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We present a method for calculating the hybridization induced f finterio-nic interaction in systems

where a d-electron species also hybridizes with the same Fermi sea. For the ternary and quaternary
physical systems of interest, typically the f species is a light rare earth (e.g., Ce or Pr) or a light actinide

(U) involving a partially filled f shell, and there may be experimental evidence of competition between

magnetic ordering of the f and d-elec-tron systems (e.g. , when f is U and d is Mn in UMnzSi2 or
UMn2Gez) or between magnetic ordering for the f-ionic system and superconductivity (e.g. , when f is Pr
and d is Cu in Yl Pr„Ba2Cu307 —y). The method treats first the strong hybridization between the d and

the conduction electrons to obtain a new ground state with delocalized d electrons. Then it calculates
the f finterionic in-teraction by perturbation theory. We find that the d electrons affect the f fion in--
teraction by modifying the conduction electron spectral function. This process is quite sensitive to the

degree of correlations among the d electrons.

I. INTRODUCTION

In recent years there has been considerable interest in
the behavior of partially delocalized light rare-earth and
actinide systems where cooperative hybridization be-
tween a lattice of somewhat delocalized f-electron ions
and the non-f band electrons gives rise to orbitally driven
magnetic ordering phenomena. These materials are
characterized by extremely high anisotropy in the equi-
librium, excitation and critical magnetic behavior, and
often by anomalously strong damping of the excita-
tions. ' The theory of this magnetic ordering and associ-
ated behavior is by now well developed' when a lattice
of only a single f-electron species, such as cerium or
uranium, is present. Interest in generalizing this under-
standing to the situation where there is a d-electron
species also present is strongly motivated by the magnetic
competition ' between d and f electrons that occurs in
ternary and quaternary compounds such as the com-
pounds of the ThCr2S2-type structure of the type
UMn2Xz and RMn2Xz (where R is a rare earth [Ce, Pr,
Nd] and X is Si, [Ge]}. In these compounds, if the Mn is
replaced by another transition metal, there is no magnet-
ic ordering of the transition metal. For the light rare-
earth/Mn compounds there is magnetic ordering of Mn
moments, with ordering temperatures above 300 K, that
either is ferromagnetic or is antiferromagnetic with Mn
planes that are ferromagnetic in alternating directions;
and the rare-earth sublattices show no ordering. Quite
different magnetic ordering behavior occurs for the corre-
sponding heavy rare-earth compounds where the more

localized f electrons presumably have negligible hybridi-
zation, and where typically there is evidence of magnetic
ordering on the rare-earth site. For the UMnzXz com-
pounds the magnetic ordering of the uranium sublattice
is strongly coupled with that of the Mn sublattices.

Competition etfects between d and f electrons are also
observed in the study of the inAuence of praseodymi-
un' ' and curium'" on the superconducting properties
of the CuO-based high-T, superconductors of the type
RBa2Cu307 (R = Y, rare earth). PrBa2Cu30~ is unique
among the members of the isostructural orthorhombic
RBa2Cu3O7 series in not being a superconductor. As Pr
is substituted for Y, superconductivity disappears at
somewhat over 60 go Pr. Furthermore, at the Pr-rich end
the magnetic ordering temperature is anomalously high,
being 17 K for PrBa2Cu307. Substitution of the actinide
curium for Y has quite similar effects, ' destroying super-
conductivity and with apparent magnetic ordering at 22
K.

