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Magnetic and hyperfine properties of fcc Fe
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First- rinciples electronic-structure calculations based on
'

y-d on densit -functional theory were performed
for 62-atom embedded clusters representing fcc iron with antiferromagnetic and gnd ferroma netic spin
structures. The results obtaine in ica e a ed

'
d t th t the large difference observed experimenta y in the magni-

~ ~ ~ ~ ~

tude of the hyperfine fields of antiferromagnetic and ferromagne y- 'ga netic -Fe ori inates mainly from different
signs of the conduction electrons' contribution, and not, rom g

~ ~ f lar e differences in the Fe magnetic mo-
rnent.

I. INTRODUCTION

Pure bulk fcc (y) iron only exists at very high tempera-
t (between 1183 and 1667 K); however, fcc Fe may beures e w
stabilized down to very low temperatures either as sma
y-Fe coherent precipitates in a Cu (Refs. 1 —5) or Cu al-
loy (Refs. 6 and 7) matrix or as thin epitaxial films on a
Cu substrate. ' Recently, there has been great interest in
investigating the properties of y-Fe thus obtained, driven
also by a number of band-structure calculations that
showed, among other features, the existence of several
magnetic states. ' ' The relative stability of the
different magnetic states depends critically on the lattice
constant, as does the value of the Fe magnetic moment. '

The existence of multiple magnetic states may be related
to the properties of y-Fe-based INVAR alloys.

Experimentally, variations in the lattice constant of fcc
Fe may be obtained by substituting Cu by Cu alloys with
components of larger atomic volume. Such a procedure
was adopted for coherent y-Fe precipitates and films in
Cu-Au and Cu-Al alloys. Pressure may be also used for
further lattice constant variation. By use of Fe
Mossbauer spectroscopy, the hyperfine field at the Fe nu-
cleus has been measured for y-iron precipitates in
Cu Al and thin films on Cu and Cu3Au. The re-

11suits, summarized in Fig. 6 of Ref. 9, show that for sma
Wigner-Seitz radii small values of the hyperfine fields HF
are obtained (below 5 T); above approximately r, =1 r =6.68

th magnitude of H rises abruptly to values arounda.u. , e m F
1135 T. According to band-structure calculations, at sma

lattice constants an antiferromagnetic phase of y-Fe pre-
vails, and at large lattice constants a high-spin ferromag-

10, 13netic phase is more stable.
In order to investigate the origin of the remarkable in-

crease in HF at larger lattice constants, we have per-
formed density-functional electronic-structure calcula-
t' s for a 62-atom embedded cluster representing fcc Fe.ions or a

ofMagnetic moments were obtained for several values o
the lattice constant. Two phases were considered, fer-
romagnetic (FM) at larger interatomic distances, and an-
tiferromagnetic (AFM) at smaller distances. The elec-

tronic spin density at the Fe nucleus obtained was used to
calculate the hyperfine field.

In Sec. II, we brieAy describe the method employed for
the calculations, in Sec. III we present and discuss the re-
sults, and in Sec. IV we summarize our conclusions.

II. THEORETICAL METHOD

The cluster is of cubic geometry (see Fig. 1) and is em-
bedded in the potential of several layers of neighbor
atoms to simulate the external portion of the crystal.
Several lattice constants were considered, varying from
a =3.38 to 3.77 A. For smaller values, an antiferromag-
netic phase consisting of alternating layers of up and
down spins normal to the (001) direction was considered;
for larger interatomic distances, we studied a ferromag-
netic phase.

