law over a wide range of temperatures in
the vicinity of T~ and such a data analysis yields an
effective critical exponent whose value depends on the
temperature range chosen for the fit. The reported val-
ues of the effective critical exponents significantly differ
from the renormalization-group (RG) estimates for the
asymptotic critical exponents that characterize the lead-
ing singular behavior at the critical point in materials,
belonging to the universality class (n = order parameter
dimensionality = 3, d = space dimensionality = 3), such
as Fe and Ni. These deviations are generally attributed
to the complications arising from the presence of'dipolar
long-range interactions. A similar discrepancy between
experimental results and theoretical predictions has been

reported in the past in the case of amorphous ferro-
magnets as well. However, subsequently an elaborate
data analysis, which takes into account the leading
confiuent singularity terms (originating from the irrele-
vant scaling fields) predicted by the RG theories, ' re-
vealed that for amorphous ferromagnets the deviations
in question are an artifact of the single-power-law anal-
ysis, which completely ignores the correction-to-scaling
(CTS) terms. In view of this development, a definite con-
clusion about the genuineness of the deviations in crys-
talline ferromagnets can be drawn only when the true
asymptotic critical exponents for these materials are de-
termined experimentally. Moreover, a rigorous test for
the RG predictions concerning the static critical behav-
ior of pure isotropic three-dimensional (3D) Heisenberg
systems or about the crossover effects in the presence
of dipolar interactions is not possible unless the experi-
mental values are available not only for the asymptotic
critical exponents but also for the universal amplitude
ratios. This prompted us to accurately determine the
values of asymptotic (leading CTS) critical exponents P
and p and critical amplitudes (amplitudes) for Ni from
high-precision bulk magnetic polarization (BMP) data
taken in the asymptotic critical region.

Another motivating factor for undertaking BMP mea-
surements in the ACR was to seek an answer to the
following basic question. What is the effect of shape
anisotropy on the low-field deviations from the linear
modified Arrott plot isotherms usually encountered in
crystalline and amorphous ferromagnets7
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II. EXPERIMENTAL DETAILS

Ni rods of 99.99% purity were cast into the cylindrical
shape (diameter = 9 mm) after melting them in the elec-
tron beam furnace. The cylindrical ingots, so obtained,
were annealed at 850 C for 6 days under a hydrogen at-
mosphere and subsequently degassed at 800 C for 12 h.
Samples of four diferent shapes, i.e. , a sphere of 5 mm
diameter (sample No. 1), a di,sk of 5 mm diameter and
0.5 mm thickness (sample No. 2), a square slab of di-
mensions 5 x 5 x 0.5 mm (sample No. 3), and a cube
of dimensions 5 x 5 x 5 mm (sample No. 4), were spark
cut from the cylindrical ingots. Surface contamination, if
any, was removed in sample No. 1 by chemical etching in
a solution of ethanol and bromine and in the remaining
samples by mechanical polishing. All the samples were
annealed at 800 'C for 1 day under high vacuum (- 10
Torr) to relieve surface stresses.

Magnetic polarization was measured in external mag-
netic fields up to 0.9 T at fixed temperatures (stable to
within +40 mK), 0.5 K apart in the critical region
and about 5 K apart for temperatures far away from T~,
over a wide range 0.9T~ ( T & 1.4T~ using a vibrat-
ing sample magnetometer (EGkG PAR 150A). Sample
temperature was monitored by a precalibrated NiCr-NiAl
thermocouple in direct contact with the sample and con-
trolled by a proportional, integral, and differential tem-
perature controller. The demagnetization factor N for
each sample was determined from the low-field (& 10 m T)
magnetic polarization data and the values of N for sam-
ple Nos. 1, 2, 3, and 4 are 0.32, 0.086, 0.07, and 0.271,
respectively. The external field @00 t was corrected for
the demagnetizing field N J to arrive at the values of the
internal field.