There has been much interest in the possible mecha-
nism for the ability of praseodymium to quench the su-
perconductivity, with two different mechanisms being
proposed. ' One of these' '" envisions the praseodymi-
um as going in as Pr +, and thus by charge-transfer
filling oxygen p holes, thereby quenching the pairing in-
teraction. The other point of view' considers hybridiza-
tion between copper d electrons and oxygen p electrons as
being essential for the pairing mechanism, and that the
competing hybridization of the copper d electrons with
the oxygen p electrons destroys this pairing mechanism.
(The Pr can be either trivalent or tetravalent in this pic-
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ture. ) In connection with this latter competing hybridi-
zation viewpoint, it is interesting that the magnetic order-
ing in PrBa2Cu307 shows key characteristics of orbitally
driven (hybridizing) magnetic ordering, ' i.e., anomalous-
ly high ordering temperature, reduced ordered moment,
and anomalously broadened magnetic excitations. ' '
The competing hybridization picture also receives strong
support from the neutron inelastic scattering results, ' '
taken in conjunction with the specific heat and suscepti-
bility behavior, showing that the crystal-field splitting is
completely or predominantly that of trivalent Pr (at least
90% Pr +), which would rule out the charge-transfer/
hole filling mechanism. It is also interesting that the or-
dering for both the orbitally driven magnetism and the
CuO-type superconductivity develops its main strength in
a planar unit. (For the orbitally driven magnetism this is
typically a ferromagnetic unit that may be coupled to
other planar units ferromagnetically or antiferromagneti-
cally. ) Given the present understanding of orbitally
driven magnetisrn, ' this evokes the picture of two sub-
lattices (i.e., of Pr with partially filled f shell, and of Cu
with partially filled d shell) competing to cooperatively
hybridize (form weak covalent bonds) with oxygen p
states in a sheetlike fashion. The valence fluctuations as
electrons jump in and out of the f-electron shell provide
the interionic coupling mechanism for the orbitally
driven magnetism and presumably the same is true for
the d-electron superconductivity. The matter of deciding
which mechanism explains the ability of Pr to destroy su-
perconductivity may be important in lending support to,
or in eliminating, mechanisms proposed for the high-
ternperature superconductivity in the ceramic cuprates.
For example, as discussed recently by Gao and Zhang,
a superconductivity mechanism based on bipolaron
effects may provide a natural framework yielding the full
range of behavior in the Y& Pr Ba2Cu307 system;
and it might be illuminating to try to base such a model
on calculations starting from fundamental theory in a
manner analogous to the treatment herein. It would be
extremely interesting to see if a detailed calculation based
on the present formulation provides a hybridized state of
the type envisioned in the model of Fehrenbacher and
Rice. ' In that model the absence of superconductivity
would be explained by Pr immobilizing mobile holes in
the Cu-0 planes by the existence of a local Pr(4f)-
O(2p~) hybridized state which binds holes to the Pr sites.
The existence of this state implies a percentage of Pr +

somewhat larger than the maximum indicated by the ex-
perimental behavior, ' but sufficiently close as not to pre-
clude this model subject to fully quantitative verification.

The first development necessary in an effort to under-
stand the magnetic behavior of these d felectron systems-
is the construction of an effective Hamiltonian. This task
is in general a very difficult one since the three types of
electrons, i.e., conduction, d and f electrons can interact
with each other, and a full self-consistent approach which
takes into account all feedback effects is necessary. Some
progress along these lines has been made in the so-called
parquet approximations to the quasiparticle interac-
tions. ' In the present paper we show that by properly
identifying the most important feedback effects in the sys-

tems just described, a more practical and tractable ap-
proach is possible. We argue that when the f-electron
ions show local magnetic moments the most significant
renormalizations of the conduction band are due to the
hybridization with the d electrons. Thus, we propose a
method that treats first the strong hybridization between
the d and the conduction electrons to obtain a new
ground state with delocalized d electrons. Then it calcu-
lates the f fion -interaction by an established procedure
using perturbation theory. We find that the d elec-
trons affect the f fion-interaction by modifying the
conduction-electron spectral function. This process is
quite sensitive to the degree of correlations among the d
electrons.

The paper is organized as follows: In Sec. II, we
present some technical background and generalize the ex-
isting theory ' to compute the two-ion interactions in a
system with two localized f species in each unit cell by
summing all contributions coming from the interchange
of particle-hole excitations in the conduction band and
from kinetic superexchange. Then in Sec. III, we intro-
duce a method to calculate the f fion inter-action in a d-

f electron system with strongly delocalized d electrons,
the situation of interest as discussed above In Sec.. IV we

apply this formalism to a d fsystem inte-racting with a
free-electron conduction band; and show that the ffion-
interaction is substantially affected by the correlations
(Coulomb repulsion effects) among the d electrons. Final-
ly, Sec. V contains our concluding remarks. A brief pre-
liminary report of the work has appeared in Ref. 24.

