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The equations of the thermodynamic Bethe ansatz for two-chain and multichain quantum spin 1/2
systems are constructed. It is shown that the system is in the antichiral state for any temperature
range and for any value of the external magnetic field (except for the ferromagnetic ground-state
case). The elementary spin excitations carry nonzero chirality and are gapless. Those excitations are
confined into pairs (singlets and triplets), with opposite sign of chiralities, so the state of the system
remains antichiral at any temperature. The reason for such chiral behavior is the existence of the
topological term of the Wess-Zumino nature in the Hamiltonian. We conjecture that the quantum
spin (1/2) multichain system with the Hamiltonian without the topological terms has excitations
with gaps.

The interest in the theoretical description of quantum
many-body low dimensional systems has been renewed
last decade. That interest is connected with the two
most intriguing questions in solid state physics of recent
years —the questions about the nature of the quantum
Hall efFect and the metal oxide compounds. Though the
basic problems of the quantum Hall efFect have already
been solved (see Ref. 1), the questions about the metal
oxides are still open. Following Anderson, a great num-
ber of theoreticians express their hope that the nature
of the high-T superconductivity is connected. not with
the well-known BCS electron-phonon coupling but with
quantum features of the strong two-dimensional (2D) cor-
relation of electrons there (e.g. , with the interaction be-
tween the spin and charge degrees of freedom, spinons
and holons). That is why the problem of the quantum
description of the 2D spin 1/2 Heisenberg system, which
is believed to be a magnetic model for some metal ox-
ides, is one of the main problems in solid state theory
now. There is a number of theoretical models of 2D su-
perconductivity (see, e.g. , Ref. 3). The exotic 2D su-
perconductivity can be understood with the concept of
anyons, quasiparticles carrying intermediate statistics be-
tween bosons and fermions. Anyons are specific to the
(2+1) quantum theories. A way to describe anyons is in
adding the Chem-Simons term to the Lagrangian of the
system, which changes the statistics of the excitations.
One of the most interesting concepts in such anyonic su-
percond. uctivity is the connection between the chiral spin
ordering and the superconductivity. '

Most of the 2D spin quantum theories used. the per-
tubation theory or any modifications of the mean field
approximation. But it is important to solve the quan-
tum many-body problem in order to understand the fea-
tures of 2D quantum strongly correlated electron sys-
tems. Several theoretical models gave the exact solu-
tions to 2D spin or electron systems. Some of them
(devoted to the quantum spin 1/2 systems) carry some
features of anyon physics: they have terms in the Hamil-

tonians which do not conserve T or P symmetries sep-
arately, but only the TP symmetry. ' However, those
theories are far from reality because the interchain cou-
pling reveals itself in mesoscopic corrections only.

Spin properties of metal oxides are known to admit
frustration; see, e.g. , Ref. 11. That is why there are
some theories devoted to the study of the triangular spin
lattice with the antiferromagnetic Heisenberg interaction
(see, e.g. , Ref. 12), which is believed to show the main
features of the spin behavior of the metal oxides.

We know some examples of real cuprates like
Sr2 2Cu2 04 2 which contain weakly coupled ar-
rays of metal-oxide-metal ladders (multiladders with n
chains weakly coupled to each other) with triangular
frustrating bonds. The conductivity for such systems
is connected with those ladders. ' Other examples
of such ladderlike metal oxides are (VO) zPz Oy and
La4+4„Cus+2 04„2. ' From the magnetic point of
view those compounds are spin 1/2 antiferromagnetic
multiladder arrays with frustration.

One of the questions to be answered is about the spin
gap (see, e.g. , Refs. 2 and 14): whether the spin exci-
tations of the 2D Heisenberg spin 1/2 model have gaps
and the quantum disordered ground state of Anderson
emerges, or they are gapless and the ground state is or-
dered.

In our paper we have studied exactly the multichain
spin system with T and P violation, using the quantum
inverse scattering method. We have built the thermo-
dynamics of the system. We have shown that the system
is in the antichiral state for any value of both the external
magnetic field and temperature. Although the elemen-
tary excitations (gapless) behave similarly to classical in-
stantons carrying nonzero spin chirality, only (confined)
pairs with difFerent signs of their chiralities contribute to
the free energy, so they do not change the antichirality of
the system. We have shown that the T and P violating
terms in the Hamiltonian are the reason for the gapless
behavior of the spin excitations. We have also conjec-
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tured that for the multichain (and, naturally, two-chain)
quantum spin (1/2) frustrated system without the T and
P symmetry violation elementary excitations have gaps.