around T~ are straight and parallel to one another over
as wide a range of (poH/J) values as possible. In such
plots, the internal field poH is obtained by subtracting
the demagnetizing field N J from the external magnetic
field p, oH, t. The deviations at low fields from the linear
modified Arrott plot isothernis (Fig. 1) look exactly the
same for Ni samples of difFerent shape (sample Nos. 1—4)
and hence we conclude that the shape anisotropy does
not have any significant efI'ect on these deviations. The
spontaneous magnetic polarization Js (T) and inverse ini-
tial susceptibility yo (T) at difFerent temperatures are
then computed from the intercepts on the J ~~'" (for
T & T~) and (poH/ J) ~~" (for T ) T~) axes obtained
by a linear extrapolation, ' as shown in Fig. 1, of
the high-field linear portions of the modified Arrott plot
isotherms to (poH/J) ~~" = 0 and J ~~" = 0. The
Js(T) and yo (T) data for all the four samples of poly-
crystalline Ni, extracted from the modified Arrott plots
in this way, are compared in Figs. 2 and 3. It is noticed
from these figures that the overall temperature depen-
dence and even the absolute magnitudes of Js and yo
at any specified value of reduced temperature ~ are nearly
the same for the difI'erent sets of data. In view of such
a close agreement, illustrative plots for only one sample,
namely, sample No. 3, are shown in the greater part of
this paper.

A. Single-power-law analysis

At first, we follow the customary approach of fitting
the single power laws, e.g. ,

Js(T) = Jo (—~)~ ", e & 0,

III. RESULTS AND DATA ANALYSIS
yo '(T) = (ho/Jo)'"e~'", e ) 0, (2)

Figure 1 shows a typical modified Arrott [Ji~~ " versus
(poH/J)i~i"] plot constructed out of the "raw" mag-
netic polarization J(poH, „i,, T) data by varying the ef-
fective critical exponents P,ir and p,g until Ji~~ " versus
(poH/J)i~~" isotherms in a narrow temperature range

where Jo and (ho/Jo)'+ are the efFective critical ampli-
tudes, to the Js(T) and yo (T) data taken at tempera-
tures in the immediate vicinity of T~.

Agreement of the theoretical fits, based on Eqs. (1)
and (2), with the experimental data is optimized by vary-

C)
C)

P = 0.390
y = 1.320 T&Tc
y = 1320 T&T

T = 632.59 K
T = 633.01 K
T = 633.48 K
T = 633.97 K

x T = 634 41 K
T = 634.87 K

* T = 635.29 K
o T= 63571 K
* T = 636.12 K

T = 636.56 K
T = 637.01 K
T = 637.44 K

C)

+ Ni P1

*
o

o
0 —O.O4 —0.02

FIG. 1. Modified Arrott plot for polycrystalline Ni sample
No. 3.

s = (T Tc)/Tc—
FIG. 2. Temperature variation of spontaneous magnetic

polarization for all the Ni samples.
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Y (T) and X (T) data (straight lines in Fig. 4) in tempera-
ture ranges the same as above, based on Eqs. (3) and (4),
yield exactly the same values for P«, p«(inverse slope)
and Tc, Tc (intercept on the T axis) as those given in
Tables I and II. The above analysis is henceforth referred
to as the KF analysis.

B. Analysis with conQuent singularity terms

0.01 0.02 0.03 0.04

Next, the Js(T) and yp (T) data are analyzed in
terms of the expressions

e = (T Tc)/Tc—

FIG. 3. Temperature dependence of inverse initial suscep-
tibility for all the Ni samples.

and

Js(T) = Jp( —e) 1+.aM( —e), ~ & 0,

yp '(T) = (hp/ Jp) e~ 1 + a+a ', e & 0,

ing the effective critical exponents and amplitudes as well
as T~. The best least-squares fits in the specified temper-
ature ranges are obtained for the choice of the parameters
given in Tables I and II. We have cross-checked the pa-
rameter values listed in Tables I and II by following the
celebrated Kouvel-Fisher (KF) approach, which makes
use of the alternative form of Eqs. (1) and (2), i.e. ,

I'(T) = Js(T)I [dJs(T)/dT] '
I

= I(T —Tc)l/& 6.

= (Tc/P«)i~i, e & 0, (3)

and

~(T) = &0 (T) "&0 (T)/"T = (T —Tc)/&«
= (Tc/p 6)e, e & 0, (4)

and whose details are given elsewhere. ' The plots
of the quantities Y and K against e, displayed in Fig. 4,
clearly demonstrate the validity of Eqs. (3) and (4)
[hence of Eqs. (1) and (2)] in a narrow temperature in-
terval around T~. Moreover, the least-squares fits to the