II. TECHNICAL BACKGROUND AND THE CASE
OF TWO WEAKLY HYBRIDIZING LOCALIZED SPECIES

In this article, we will be mostly concerned with the
construction of an effective Hamiltonian for studying the
magnetic properties of a system that contains two
different species of partially delocalized electrons in a lat-
tice hybridizing with a sea of conduction electrons. This
system is described by an Anderson lattice Hamiltonian
given by

H=H, +gH (2. I a)

kn o.

and l, is a creation operator for a localized electron
centered at R; =R;+r in the ith unit cell. This local-
ized electron has orbital angular momentum l and total
angular momentum j and projection of the latter along
the quantization axis m. Here c.c. stands for the complex

where H, =pi,„ei,„ci,„ci,„ is the conduction band

Hamiltonian and ck is a creation operator for a con-
duction electron with wave vector k located in the first
Brillouin zone, band index n, and spin o.. Here

1
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conjugate of the previous expression, X, is the number of
unit cells in the crystal, and a11 single particles energies
are taken with respect to the chemical potential. We
have implicitly assumed the strong single-electron spin-
orbit coupling limit, and j refers to the lowest lying
spin-orbit coupled state. In the case where the spin-orbit
coupling is weak, one must sum over both j =l +1/2
terms in the Harniltonian. This last procedure is
equivalent to working in the uncoupled representation
given in terms of (m&, m, ).

The approach to follow in the calculation of an
efFective magnetic Hamiltonian starting from Eq. (2.1)
varies depending on the physical system in consideration.
In the most general case the different localized electrons
can strongly interact with each other by modifying the
electron gas and a self-consistent treatment is necessary.
In other cases as in CeSb such a treatment is not neces-
sary. To explore the great diversity of physical behaviors
possible, let us first consider a conduction-electron —f-
electron system. For nearly localized f-electron ions one
can, through a canonical transformation, ' transform
the hybridization Hamiltonian into a conduction-
electron —f-electron ion scattering term with a dimen-
sionless coupling J=N(0) VI U~ /[( Ug+'Ef )Ef ] where
N(0) is the conduction density of states per spin and site
at the Fermi surface.

In what has been the conventional picture for some
years, the behavior of the hybridizing f system is deter-
mined by a competition between Ruderman-Kittel-
Kasuya-Yosida (RKKY) magnetic ordering between two
local moments with energy scale J /N (0) and
conduction-electron-f-electron singlet formation with en-
ergy scale e ' /N(0). The deep Kondo regime occurs
when

~
J

~

((1 and the RKKY interaction dominates. For
somewhat larger

~ J~, the heavy fermion regime appears
with the formation of conduction-f-electron singlets and
reduced magnetic moments. In the mixed-valence re-
gime, it is not possible to map the Anderson lattice Ham-
iltonian to the Kondo Hamiltonian.

In an alternative picture, ' supported by ab initio cal-
culations, ' the moment reduction results from the res-
tructuring of the interionic magnetic interaction associat-
ed with the hybridization process in the presence of f-
electron correlation effects for these systems with large
orbital moments. It is the resulting extreme anisotropy
of the interionic intera", tion which forces the hybridized
f-ionic ground state to have a small or even vanishing
value of the moment.

In contrast to the hybridizing f system described
above, a hybridizirig d system with a conduction-d-
electron hybridization matrix element an order of magni-
tude larger than for an f-electron system usually exhibits
delocalized behavior. Spontaneous magnetism is favored
when spin polarization of the bands is made energetically
favorable by some residual interaction.

The calculation of an effective Hamiltonian for a sys-
tem with two f species at diff'erent sites in the unit cell
both in the deep Kondo regime can be treated by a
straightforward generalization of a well established ap-
proach. ' ' This approach obtains an effective mag-
netic Hamiltonian by first performing a canonical trans-

xh~, l I', , I .
I am ' iam ] ja'm ' ja'm&

1 2
(2.2a)

where the range function E is given by

E . , (R)=-
m lm 1,'m 2, m2

1 (a) {a)e (a')
2 kn o m k ' k'n'o'mnom&
s kno

k'n'o'

X y {a') e —E'( k —k') -R
) eknom 2

XF (ei,„,ej, „) . (2.2b)