The first-principles self-consistent spin-polarized
discrete variational method was employed VM in
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FIG. 1. 62-atom cluster representing fcc iron. Sphereseres of
different shades are used to show more clearly the alternating
layers of up and down spins of the antiferromagnetic phase.
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the framework of density-functional theory. ' The
Kohn-Sham equations in the local-density approximation
are solved self-consistently (in atomic units):

( —V /2+ V, + V„, )p; =E; p;

where V, is the Coulomb potential (nuclear and electron-
ic) and V„, is the local exchange-correlation potential.
Here, V, was considered as given by von Barth and
Hedin. '

P; are the numerical cluster spin-orbitals from
which is constructed the cluster spin-density for each
spin o.:

p (r)=gn; P, (r) (2)

where n; is the occupation of cluster spin-orbital P,
In the construction of the potential in the Kohn-Sham

Hamiltonian of Eq. (1), a model density is employed to fa-
cilitate the computation of the Coulomb terms. ' ' ' The
model density is a multipolar expansion centered on the
cluster nuclei, fitted by a least-squares procedure to the
"exact" density; in the present calculations, only overlap-
ping spherical terms were included, which is adequate for
a compact metal. The functions P; are expanded on a
basis of numerical atomic orbitals, obtained by local-
density atomic calculations. The variational procedure
leads to the conventional secular equations, which are
solved self-consistently on a three-dimensional grid. This
grid is random (diophantine)'+' everywhere, except in-
side a sphere of radius -2.00 a.u. centered at the Fe nu-
cleus where the hyperfine field is calculated. In this
sphere, a regular grid is adopted for higher numerical
precision. A total of -24000 points is employed for this
cluster.

The DVM cluster method has proved to be very useful
in studying magnetic and hyperfine properties of several
metallic systems. ' Magnetic moments p were ob-
tained by subtracting the spin-up and spin-down electron-
ic densities and integrating within the Wigner-Seitz
sphere. The Fermi or contact hyperfine fields were ob-
tained by the usual expression

H, =g/3vrp~[pt(0) —pg(0)],

where pz is the Bohr magneton and the term in brackets
is the difference between the electronic density at the nu-
cleus for spin up and spin down. The conduction elec-
tron contribution is obtained directly from the cluster
valence eigenfunctions. The core electron contribution
(ls, 2s, and 3s) is obtained in a separate local-spin-density
calculation for the Fe atom, in which the radial potential
is constructed from charge and spin densities as in the
cluster. The dipolar contribution is zero by symmetry
and the orbital contribution may be neglected, so the to-
tal field HF ——-H, . Both local properties p and HF are cal-
culated at the innermost Fe atoms in the cluster, since
they resemble most closely the atoms in bulk Fe.

III. RESULTS AND DISCUSSION

In Fig. 2 are plotted the computed values of p for
several Wigner-Seitz radii r, . It may be seen that for the

2.5 2.6

r, (a.u. )
2.7 2.8

FIG. 2. Magnetic moments p plotted against the Wigner-
Seitz radius r, for y-Fe. AFM, antiferromagnetic; FM, fer-
romagnetic.

antiferromagnetic phase p increases quite sharply with r, .
The high-spin ferromagnetic phase shows a much smaller
rate of increase of p with r, . At r, =2.689 a.u. , which
corresponds approximately to the value for which a sud-
den increase in HF is experimentally observed, we have
performed calculations for both antiferromagnetic and
ferromagnetic configurations. At this point, a gap of
0.46pz is present between p in the ferromagnetic and an-
tiferromagnetic phases; this, however, seems hardly likely
to be responsible for the gap of approximately 300 KOe
in HF measured in the Mossbauer experiments. Inciden-
tally, the values of p obtained, as well as the inclination
of the curves, agree reasonably well with results from
band-structure calculation, ' taking into account the
different methodologies.

The theoretically obtained values of HF are plotted
against r, in Fig. 3. The signs of HF were not obtained
experimentally. For the ferromagnetic phase, the calcu-
lated values agree well with experiment (Ref. 9). For the
antiferromagnetic phase the magnitudes of the computed
results are larger than those measured. However, it is
clear that the predicted values of HF for ferromagnetic
and antiferromagnetic phases are separated by a large
gap, as in the Mossbauer experiments.