which take into account the leading nonanalytic
correction-to-scaling (CTS) term arising from the
irrelevant scaling fields, as predicted by the RG
calculations. ' In this analysis (the so-called CTS anal-
ysis), theoretical fits to the data are attempted based on
Eqs. (5) and (6) with the aid of a nonlinear least-squares
fitting computer program which varies the fitting param-
eters Jp [hp/Jp], Tc [Tc], P [p], and a~ [a+] but keeps
L constant at its theoretically predicted value for 3D
Heisenberg systems, i.e. , 4 = 0.55, to optimize agree-
ment with the experimental Js(T) [yp (T)] data. The
optimal values of the fitting parameters listed in Tables
I and II are arrived at by using a range-of-fit analysis
in which the variation of these parameters is monitored
as the fit range ~e~;„~ & ~e~ & ~e~~„~ is narrowed down
by lowering (e „~ towards (e;„(, which is kept fixed.
The width of the ACR is given by the temperature range
(see Tables I and II) over which the fitting parameters
possess stable (to within the uncertainty limits given in
Tables I and II) values, i.e. , the optimal values men-
tioned above. By contrast, the range-of-fit analysis which

TABLE I. Fit parameters for the spontaneous magnetic polarization Js of polycrystalline Ni.
Abbreviations: CTS, correction-to-scaling; KF, Kouvel-Fisher.

Sample
No.

Analysis Fit range
&min &max

Jo +M

CTS
KF

68x10
6.1 x 10

80x10
6.3 x 10

635.53(2)
635.49(6)

0.395(10)
0.379(11)

1.04(7)
0.95 (7)

-0.39(5)

CTS
KF

CTS
KF

44x10
38x10

3.6 x 10
36x10

51x10
52x10

5.0 x 10
58x10

634.72 (2)
634.68(5)

635.09(1)
635.09(4)

0.405(10)
0.390(10)

0.392(10)
0.391(10)

1.10(6)
0.96(7)

1.04(4)
0.97(7)

-o.4o(5)

-O.35(5)

CTS
KF

1.7 x 10
9.1 x 10

50 x 10
6.7 x 10

634.28(2)
634.22 (5)

0.405(10)
0.392(12)

1.10(7)
0.99(7)

-o.45(5)
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CTS
KF

CTS
KF

CTS
KF

CTS
KF

24x]p —4

2.4 x 1p
—4

x 1p-'
4-8 x 1p

—4

3p x ]p —4

34x]p —4

6.5 x 1p-4
76x 1p

—4

1.2 x 1p
—2

4.2 x ]p —3

1.8 x 1p
—2

~.p x 1p
—3

1.4 x 1p
—2

ap x 1p
—3

17x 1p
6.4 x ]p —3

(K)

635.54(2)
635.54(6)

634.65(2)
634.66 (4)

635.p9(1)
635.p8(4)

634.27(2)
634.22 (5)

1.345(1p)
1.314(16)

1.350(1p)
1.30p(15)

1.340(1p)
1.314(16)

1.340(1p)
1.315(15)

2050(70)
1681(217)

1960(5p)
1363(143)
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1523(150)
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1531(158)
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s = (T Tc)/Tc—

FIG. 6. Temperature variation of inverse initial susceptibil-
ity for the Ni sample No. 3 in the asymptotic critical region.
The solid curve through the data points depicts the CTS fit
based on Eq. (6).

lel = l(T—Tc)/Tcl

FIG. 9. Temperature dependence of the effective critical
exponent for spontaneous magnetic polarization of the Ni
sample No. 3. The solid curve through the data points de-
picts the theoretical variation predicted by Eq. (7) with the
parameter values given in Table I ~

0 0 00
~ ~ 00 +y ~ ~ ~~ 0~

0
o o

~ ~

0 0
0 0 0

P &(') = l(T —T~) I/Y(T) = (T~/Y(T)' I'I ~
e & 0, (9)

and

p, ir(e) = (T —T~)/X(T) = [T~/X(T)j e I e ) 0. (10)

C)
O

I

0.02 0.04

FIG. 7. Percentage deviation of the Js(e) data for the Ni
sample No. 8 from the KF (solid circles) and CTS (open cir-
cles) least-squares fits, based on Eqs. (1) and (5), respectively.