Let us consider first the Hamiltonian of the simplest
case of two spin 1/2 chains of the form (note that it is
the simplest example of a double spin chain which re-
veals frustration; see also the recent paper devoted to
an experiment on the double chain system

R = ) [2((71 0'2 + 0'1 0'2 ~1)

+0 ( 01, nol, n+1 + 02,n&2, n+1)
ikl i i k I,+0 (+1, 2, +1) 1, +1~2,

—h(O,' „+O2 „)]—Fy,

where 01 2 are the operators (the Pauli matrices) of the
ith projection (i = x, y, z) of the spin operator of the
first or second chain in site n, 6 is the external magnetic
field, 0 is the interchain coupling parameter, and Ef is
the energy of the "ferromagnetic" state.

The third term in Eq. (1) has a nonusual form.
It may originate from the spin-orbital coupling for low
enough temperatures, for which the orbital degrees of
freedom of electrons are frozen [0 is proportional to
(z'" (I 1

—L2 +1)L1 +1I2 ), where Li 2 is the op-
erator of the ith projection of orbital momentum of the
electron in the nth site on the first or second chain and
the angular brackets denote the averaging]. One can see
from Eq. (1) that the third term breaks both T and
P symmetries separately, the TP symmetry being con-
served. Only substitutions of 1 for 2 and (n + 1) for
(n —1) and vice versa do not change the Hamiltonian.
We can understand the structure of that term in the clas-
sical long —wave limit. If n is the spin density [n = 1 for
the site spin 1/2 (0) value], one can see that the effect of
the third term is equivalent to (for the phase with a zero
value of the magnetization)

Equation (2) is the topological charge (or Noether
charge) for the chiral field ni which is the time com-
ponent of the conserved topological current. One can
deform continuously two n fields into one another if and
only if Io 1

——Io 2. For the classical field (Io/0) is an
integer numberis (or Pontrjagin index), that is the num-
ber of instantons in the system. On the other hand, one
can recognize in (2) the topological current known as the
Chem-Simons term, which is specific for 2D systems.
Note that in D = 1 or 3, we cannot construct a scalar
(or pseudoscalar) with the properties of the topological
charge, e.g. , for 3D we have the vector I instead of Ip,
and can construct the Hopf invariant, which has inte-
ger values only. Ip is the homotopy class characteristic
vr2(S ) = Z. The spin density distribution is topologi-
cally nontrivial if vr2(S ) g 0. The term under consider-
ation is the total time derivative, BpIp ——0, so it does
not change the classical equations of motion.

Prom the classical point of view the system with the
Hamiltonian (1) is frustrated. The problem of the ground
state for the spin system with frustration is one of the
most intriguing issues in magnetic properties of solids.
Recently, real systems with trianglelike frustrating spin-
spin interactions between the two chains with the site
spin 1/2 [phosphates VO(HPO4)4H20] were examined
experimentally. Another system which reveals some
properties of the two-chain spin quantum model (it has
topological spin excitations) is the two-plane quantum
Hall efFect. 21

Using the quantum inverse scattering method we
have constructed the L operator 8 and the transfer ma-
trix 7 of the system (see Ref. 22):

Z(A) = L. .. , „(A + 0)I....., „(A)I,...., „(A)
xL .. .„(A —0),

7 (A) = T(A)T(A —0),

where L(A) and T(A) are the standard L operator and
transfer matrix of the single spin 1/2 chain, A is the spec-
tral parameter, and 01 g p are the auxiliary quantum sub-
space indices. The eigenvalue of 7 is equal to

( A, —A+ i A" (A+ 0)"
A —A (A+i) (A+ 0+ i)~ -"- A —A )N

g=l 2 2=1 2

A, +0 —A+i A"(A —0)" A —0 —A, +'l
A. + 0 —A (A+ i)~(A —0+ i)~ --. - A —0 —A )

'

j 1 2
(5)

where N is the number of sites on each chain, M is the number of down spins, and A~ are the spin rapidities determined
from the Bethe ansatz equations

AN(A + 0)N

(A, + i)~(A, + 0+ i)iv

M
Ak —A~+i

~ --- Pk —P —Zk=1 2

kg j, j=1,2, . . . , M.