Here F is a function of the unrenormalized conduction
band energies and is given by Eq. (A25c). The range
function contains both ferromagnetic and antiferromag-
netic contributions at short ranges, a point discussed
after Eq. (A27) in the Appendix. The competition be-
tween these contributions, and the extreme anisotropy in-
herent with this interaction as discussed in the following
paragraph, leads to a fascinating variety of unusual mag-
netic phenomena. The extension of this theory to mul-
tielectronic f ions is fully discussed by Sheng, Cooper,
and Lim7 and brieffy summarized in Eq. (A27) of the Ap-
pendix. As expected, the interaction of two ions of the
same species is not affected by the presence of the other
localized species up to fourth order in perturbation
theory; i.e., feedback effects where species cz significantly
modifies the electron gas and induces a change in the ion
a'-ion a' interaction (aWa') are clearly sixth- or higher-
order effects. At this level of approximation, the two ion-
ic species can only interact through the cross term in the
Hamiltonian involving ions of different species. This

formation, a Schrieffer-Wolff transformation (SWT) on
the Anderson lattice Hamiltonian and then applying per-
turbation theory (see the Appendix). Implicit in this ap-
proach is the assumption that the conduction Fermi sea
is not significantly renormalized by either species. In
other words, there are no feedback effects and a self-
consistent treatment is unnecessary. Among the many
terms in the Hamiltonian obtained from the SWT there is
a scattering term between the conduction and the local-
ized ions (Coqblin-Schrieffer interaction), a hopping or
banding Harniltonian between the localized electrons in-
duced by hybridization and a term that when projected
into the model space will give a direct two-ion interac-
tion. By applying perturbation theory one sums over in-
duced contributions to the two ion interaction due to (1)
the exchange of particle-hole excitations in the conduc-
tion band (Coqblin-Schrieffer two-ion interaction) and (2)
a kinetic superexchange contribution due to the hopping
of the localized electrons between sites induced by the hy-
bridization with the conduction electrons and involving
intermediate ionic configurations. [See discussion of
Eqs. (A19)—(A22) in the Appendix. ] Explicitly, the two-
ion interaction between single-electron ions located at
R,. and R. , both in a given configuration (not neces-
sarily identical) up to fourth order in the hybridization,
has the form

h(R;, R )= —g E, , (R; —R )
I

m&, m&

1
m2, m 2
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cross term in the Hamiltonian can lead to competition
between different magnetic interactions, frustration
effects and complicated magnetic ordering.

To characterize the angular dependence of the cross
term in the two-ion interaction, given by Eq. (2.2), we
must generalize the analysis done by Cooper and co-
workers ' in the case of one localized species. To do that
we assume a spherically symmetric hybridization poten-
tial with hybridization matrix element given by

V'i „'~~ =&4trVk„'Y, m (k )

(/, 1/2, m —o, o ~/, 1/2,j,m ) is a Clebsch-Gordon
coefticient for a spin-orbit coupled state with j=j and
I=l . Furthermore, we simplify the analysis by consid-
ering the case of a conduction band with an isotropic
dispersion relation. In this case, one can show that the
asymptotic behavior of the range function for a quantiza-
tion axis along the interatomic separation vector
R =R/R (abbreviated ba for bonding axis) is given by

(R)~ ( 1 )(mi m2)(J~ i~ g~ +l~ )

m ]m] ', m 2m/

x6,6,5
m), m2 m2, m

7

X (/, 1/2, m —o. , o ~/, 1/2, j,m ), (2.3)
X5~~

~

inE (R), (2.4a)

where YI (k) is a spherical harmonic for l =/ and where

E (R)= —g (j +1/2)(j +1/2)
nn'

2 I2

f dk
2 f dk'

~ Vkn Vkn *Vk n Vk 'n''"a'(kR)gt(k'R)+
2772 2m-2

(2.4b)

l ~ =gD~ ($,8,0)l; (2.5)

—i (j /fi)p —i(j /fi)0
Here D~ ($, 8,0)=(jm e ' e ' ~jm') is a
rotation matrix and (8,$) are the spherical angles that
specify the direction of R in the crystal frame. Substitut-
ing Eq. (2.5) into Eq. (2.4), we obtain that the range func-
tion in the fixed crystal frame (abbreviated cf) is given by

I ti™z™i™z'&dja(8)
m 1Pl

Xd „(8)d, , (8)d „(8),

the region of integration is the first Brillouin zone, 0 is
the primitive unit-cell volume, g, (kR) =sin(kR —tm. /2)/
(kR), and t=l +l . It is clear from Eq. (2.4) that the
highly anisotropic two-ion interaction favors having two
ions "point" their charge forming a "disk" along the
bonding axis (the m =+1/2 states, i.e., m& =0) thereby
developing a small covalent bonding energy and causing
the ionic orbital moments to align perpendicular to the
bonding axis. ' The angular dependence of the two-ion in-
teraction implicit in Eq. (2.4) can be shown explicitly by
expressing the two-ion interaction in the fixed crystal
frame. To do that we use the unitary transformation re-
lating the creation operators for a localized ion at R,.
with total angular j and projection m' along the in-
terionic axis (primed) and the corresponding projection in
the fixed crystal frame (unprimed), i.e.,