That this is indeed the case is demonstrated by Figs. 9
and 10 wherein the P,tr(e) and p, tr(e) data (open circles),
deduced from Eqs. (9) and (10) using the KF value of T&
(which is the same as that obtained from the CTS analy-
sis; see Tables I and II) and experimental values of Y(T)
and X(T), are compared with the theoretical tempera-
ture dependence of P,~ and p, tr (solid curves) predicted
by Eqs. (7) and (8) with the CTS values for P, a~ and p,
a+, respectively. Note that the scatter in the P,tr(e) and
p,s(e) data is partly due to the uncertainty in T~ (par-
ticularly for the data points close to e = 0) and partly
because the three-point differentiation method has been

I I I

I

)( O

0~ o
00 0 0

0 W

0

~ ~

oo I

v- Q 0.005 0.01

0.005 0.01 e = (T Tc)/Tc—
e = (T Tc)/Tc—

FIG. 8. Percentage deviation of the yo (e) data for the Ni
sample No. 3 from the KF (solid circles) and CTS (open cir-
cles) least-squares fits, based on Eqs. (2) and (6), respectively.

FIG. 10. Temperature variation of the effective critical ex-
ponent for initial susceptibility of the Ni sample No. 3. The
solid curve through the data points depicts the theoretical
variation predicted by Eq. (8) with the parameter values given
in Table II.
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and construct ln J versus ln(poH) plots for temperatures
near T~, as illustrated in Fig. 11. According to Eq. (11),
a plot of ln J against In(poH) should be a straight line
with slope b and intercept on the ordinate equal to
lnAo for the critical isotherm J(poH, T =- T~). It is evi-
dent from Fig. 11 that the isotherm at T = T~ is indeed
a straight line whereas the isotherms taken at T g T~
exhibit a concave-upward and concave-downward curva-
ture for T ( T~ and T ) T~, respectively. The values
of the critical amplitude D (= Ao ) and exponent 8 for
different Ni samples are listed in Table III.

0
S
+

cv
x
b

T = 833.01 K
T ~ 833.48 K
T = 833.9V K
T ~ 834.41 K
T ~ 634.8V K
T ~ 835.29 K
T = 635.V1 K
T ~ 638.12 K
T ~ 838.58 K
T = 83V.01 K

0
*
0
*

D *
* 0

**
O

* o 6 = 4.390
TG = 635.09 K

I ~

IV. DISCUSSION
ln (~~)

The presently determined values of the asymptotic and
effective critical exponents and of the universal and eKec-
tive critical amplitude ratios are compared in Table III
with the experimental values for some of these quantities
reported ' earlier and the numerical estimates yielded
by the RG calculations ' ' for 3D Ising and Heisenberg
spin systems and by the molecular field theory (MFT).
The important points that emerge from this compari-
son are as follows. (i) Out of all theoretical values of
the asymptotic critical exponents, only those predicted
for a 3D isotropic short-range Heisenberg ferromagnet
deviate the least from our values, which present a Sys-
tematic shift towards the mean-field (MF) estimates. (ii)
Consistent with this shift, the ratio Jo/Js(0) possesses a
value close to that predicted by the MFT. (iii) While the
present value of the universal amplitude ratio D Jo/ho
cannot distinguish between the predictions of di8'erent
theoretical models due to the large uncertainty, the ra-

FIG. 11. The ln J versus In(tioH) isotherms at a few tem-
peratures around the Curie temperature T~ for the Ni sample
No. 3. The straight line represents the best least-squares fit
to the critical isotherm based on Eq. (11) of the text.

used to compute the quantities Y(T) and X(T) from the
Js (T) and yo (T) data. Had the CTS term not been sig-
rnficant, P,ff and p, ff would have possessed constant val-
ues in the temperature ranges covered in Figs. 9 and 10,
an inference in direct contradiction with the observation.
Thus, the importance of the CTS terms in the ACR can-
not be overlooked.

In order to determine the critical exponent b for the
magnetic polarization versus field isotherm taken at T =
T~, we make use of the de6.nition

J = Ao(ppH)'/, e = 0,

Theory
(d = 3,
n = 3)

Experiment
PW PW

3
(d = 3,
n = 1)

Ref. 18 Ref. 19Parameters PW
1

PW
2

MFT

0.392(10)
0.391(10)
1.340(10)
1.314(16)
4.39(2)

1.721(S2)
1.732(20)
1.716(52)
1.705(26)

0.635
1.64(7)
1.53(12)

0.60
1.31(1o)
0.94(19)
1810(45)
1.04(29)
1.07(63)

0.395(10)
0.379(11)
1.345 (10)
1.314(16)
4.52 (2)

1.78S(S4)
1.74O(2O)
1.713(S9)
1.693(27)

0.635
1.64(12)
1.50(12)

0.60
1.35(10)
1.02(20)
2398(53)
1.34(60)
1.19(71)

0.405(10)
0.390(10)
1.350(10)
1.300(15)
4.as(2)