The Hamiltonian (1) is the logarithmic derivative of the transfer matrix (4); another form of Eq. (1) without the
magnetic field is
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&=) (2(P, , +P, , „)+0'(P, , „+P, , „)
+0[(P, , +P, , „„),(P. . . +P, , „)])+ o t,

where P is the permutation operator and the square
brackets denote the commutator; so the eigenvalue of the
Hamiltonian is equal to

M

E = —2h(N —M) + 2) [A„(Ay+i)
k=1

+(Ak + 0) '(A& + 0+ i) '].

Deriving the values of A~ from Eqs. (6) and substitut-
ing them into Eq. (8), we obtain the system energy in
the state with M spins down. To solve the set (6) we
use the Hulthen method; in the thermodynamic limit
N —+ oo, M ~ oo, (M/N) = m being fixed, we have
(A, -+ A, —-')

7rp(A) + p(u)

g [(A —p)'+ 1]

= —,'((A'+-.') '+[(A+0)'+-.') ') (9)

E = —2h(N —M) —2N p(A)((A' + 4)
'

+[(A+ 0) + -'] ')dA, (10)

where the integration limits Q are determined from

p(A)dA.

In the simple case h = 0, m = 2, Q = oo, we have for
the ground-state energy

1 + cos(cd0)
deed.1+ exp

(12)

ikl r i i i k l
1n 2n+1J 1n+1 2n'

In Ref. 22 we called that ground state the "antichiral"
one.

1+28'For h « 16&1+4&,~, using the Wiener-Hopf method
(see, e.g. , Ref. 24) we obtain

@o = @o~~=o —N

For 6 & 16 1+4g2 the ground-state energy is(1+28')

Equation (12) is an even function of the spin chirality
parameter 0: we define the spin chirality of the system
as the nonzero average value of the operator

We can see that the nonzero magnetic field does not
change the 0 dependence of the ground-state energy. It
means that a magnetic field (less then the critical value)
does not change the antichirality of the system or the
number of excitations like instantons and anti-instantons
which form the Dirac sea of the system.

For a simple doublet excitation energy (which is the
quantum analog of a classical instanton solution in some
sense) following Ref. 25 we have

Eg = Eo + n(sech(vrAo) + sech[sr(Ao + 0)]), (14)

where Ao is the rapidity of the spinon. Two doublet ex-
citations (spinons) carrying diKerent chiralities (winding
numbers with opposite signs) w'ith both spins S =

2 con-
fine into the singlet and triplet states; see Ref. 25. (Note
that singlet and triplet states can be formed by the con-
finement of strings with higher spin values but carrying
the opposite signs of the spin chiralities; see below. )

The doublet excitation is gapless (the same is true for
singlet and triplet states). The question whether the spin
excitation of a two-chain spin 1/2 frustrated system is
gapless is crucial for the understanding of antiferromag-
netic and superconducting ordering in some metal ox-
ides with a specific role of two-chain coupling. Here
we have shown that the exact excitations (doublets, sin-
glets, and triplets) of the Hamiltonian (1) are gapless.
But that Hamiltonian contains the 0 vacuum (the topo-
logical charge) terms. The situation is analogous to Hal-
dane's picture of 1D antiferromagnetic spin chains (see,
e.g. , Refs. 26 and 27). Haldane argued that the integer
spin chain has a gap, and the half-integer one has not.
But the only difference in the Geld theory description of
integer and half-integer spin 1D quantum systems is the
0 vacuum term in the Lagrangian, which does not change
the classical properties but is essential for the quantum
spin excitation problem. For half-integer antiferromag-
netic chains 0 g 0, and it causes the gap to vanis}i. 27

Using reasoning analogous to Haldane's, we may sup-
pose that existence of the 0 term in the Hamiltonian (1)
implies the gapless behavior of our system. The same
difference takes place in the 2D classical Wess-Zumino
model and the 2D classical nonlinear 0 model, ' where
the Bethe ansatz chiral equations are similar to our Eqs.
(6) (note that in the cited papers the numbers of ex-
citations with the opposite signs of their chiralities may
difFer from each other, but not in our case) and spin exci-
tations have masses; see also Ref. 28. That is why for the
frustrated two-chain system with the Hamiltonian with-
out topological charge terms we can conjecture that the
quantum spin excitations do have gaps.

Doublet excitation changes the chiral properties of the
system, because Eq. (13) is not an even function of 0.
In Ref. 22 we suggested that those excitations (from the
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classical point of view they look like instantons, and
the total number of excitations like instantons and anti-
instantons depends on the temperature) form a chiral
spin liquid. To answer the question if it is so we have to
construct the thermodynamics.