In conclusion, a fourth-order treatment of the Ander-
son lattice Hamiltonian with two distinct ionic species
predicts a magnetic Hamiltonian with cross terms be-
tween ions belonging to the different species. These
terms have a different angular dependence from the in-
teractions between ions of the same species when j Wj ..
This Hamiltonian is adequate for treating a number of
systems, but is inadequate to study competition effects be-
tween the two hybridizers as the delocalization and hence
the hybridization, of one of the species strengthens. This,
in fact, is the situation for the two motivating examples
discussed in the Introduction, and this leads us to treat
the situation discussed in the next section. In addition,
while it is possible to have the situation where magnetic
ordering is destroyed by state mixing (giving a nonmag-
netic, i.e., singlet state) even for a single weakly hybridiz-
ing species, ' ' we do not believe that a straightforward
generalization of that possibility provides an adequate
representation of the mechanism for the destruction of
magnetic ordering involved in the two examples dis-
cussed in the Introduction. That is, in principle, while
the new cross-term for l W/ introduced here (together
with the overall decrease of Pr hybridization as Pr con-
centration decreases in Pr Y, „Ba2Cu307) could provide
an overall interaction giving a nonmagnetic state for Pr,
we do not believe that would adequately capture the
essential features of the physics. Rather, we believe that
there is a fundamental change in the Pr-Pr interaction it-
self (or in the R-R interaction for RMn2X2), and the
physics developed in the next section allows us to treat
that possibility.

III. THE f-f ION INTERACTION IN THE PRESENCE
OF A MORE DELOCALIZED d HYBRIDIZER

where d =(jm ~e I
jm')

—i(j /A)0

(2.6) A. Model Hamiltonian

Now we consider the problem described in the Intro-
duction of obtaining an effective magnetic Hamiltonian
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X (3, 1/2, m —o', o ~3, 1/2, j&,m ), (3.1)

for the f ions in a system where the d electrons are
strongly hybridized with the conduction band. Evidence
for the strong hybridization of the d electrons comes in
part from band-structure calculations. These calcula-
tions clearly show an enhanced density of states (DOS)
near the Fermi level due to the d electrons. In many
cases, the enhanced DOS plus various residual interac-
tions between the d electrons could lead to a spontaneous
magnetic moment for the d species. We assume this
does not happen here, and the d species remains
paramagnetic. For the f species we assume that they are
in the RKKY interaction dominated regime with local
magnetic moments, i.e., the deep Kondo regime. For
such a system, the most significant renormalizations of
the conduction band is due to the d electrons. Thus, we
propose a method where we first treat the hybridization
of the d electrons with the conduction electrons in a
mean-field approximation to obtain renormalized bands
and enhanced DOS. Then, we proceed to treat the f
electron hybridization through the well established treat-
ment of a SWT and perturbation theory. Since we explic-
itly incorporate the effects of the d hybridization in the
unperturbed Hamiltonian used in the SWT, the resulting
f fion intera-ction is explicitly dependent on the renor-
malizations effects of the conduction band due to the d
electrons.

In practice, for the sake of simplicity, we consider a
system with a single conduction band and we neglect the
orbital degeneracy of the d system. Thus, our Hamiltoni-
an is given by Eq. (2.1) with a slight change in notation
l;d ~d;, 1;& ~f; and from now on we will omit the
band index identifying the conduction band, i.e.,
ck„~ck . We take the d ions to be located at the origin
of the unit cell and assume a constant d-electron hybridi-
zation matrix element Vi, = Vd. The f-electron hy-(d)

bridization matrix element is given by Eq. (2.3) as

+ g (Vde 'cit, btd; +c.c. )
V&, ii

++A, , gd, d,. +b,~b, —. 1

o

Here we have represented d,~ as a bilinear product

(3.2)

d; =d;b;, (3.3)
Af ~

where d, is a slave fermion creation operator represent-
ing the

~
d "' ); configuration and b; is a slave-boson

creation operator representing the ~d' '); configuration.
We have also added a time-independent auxiliary boson
field A, ; that couples to the system through a Hamiltonian

H,„„=gk; gd; d; +b; b; —1 (3.4)

and acts as a local Lagrange multiplier to enforce the
constraint of no multiple occupancy of a d site in the
infinite Ud limit. In the mean-field approximation to the
slave-boson Hamiltonian, one replaces the boson fields by
their expectation values over their coherent equilibrium
states, namely, r = ( b; ) and A = ( A, ; ) . The resulting
Hamiltonian H, "d is one of hybridizing bands but with a
renormalized hybridization matrix element Vd = Vdr and
a renormalized d level position 8d =ed +A.