1.762(52)
1.755 (20)
1.697(52)
1.690(25)

0.635
1.73(11)
1.51(12)

0.60
1.37(11)
0.83(15)
1844(55)
1.29(46)
1.18(66)

0.405 (10)
O.392(12)
1.340(10)
1.315(15)
4.31(2)

1.746(73)
1.745(25)
1.690(59)
1.707(27)

0.635
1.73 (11)
1.56(12)

0.60
1.38(10)
0.97(17)
1721(50)
1.20(46)
1.10(58)

0.390(4) 0.325(2) 0.365(3)

1.241(2) 1.386(4)
1.315(15)

P.ff

PefF
b

pb
p+~
P.ff ~

Peff + Jef
Js(o) (T)
Jo/ Js (0)J' /J (0)
~(0) (~~)

p, (0)ho/kiiTo
p(0)ho /knTo

D (T'
D Jo'/ho

D(Jeff)b/heff

0.5
0.378(4)

1.0
1.34(1)
4.58(5) 4.82(2)

1.s67(17)
1.565(5)

4.80(4)
1.752 (29)
1.751(7)

3.0
1.5
1.5

1.731
1.718
0.656

1.52(2) 1.486(1) 1.37(7) 1.732
1.422
0.616

1.7321.581.52
1.037

1.8(s) 1.33(1)1.81 1.0
1.32

References 3, 4, and 20.

TABLE III. Comparison between experiment and theory. Abbreviations: (d = 3, n = 1) = 3D Ising model, (d = 3, n = 3)
= 3D Heisenberg model, MFT = molecular field theory, PW = present work, the numbers 1, 2, 3, and 4 denote the sample
numbers.
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tio p(0)hp/k~Tc has a value which is lower than that
given by the theory. (iv) The Widom scaling relation
P8 = P + p is obeyed and the experimental value of
the gap exponent b, = P + p conforms very well with
the 3D Heisenberg value. (v) Our values for the effec-
tive critical exponents are in excellent agreement with
those determined earlier ' ' 4 by the same and/or
other techniques in similar reduced temperature ranges.
Similarly, our best estimates (corresponding to the data
sets that yield the most stable values for the parame-
ters in the range-of-fit analysis) for the asymptotic criti-
cal exponents [P = 0.395(10) and p = 1.345(10)], uni-
versal amplitude ratios [p(0)hp/kzTc = 1.35(10) and
D Jp /hp —1.20(55)], ratio [Jp/ Js (0) = 1.70(16)], and
the correction-to-scaling amplitudes [aM = —0.40(5)
and a+ = 2.1(4)] are in close conformity with those

[P = 0.390(4), Jp/Js(0) = 1.52(2), DJp/hp = 1 8(5)~
and aM ———0.42(4)] deduced from the neutron depolar-
ization measurements.

As already mentioned in the Introduction (Sec. I),
it is customary to attribute ' the systematic shift ob-
served previously ' ' ' ' ' 24 in the values of effective
critical exponents towards the MF values to the pres-
ence of isotropic dipolar long-range (IDL) interactions.
RG calculations on ferromagnetic systems in which
IDL interactions exist in association with isotropic short-
range (ISR) Heisenberg exchange interactions have re-
vealed that (a) ISR 3D Heisenberg fixed point is
unstable against IDL perturbations and as the temper-
ature is lowered towards the critical point Tc;, from T ))
T~, a crossover from the ISR 3D Heisenberg-like criti-
cal behavior (e )& e, ) to the IDL fixed point (e « e, )
occurs at a temperature e, = g /'~, where the dimension-
less parameter g is a measure of the strength of the dipo-
lar perturbation relative to the exchange energy and the
crossover exponent P equals ' the ISR 3D Heisenberg
susceptibility exponent p~, (b) the values of asymptotic
critical exponents, characterizing the IDL fixed point, are
very close (to within 0.5%) to their ISR 3D Heisen-
berg counterparts but shifted away from the MF val-
ues, and (c) as a consequence of the ISR-IDL crossover,
the effective susceptibility exponent, defined by Eq. (8),
as a function of reduced temperature, i.e. , p,~(e), goes
through a minimum2s (dip) [which is universaPs for weak

(g —10 ) dipolar ferromagnets only] at a temperature
~'. = g ".= gl[T —T~(g)]/[T~(g) —T~(0)]l". wh-e