The explanation for the apparent discrepancy between
a large gap for HF and a small gap for p is obtained by
examining Fig. 3. Here are also plotted separately the
conduction electrons (4s) and core contributions to FXF.
It may be observed that for the antiferromagnetic phase
the conduction electrons give a positive contribution to
HF, which, added to the negative core contribution, re-
sults in HF values of small magnitude. On the contrary,
for the ferromagnetic phase the conduction electrons'
contribution to HF is negative as is the core contribution,
so that those two add together to give a large value for
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100— TABLE I. Atomic orbital contributions to the local magnetic
moment p for AFM and FM fcc Fe (in p&).

AFM' FMb

-100—

-200—
AFM

3d
4s
4p

'r, =2.63 a.u.
r =2.72 a.u.

1.41
0.04
0.05

2.50
—0.01
—0.05

-300—

-400

2.4 2.5 2.6

r, (a.u. )

I

2.7

FM

2.8

FIG. 3. Total hyperfine field HF and components plotted
against the Wigner-Seitz radius r, . AFM, antiferromagnetic;
FM, ferromagnetic. Conduction electrons' contribution,
—- ——;core electrons' contribution, ———;total,

The cause of the different signs of the conduction elec-
tron contribution for ferromagnetic and antiferromagnet-
ic y-Fe is the difFerence in polarization of these electrons
by the 3d moment. In the ferromagnetic case, the con-
duction (4s and 4p) electrons are polarized antiparallel to
the 3d moment, which results in a larger 4s density at the
nucleus for spin down than for spin up and thus a nega-
tive contribution to Hz [see Eq. (3)]. In the antiferromag-
netic case, the conduction electrons are polarized parallel
to the 3d moment, and thus the 4s gives a positive contri-
bution to the spin density at the nucleus. To illustrate this
point, calculated local magnetic moments for the AFM
and FM phases are given in Table I, for values of r,
within the ranges studied, for 3d, 4s, and 4p orbitals of
Fe. These were obtained by a Mulliken population
analysis;' ' although this does not have quantitative
value due to a certain degree of dependence on the basis
set used, and on the choice of the manner of partitioning
the overlap term, there is no ambiguity on the signs ob-
tained.

From these results we may infer that the most probable
cause for the discrepancy found between calculated and
experimental values of HF for the antiferromagnetic
phase is that the conduction-electron contribution is
somewhat underestimated in the calculation. Since the
resulting H~ depends on a delicate balance between a
positive and a negative term, a small error in the comput-
ed value of the positive conduction electrons' contribu-
tion, which is more difficult to obtain with precision, will
be amplified in the final result.

Recent neutron-scattering experiments for y-Fe pre-
cipitates in Cu and Cu alloys have given evidence that the
spin structure of antiferromagnetic y-Fe has a spiral
form, ' more complex than the simple structure of al-
ternating layers of up and down spins adopted here and
deduced from earlier neutron-scattering experiments. '

The spin structure, however, depends on the size of the
particles measured. Nevertheless, the results presented
here for the antiferromagnetic phase are generally valid,
the p and H, values being subject to corrections if a more
complex antiferromagnetic spin structure is actually
present.

The calculations reported here are nonrelativistic, al-
though the core electrons of Fe may be expected to
present substantial relativistic effects. However, we esti-
mate the nonrelativistic treatment to be sufBciently accu-
rate since it has been demonstrated that the contact
hyperfine field is considerably less affected by the change
of the wave functions due to the relativistic treatment, as
compared, with example, with Mossbauer isomer shifts.

IV. CONCLUSIONS

To summarize, we conclude that the large difference
observed experimentally in the magnitude of the
hyperfine fields of antiferromagnetic and ferromagnetic
y-Fe originates mainly from difFerent signs of the
conduction-electron-contribution, which is positive for
antiferromagnetic and negative for ferromagnetic, and
not from large differences in the Fe magnetic moment in
the two phases. This result shows clearly that the com-
mon practice of considering the hyperfine field as propor-
tional to the magnetic moment may be very misleading.
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