The above Hamiltonian is diagonalized by first chang-
ing to the Bloch representation for the d electrons given

ik.R,. Ag
by d k

=g, e 'd, /QX, and then performing a
canonical transformation to hybridized band creation
operators given in terms of the orthogonal matrix y as

~ Afa pi ak pk

ak2a & k k Ck
—R (3.5)

infinite), we adopt a slave-boson treatment of the Ander-
son lattice Hamiltonian. ' In the slave-boson formal-
ism, we have that H, d is written as

H~ d
= g egcg~cgg +g edd;~d;~

ko. lO'

where we assumed a constant VJ. With this model Ham-
iltonian, in Sec. III B we consider the mean-field treat-
ment of H, d

=—H, +Hd and then proceed in Sec. III C
to calculate the f fion interactions. -

where

1a~= —1+
2 Ek

1
P = —1—2

k E„

B. Mean-Aeld treatment of the d-electron
hybridization with the conduction-electron gas

In this subsection, we treat the hybridization of the d
electrons with the conduction band to obtain renormal-
ized bands. To do this, we diagonalize H, d, defined in
Sec. III A, in a mean-field approximation. The d hybridi-
zation is different than for simple metals since electron-
correlation effects between the narrow d-band electrons
are significant and the intra-atomic d-d Coulomb interac-
tion must be explicitly taken into account. In order to
compare the eQect of d electron correlatio-ns in the hybridi
zation process, we will diagonalize H, d in two extreme
cases: the case of no d electron correlations, i e-, Ud equal. s.
to zero and the limit of Ud infinite

Considering first the strong correlation case ( Ud

a~gk= —Vd/Ei„and Ei, =[(e~ Zd) +4—Vd]' . In
terms of the hybridized band operators, H, "d simplifies
to

d
——g ek„a~„a~„++,A(r —1),

kn cr

(3.6a)

where n=1, 2, is a band index, ek„are the hybridized
band energies given by

1
ei,„=—[e~+ rd + ( —1 )"E„]. (3.6b)

For each band n, we can obtain the corresponding den-
sity of states per site (DOS) by evaluating the expression
p„(co)=+„5(co—e„„).The resulting DOS can also be
decomposed into a projected d-band contribution pd(co)
and a projected conduction-band contribution, p, (to)
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given by

1
pd(. )(~)= ~ X 7', )(2)~(~ ~k

s kno.

From Eqs. (3.5), (3.6), and (3.7), it can be shown that

(3.7)

1
p, (co)= g 5 co-

Ns k~

Vd
E'k

CO

(3.8a)

is the conduction-band density of states per site evaluated
at co —Vd/(co —

Zd ) and

pd(co)=, p, (ro) .
(co —

&d )' (3.8b)

These results, Eqs. (3.6), (3.7), and (3.8) are formally valid
for the case of Ud equals to zero by neglecting Coulomb
renormalization effects, i.e., by setting Zd =ed and

Vd = Vd. The U —+ ~ ground state differs from the U=O
ground state in that in the former all configurations with
doubly occupied d sites have been projected out.

The equations for determining the expectation value of
the boson fields are obtained by minimizing the mean-
field energy with respect to r and A. The resulting equa-
tions are

~(+ )

n„= g f, ,
deep„(co)nF(co)=1 r-

n

(3.9a)

p, (co)n~(co)A= —g Vd f, ,
de

n En 67
(3.9b)

where e'„' and e'„+' are the lower and upper bands edges
of the nth hybridized band and nF(co) = [exp{co/
(k&T))+1] The chemical potential p is determined
simultaneously with the evaluation of r, Eq. (3.9a) and A,
Eq. (3.9b), from the conservation of charge equation

~{+)

n„„,) =g f, ,
dro[pd(co)+p, (co)]n~(ro),

n

(3.9c)

where n„„& is the total number of electrons per site con-
tributed by both the d and the conduction bands. From
Eq. (3.9a), it is evident that the average occupation in a d
site in the infinite Ud limit is nd=1 —r, i.e., in the
mean-field approximation the constraint given by H,„„
Eq. (3.4), is enforced in an average way. The fact that r
also renormalizes the hybridization matrix element can
be physically understood by noting that in the infinite

Ud limit, an electron can jump from a site to another site
only if the final state is empty and this results in a phase
space factor 1 —nd in the transition rate.