Tc(0) [Tc(g)] denotes the critical temperature for the
system with ISR Heisenberg exchange interactions only
[ISR Heisenberg plus IDL interactions]. The numerical
estimates g = 3.2 x 10 s, P = pH = 1.37, and eg;~ 1.8
given in Refs. 26—28 yield the values for e, and 6p'p for
Ni as e, = 5.2 x 10 and Ed'p —5.8 x 10 . Consider-
ing that the temperature range, which marks the critical
region above T~ in the present experiments (typically
5.0 x 10 & e & 1.5 x 10; see Table II), lies above

and e~;~, the RG predictions (a)—(c) stated above as-
sert that in the temperature range in question Ni should
exhibit a critical behavior associated with the ISR 3D
Heisenberg fixed point and p,~(e) should increase with
increasing e. Though the critical exponents possess ISR
3D Heisenberg-like values, p,~ decreases with increasing

e (Fig. 10). The latter observation, made previouslyis is

by other workers too, is in direct contradiction with the
RG prediction (c). By contrast, a shallow minimum
in p,~(e) at the theoretically predicted2s value of e~;&
has indeed been observed in an isotropic Heisenberg
ferromagnet with appreciable isotropic dipolar interac-
tions such as EuO for which2 g = 1.7 x 10 . The
other extreme case is represented by antiferromagnets
in which IDL interactions, if present, are expected to
be irrelevant in the RG sense. Consistent with this
theoretical expectation, the nonmonotonic variation of
the effective specific heat exponent with e in the IDL-
ISR crossover region is completely absent in a 3D ISR
Heisenberg antiferromagnet such as RbMnF3.

A possible explanation for the discrepancy between
theory and experiment in the present case could be
sought in an incorrect estimate of e, and E'p'p for Ni; i.e. ,
if one imagines that the observed variation of p,g with e
actually represents the theoretical p,g (e) for e & ~q;~, e, ,
the parameter g should have a value which is three or-
ders of magnitude higher than that previously assumed.
In view of the perfect agreement between the theoret-
ically predicted and experimentally observed variations
of the effective critical exponents with e in the crossover
region in the other two cases mentioned above and the
fact that a value of g as high as 3.2 x 10 (that is,
close those for ferromagnets such as EuO and EuS in
which IDL interactions are known to be comparable in
strength to ISR exchange interactions) for Ni (a ferro-
magnet with high T~) is inconceivable, this possibility is
completely ruled out. Another likely explanation is that
some other type of interactions present in Ni wipes out
the ISR 3D Heisenberg critical behavior within the part
of the critical region covered in the present experiments,
i.e. , 3.0 x 10 & ~e~ & 3.0 x 10 (Tables I and II)
and outside the critical regime the mean-field behavior
takes over. We contend that these interactions are noth-
ing but the isotropic long-range (ILR) exchange interac-
tions of the form —(J /r +

)Sp S„[where 0 & o & 2,
o' & (2 —qisR); gisR is the correlation function critical
exponent corresponding to the ISR 3D Heisenberg fixed
point and d & 2o] which render ISR 3D Heisenberg fixed
point unstable and lead to a crossover to the ILR fixed
point which is characterized by exponent values that are
ISR 3D Heisenberg-like but shifted towards MF values
[cf. observation (i) above]. For instance, if o = 1.91,
one obtains the values for the ILR fixed point critical
exponents P = 0.390, p = 1.341, and 8 = 4.44 from
the expression for prz, R given in Ref. 32 and the scaling
relations that are fairly close to the asymptotic values
determined by us in this work (Table III). The long-range
nature of exchange interactions in Ni is further supported
by the result of spin-wave studies on Ni, that the range
of the exchange interactions in Ni extends well beyond
the fourth nearest-neighbor distance. In this context,
it is interesting to note that a d-dimensional spin sys-
tem with isotropic long-range exchange interactions of
the form given above exhibits the mean-field (or, more
exactly, Gaussian) behaviors2 in the other extreme case
when d ) 2o and a g 2. At this stage, it should be
emphasized that the present results cannot rule out the
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m = f~(h), (12)

where plus and minus signs refer to temperatures above
and bolo~ Tc~ and m = J/I l~ and h—:Ijoa/lel~+~ »e
the scaled magnetic polarization and scaled field, respec-
tively. Equation (12) implies that m as a function of h
falls on two universal curves: f (h) for e & 0 and f+(h)
for e ) 0. A typical plot of lnm against lnh depicted in
Fig. 12 demonstates that the magnetic polarization data
do indeed obey the SES of the form given by Eq. (12).