Let us build the thermodynamics, following the Refs.
30—32. Using the string hypothesis within the accuracy
of O(exp( —bN)), h & 0,

A ' =A" +i(n+1 —2j), j=1 2, . . . , n,
where

~-(~) = exp[ —(n+ 2)(cu(]

f(n+ 1)
exp[ —n)(u)]

f (n —1)

[1 + exp( —i0cu)]

f(1)f(n)

and low temperatures. For the first case of high temper-
atures, T )) 1, (h/T) being fixed, we have for the Fourier
Component Of pn)

where o; determines the string and n means that the ra-
pidity belongs to the bound state of the n —A string. We
can derive the equations for the densities of quasiparticles
and quasiholes p (A) and p" (A), respectively:

n+1 —n —1z —z
z —z —' (24)

n~ 'f(4A' + n') ' + [4(A + 0) ' + n']

= p„"(A) + ) A„p (A), (16)

z = exp( —h/T),

Substituting the solution (23) into Eqs. (19) and (20) we
obtain

where

m=1

&-,- = [ln —ml]+2[In —m+211+ "
+2 [n + m —2] + [n + m], (17)

&1+20'l—= —2htanh(h/T) + 32 [tanh (h/T) —1],N (1+402)

(25)

m' = 2tanh(h/T). (26)
[n]f(x) = vr

n
n2+ 4(x —y)2

The energy of the system is equal to

(26 —16(4A' + n')

and the magnetization per site is

COC&—= —2h+) n
n=1 —CX)

—16[4(A+ 0)'+ n'] ')p„(A)dA, (19)

From Eqs. (25) and (26) one can obviously see that
the magnetization of the system in this limit is the well-
known one of the free two spin 1/2 spins (note that we
have o instead of s). As to the energy (25), we see that
it is an even function of 0. That is why we can conclude
that for the high temperature limit our system is in the
antichiral state too. This means that the higher spin
strings of opposite chiralities are confined in pairs, too.

For the low temperature limit it is of use to change the
variables:

m. = 1- )-n
n=—1

p„(A)dA. (20)
(

s„(A) = Tln

—=25
n=1

—p„"inp„"]dA

[(p„+p„")ln(p„+ p„") —p„lnp„

Minimizing the free energy of the system E = E-
T8, where 8 is the entropy of the system and T is the
temperature, The function s (A) is the dressed energy of the n string.

The zero temperature limit of Eq. (22) yields

= 2h —16(4 (A + 1) + [4(A+ 0) + 1]

-[2]&i (27)

with respect to p (A) we have (see Ref. 30)

n(2h. —16(4A' + n') ' —16[4(A + 0)' + n'] ' j

=Tin 1+ ——T ) A ln 1+ „.(22)
f h, ) ~ (

s„=2k + [1]E+ „n= 2, 3, . . . , (28)

where' =e if'(O, c =Oife) O, e+ =Oifc(0,
s+ = s if s ) 0. From Eqs. (27) and (28) one can see
that the ground state is formed by the Dirac sea filled by
the excitations of n = 1 only. At low temperatures one
has for the free energy for, e.g. , 6 ( 16 &+4,

Solving Eqs. (16) and (22) and substituting the solution,
e.g. , into Eqs. (19)—(21) we can find the energy, magne-
tization, and entropy of the system. However Eqs. (16)
and (22) are nonlinear integral equations, and we can
solve them analytically only in two limiting cases of high where

E'(T, h) = Eo —N ( ) +.
24W(Qi)

(29)
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V(x) + (2~) ' 2&(y)
Gg

~, (x —y)2+1

= --'((4*'+ 1)-'+ [4(-+ 0)'+ 1]-')

W(x) + (2~) ' 2W(y)
dg

~, (x —y)'+1

= 8~-'(x(4x'+ 1)-'+ (x+ 0) [4(x+ 0)'+ 1]-').
At low temperatures we have (see Ref. 33)

F(T, 6) = Ep —N(T /24) +. (30)

and the low temperature part of the specific heat is equal
to T/12. Note that for the critical magnetic field region
the low temperature corrections begin with the term pro-

portional to T ~ . We can see from Eq. (30) that for low
temperatures the O dependence of the energy is the same
as for the ground state (for other values of the magnetic
field the same is true). Earlier we have seen that for high
temperature limit the system is in the antichiral state
too. That is why we can say that our system is antichi-
ral for any range of temperature and external magnetic
field. This result is correct because the temperature does
not change the winding numbers (the topological proper-
ties) of the system, so the system remains antichiral for
nonzero temperatures as for the ground state. To change
the antichirality of the system we have to change the pe-
riodic boundary conditions into free ones. The results of
that study will be reported elsewhere.