C. Calculation of the modified f-f iou interaction
due to species d hybridization

To obtain the f fio-n interaction, we first derive a sin-
gle species Anderson Hamiltonian where the f electrons
hybridize with the two renormalized bands obtained in
Sec. III B. This is obtained by replacing H, +Hd —+H, "d

in the Hamiltonian in Eq. (2.1), and using the inverse
transformation, ck =g„y„2ak„, [see Eq. (3.5)] to ex-
press the f hybridization with the conduction band in
terms of the renormalized band operators. We obtain

H H~ d+g Effirn f; +—g U/f; f; f, ,f,
1

i, m imm'

mmmm'

V N& i mnko.

(3.10)

where Vkn~m = Vk~myn 2 are renormalized matrix cle-(f) (f)

ments and the unrenormalized hybridization matrix ele-
ment VkI' is given by Eq. (3.1). This Hamiltonian is an
Anderson lattice Hamiltonian where the f electrons hy-
bridize with two renormalized bands that already contain
the effects of the d-electron hybridization. The renormal-
ized f hybridization matrix element takes into account
the mixed-valence nature of the renormalized bands, i.e.,
an electron in a state ~kn cr ) with energy ek„has a proba-
bility y„z(k) of being in a conduction-band state and
hopping into the localized f state.

The method just described for calculating the renor-
malized f Anderson Hamiltonian is a many-body gen-
eralization of the block perturbation theory method or
"down-folding treatment" used in muffin-tin orbital
theory ' to obtain an effective Anderson Hamiltonian
with two important differences. First, we include the d
bands in the conduction-band block of the Hamiltonian.
Second, we explicitly keep the intrasite Coulomb interac-
tions for both d and f electrons, i.e., the two-body terms
in the Hamiltonian. However, the basic idea of applying
a unitary transformation that diagonalizes the
conduction-band block and the f-electron block in the
Hamiltonian to obtain an effective f Anderson Hamil-
tonian is the same.

Since the Anderson Hamiltonian in Eq. (3.10) has a
conduction-electron band structure that has been renor-
malized by the d electrons, the established treatment us-
ing a SWT and perturbation theory as described in Sec. II
yields an f fion interaction th-at does depend on the
modifications of the Fermi sea by the d electrons includ-
ing d-d correlations. Carrying out this procedure, we ob-
tain that the f fion interaction -for an Q; ~f"')i
configuration is given by Eq. (2.2) as

E//, (R)= —f de f dao' V(f) V(f)e V(f) V(f)e —i(k —k') Rg (k )
gp2 ~ ko m

&
k'o'm ' k'o'm2 ko m c

~~s ko j. 2

k'o. '
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where I' f(co, co') is given by Eq. (A26) and the VI,
' are

the bare hybridization matrix elements. Here A, (k, o, co)

is the conduction-electron spectral function in the
mean-field approximation. This function is defined as the
probability of finding a conduction electron with momen-
turn k, spin o., and energy Ace. In this mixed-valence
ground state, the spectral function at the mean-field level
is given by

A, (k, cr, co)=g y„25(co—ek„) . (3.12)
n

The same formula is formally valid for the case of no d
hybridization but with the corresponding spectral func-
tion A, (k, o., co) =5(co—e&). Thus, we find that by hybri-
dizing with the conduction electrons, the d electrons
change the ground state of the system to a mixed valence
state thereby modifying the conduction-electron spectral
function. Furthermore, this change in the conduction
electron spectral function induces a change in the f-f ion
interaction. The results of a practical implementation of
this method for the illustrative case of a free-electron
conduction band is presented in the next section, where
we contrast the results with those in the Ud =0 limit.