About a decade ago, Souletie and Tholence showed
that the susceptibility yo of crystalline Ni varies with
temperature in accordance with the generalized Curie-
Weiss law, i.e.,

(13)

existence of another crossover from an ILR fixed point
to an IDL fixed point as lel —i 0. If such a crossover in-
deed occurs, the problems associated with the rounding
of transition at Tc, usually encountered for lel & 10
would preclude its observation.

The lower value of the ratio p(0) ho/A;~Tc [observation
(iii) above] implies that an average effective elementary
moment (p,,g) involved in the FM-PM phase transition
has a value higher than p, (0) (moment per Ni atom
at 0 K). If the value of this ratio, like those of expo-
nents P and p, lies between the 3D ISR Heisenberg and
MF values, the concentration of such effective moments,
c = p, (0)/p ir, should be around 80%. Thus, not all the
moments but only 80% of them actually participate
in the magnetic order-disorder transition at T~. This in-
ference is in consonance with the existence of substantial
short-range magnetic order at temperatures near T~ in
Ni as revealed by the theoretical analysis ' of the spin-
and angle-resolved ultraviolet photoemission data.

The validity of the Widom scaling relation between the
critical exponents P, p, and 8 demands that the magnetic
polarization data taken in the ACR should satisfy the
scaling equation of state (SES)

stant term B~ in order to significantly improve agree-
ment between the variation of yo with T predicted by the
first term in Eq. (13) and the observed yo(T). Recently,
Kaul provided a theoretical basis for the Grst term in
Eq. (13) and calculated both nonanalytic and analytic
corrections, arising from nonlinear (NL) irrelevant scal-
ing fields and NL relevant scaling Gelds, respectively, to
this power law within the framework of RG theories. '

With only the leading correction terms included, his ex-
pression for yo(T) reads as

go(T) = &xt lel (1 + ox, l&l + ox, e).

We have attempted a range-of-fit analysis of the yo (T)
data based on Eqs. (13) and (14) with the following re-
sult. (i) Equation (14) provides a decidedly better fit to
the yo (T) data than Eq. (13) regardless of the temper-
ature range chosen for the fit. (ii) A nonanalytic correc-
tion term [i.e., the second term in Eq. (14)] dominates
over the analytic one [third term in Eq. (14)] in the ACR
[where Eq. (14) with ax, = 0 and Eq. (6) yield identical
results and provide equally good fits to the yo (T) data]
but the reverse is true for T )) Tc, as expected. (iii)
Equation (14) with ax, = 0 provides a good overall fit
(solid curve in Fig. 13) to the yo (T) data over a wide
temperature range T~ & T & 1.4T~ which is better than
that obtained based on Eq. (13) in the same temperature
range (cf. y values in Table IV). (iv) Unlike ax, , Bx is
extremely sensitive to the temperature range chosen for
the fit. (v) In the entire temperature range covered in
the present experiments, the fit based on Eq. (14) with
ax, ——0 [Eq. (13)] yields a value for the critical exponent
p which is nearly the same as the asymptotic (effective)
one; cf. Tables II and IV. Unlike the authors of Ref. 38,
we consider this agreement as fortuitous because these
fits exhibit systematic deviations from the data in the
ACR where the nonanalytic term [i.e., the term ax, lel
in Eq. (14) or a+@ in Eq. (6)] becomes important.
Moreover, the Curie constant, defined as C = A~T~ in

where the Curie constant | = AxTc, t = T/Tc, e

(T —Tc)/T, and B„ is a constant, over a wide tem-
perature range which extends from T~ to 3T~. Note
that these authors found it necessary to include the con-

I I
I I

Tc = B35.09 K

P = 0.390
7 = 1.340 T&T~

7 = 1.340 T&T~
t

P

~r

O
C)

1.2

Range: B31.77 K & T & B3S.BB K

10 12

In (~~/le]~")
FIG. 12. Scaling plot for the Ni sample No. 3.

14

TJTc

FIG. 13. Temperature dependence of inverse initial sus-
ceptibility for the Ni sample No. 3 over the entire temper-
ature range covered in the present experiments. The solid
curve through the data points denotes the best least-squares
fit based on Eq. (14) with az, ——0 and the parameter values
given in Table IV.
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TABLE IV. Parameter values for the fits to the yo (T) data based on Eq. (14) with az, ——0 and Eq. (13) of the text.
= [1/(N —N~)] P, [1 —$Y, (calc)/Y, (expt))] where N and N„denote the total number of data points and fitting parame-

ters, respectively. Abbreviation: PW = present work.