We have explained the features of the studied quantum
spin model with the simplest example of two coupled
chains. For the L spin 1/2 chains (L is even) with both
inter- and intrachain interactions we have

7(A) = T(A —0i)T(A —02) . T(A —01,), (31)

L

W=) ) P..„„„„+ O P&r, n &r, n+1
)

+) 0„,~l 0', I, l[P~, „,„,(P, „,„+, +P, „,„+,)]+ +const, (32)

E = h(LN —2M)—
L M

+) ) (AA. + 0„i) '(Ay +0„i+i)

where Ak are the solutions to the set of equations

AP(A, + 0. ,)"
.--- (A, + i)~(A, + 0, , + i)iv (34)

kg j, j=1,2, . . . , M.

It follows from Eqs. (32)—(34) that in the limit 0; y ~ 0

where O,. I, ——O,- —OI„OL+k ——OI„and P is the permuta-
tion operator; in the first term we must replace P L
with P . .. which means toroidal winding bound-
ary conditions (see also Ref. 34); square brackets denote
the commutator and we have omitted the higher order
terms in permutation operators. The third term and the
omitted terms in Eq. (31) have the same nature as the
third term in Eq. (1) because they all do not change the
classical equations of motion (they are the total deriva-
tives), and they are the higher order topological lattice
charges of the multichain spin quantum system in spin
operators. The omitted terms are nonlocal, which is con-
sistent with the nature of the (2+1) statistical Chern-
Simons interaction. The energy of the M spins down
state is equal to

L

Ep ———N) 1+ exp(i~0„, i)I
1+ exp(l~l)

(35)

and the magnetization has zero value.
The doublet excitation (spinon) energy is equal to

E = Ep + 7r ) sech [7r (Ap + 0„ i )].

All doublet excitations confine into singlets and triplets
as for the two-chain case. Despite the chiral behavior of
the single doublet (it causes nontrivial topology of the
spin density and carries a nonzero chirality) the total
topological properties of the system are unchanged: the
system is in the antichiral state. A more rigorous state-
ment is that the background (the Dirac sea) follows the
excitations carrying nonzero chiralities (or nonzero topo-
logical charge) in such a way that the total spin system
remains antichiral. The nonzero temperature properties
are analogous to the former two-chain case. The set of
equations describing the multichain frustrated spin sys-
tem is

we have the 1D spin 1/2 chain with LN sites, and if
0; k ~ oo we have L noninteracting spin 1/2 chains with
N sites. We can solve Eqs. (34) in the limit N —+ oo,
M ~ oo, m = (M/N) being fixed. For the Ii = 0 case
the ground-state energy is
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= Tin 1+ —" —T ) A„ inl 1+ „.(37)
~-) ='

' «-")
All the antichiral properties are conserved for the I

spin chain case. The same conjecture as for two-chain
case can be made: the exact excitation energy of the
spinon is gapless; however, the excitations for the frus-
trated multichain quantum spin Hamiltonian without the
topological terms have gaps. The same is valid, naturally,
for higher spin strings.

The generalization of the results of this paper for the
case of the multichain strongly correlated electron exactly
solvable model with spin and charge chiralities (or T and
P symmetry violation) will be reported later.

To conclude, we have studied the exact solutions of the
two-chain and multichain frustrated spin 1/2 systems.
We have shown that the ground state and the nonzero
temperature states reveal antichiral properties for any
values of the external magnetic field (except for the triv-
ial "ferromagnetic" case in the ground state). The ele-
mentary excitations of the considered system are spinons
(analogous to the classical instantons carrying nonzero
spin chirality or nontrivial topology of the spin density
distribution) but only pairs of such excitations with op-
posite spin chiral charges contribute to the free energy
of the system. The same statement holds for the higher
spin strings. The elementary excitations of the model are
gapless, but for the multichain quantum spin 1/2 anti-
ferromagnetic frustrated system without the topological
terms in the Hamiltonian, breaking T and P symmetries
separately, we can conjecture that the elementary exci-
tations have gaps.
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