Sample Ref.
No.

Fit
to

Fit range
~min tmax (K) (K)

&x
(10 )

gc

Pa
q. /q. x'

(10 )

PW Eq. (13) 1.00 1.40 635.54(3) 1.310(10) 0.0354(15)
PW Eq. (14) 1.00 1.40 635.53(3) 1.340(10) 0.0290(15) 1.6(4)

7.05(55) 0.69(3) 1.15(5)
0.59(3) 0.98(5)

12.93
12.80

PW Eq. (13) 1.00 1.27 634.66(3) 1.305(10) 0.0353(14)
PW Eq. (14) 1.00 1.27 634.64(2) 1.352(10) 0.0286(14) 2.5(4)

14.44(56) 0.69(3) 1.15(5)
0.58(3) 0.97(5)

10.83
10.61

PW Eq. (13) 1.00 1.26 635.09(3) 1.300(10) 0.0354(15)
PW Eq. (14) 1.00 1.26 635.08(2) 1.342(10) 0.0292(15) 2.8(4)

18.94(56) 0.69(3) 1.15(5)
0.59(3) 0.98(5)

7.02
6.84

PW Eq. (13) 1.00 1.26 634.24(3) 1.310(10) 0.0353(14)
PW Eq. (14) 1.00 1.26 634.23(2) 1.340(10) 0.0297(15) 1.5(5)

6.44(60) 0.69(3) 1.15(5)
0.60(3) 1.00(5)

10.94
9.11

Ni 28
28

Eq. (13) 1.00 1.12
Eq. (13) 1.04 2.90

627.275
627.275

1.309(2)
1.345(2)

0.0320
0.0320

2.72
2.72

0.639
0.639

1.04
1.04

Eq. (13) and C = Axe in Eq. (14), permits a calcu-
lation of the moment per Ni atom in the PM state, q~,
through the relation p,6 ——(2.829) (CA/p) = qc (qua+ 2),
where p g is the effective paramagnetic moment, A is the
atomic weight, and p is the density. The values of q~, so
computed, and the ratio q, /q~ [where q~ is the same as
p, (0)j are listed in Table IV. In the spirit of the Rhodes-
Wohlfarth plot, o a value of the ratio qc/qs close to unity
implies that the itinerant character of the magnetic elec-
trons in Ni cannot be assessed unambiguously on the ba-
sis of the value of qc/qs ratio alone. Alternatively, a
supporting evidence is needed to clarify the issue.

V. SUMMARY AND CONCLUSIONS

An elaborate analysis of high-precision bulk magnetic
polarization data taken in the critical region near the
FM-PM phase transition on polycrystalline Ni samples of
four diferent shapes permits an accurate determination
of the asymptotic critical exponents, the universal arnpli-
tude ratios, and the leading correction-to-scaling arnpli-
tudes. The presently determined values of the asymptotic
critical exponents P, p, and 8 as well as the ratio Jo/ Js(0)
are close to those predicted by the RG calculations for
a 3D isotropic short-range Heisenberg ferromagnet but
shifted towards the mean-Geld values. In our opinion,
such a shift in the exponent and amplitude ratio values,
far from being a signature of the inHuence of isotropic
long-range dipolar interactions on the critical behavior,
indicates a crossover to the fixed point corresponding to

the isotropic long-range exchange interactions.
From the value of the ratio p(0) ho/k~Tc, we infer that

only about 80% of the moments in Ni atually participate
in the FM-PM phase transition. The other important
observations include the following: (i) The exponents P,
p, and h obey the Widom scaling relation P6 = P + p,
and the magnetic polarization data, taken in the asymp-
totic critical region (ACR), satisfy the scaling equation-
of-state characteristic of second-order phase transition,
(ii) a nonanalytic correction term, originating from the
nonlinear irrelevant scaling fields, dominates over the
analytic one, arising on account of the nonlinear rele-
vant scaling Gelds, in the ACR but the reverse is true
for T )) Tc, (iii) the functional dependence of the ini-
tial susceptibility on temperature in a wide temperature
range Tc & T & 1.4' is better described by Eq. (14)
with ax, ——0 than by Eq. (13) and the atomic moment
in the paramagnetic state can be accurately determined
from the Curie constant, C = Axe, and (iv) the shape
anisotropy has no discernible efFect on the low-Geld devi-
ations in the modified Arrott plot.
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