IV. RESULTS FOR A FREE-ELECTRON
CONDUCTION BAND

wave vector to the Brillouin-zone boundary wave vector
are shown in Fig. 1 for three different situations: (a)
unhybridized bands, (b) hybridized bands neglecting
correlation effects between the d electrons, (c) hybridized
bands including correlation (Coulomb repulsion) effects
for the d electrons. The corresponding d and c projected
DOS as a function of energy are shown in Fig. 2. To un-
derstand these results, we focus first on the d- and c-
electron projected DOS. %'e first observe that the d hy-
bridization broadens the d resonance and this effect is
proportional to Vd. The conduction-electron DOS is
only modified significantly in the region of the d reso-
nance. As we fill the electrons into the renormalized
bands, we find that the d resonance with its associated
high DOS pins the chemical potential at an energy
k&Tz =0.37 eV below the d-level position and as shown

10.0

8.0
r

rrr
rr

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I~II ~ ~ ~ ii ~ ~ ~ ~ ~ ~ ~ ~ Is ~ ~

Here we present the results of a calculation of the ion
f-ion f interaction in the d and f system just described.
As discussed above, the calculation proceeds in two steps:
(1) the calculation of the renormalized band structure due
to species d hybridization, (2) the calculation of the ion f
ion f interaction using the renormalized f Hamiltonian.
For simplicity, we model the conduction band by a para-
bolic dispersion relation, which we parametrize as

e =e +8' k
(4.1)

BZ

where 0 k kzz. Here @0=3 eV is a constant reference
energy, 8'=5 eV is the bandwidth, and kaz corresponds
to the radius of a spherical Brillouin zone chosen such
that its volume equals the true Brillouin-zone volume,
i.e., knz=(6m /0)'~ . Here all single-particle energies
are expressed in an absolute energy scale to facilitate the
comparison between band structures with different chem-
ical potentials. In order to obtain the renormalized band
structure in the infinite Ud limit, we must first evaluate
the slave-boson averages. We have chosen a system such
that before hybridization the d band holds one electron
per site and the conduction band holds 0.6 electrons per
site; and therefore after hybridization, the lower hybri-
dized band holds n„„&=1.6 electrons per site. In a real
material, there would be several relevant partially filled
bands and this represents the effects of one of them. For
a hybridization matrix element Vd = 1 eV and ed =0.3 eV
below ek =5.24 eV, the conduction Fermi level [see Fig.
1(a)], we obtain that the slave-boson averages are
r =0.33, A=1.07 eV, and the chemical potential is
p=5. 79 eV. For the hybridization model with no corre-
lations, we have Zd =ed, V= V, and p =4.57 eV. The cal-
culated band structures as functions of the ratio of the

2.0

8.0

6.0

4.0

2.0

6.0 -.„.

4.0

2.0
0.0 0.2 0.4 0.6 0.8 ).0

k/ ksz

FIG. 1. Band energies (in an absolute energy scale) as a func-
tion of the ratio of the wave vector to the Brillouin-zone bound-
ary wave vector. Plot (a) shows the original conduction band
(dashed curve) and the d band (solid curve) before hybridiza-
tion. The position of the conduction Fermi energy is indicated
by the dotted line. Plot (b) shows the hybridized bands calculat-
ed neglecting d-electron correlations. The position of the chem-
ical potential is indicated by the dotted line. Plot (c) shows the
hybridized bands calculated including d-d correlations by using
a slave-boson mean-6eld theory. The chemical potential is
shown by a dotted line.
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2.5

2.0

1.5 (a)

in Fig. 2(b) a band gap opens such that the lower band
holds two electrons per site. As we turn on the Coulomb
repulsion between the d electrons two additional effects
appear: (I) As shown in Figs. 2(c) and l(c), respectively,
the d resonance gets narrower due to the renormalized
hybridization and the renormalized band structure
abruptly Ilattens in this region. (2) As shown in Fig. 2(c),
the d resonance is pushed up above the conduction Fermi
surface to avoid multiple occupancy of the d site. This
movement of the d band while the conduction and f
bands are essentially stationary causes electrons to spill
from the d band into the conduction band and gives a re-
duced average occupation of a d site nd =0.67, compared
with nd =0.99 for the case of Ud =0. The renormalized
hybridization also reduces the indirect band gap between
the two bands to b, =0 26 eV [see Fig. 2(c)] from a value
of b, =0.72 eV for Ud=0 [see Fig. 2(b)]. As before, for
the Ud =0 case the high DOS of the d resonance pins the
chemical potential at an energy k&T+=0.22 eV below
the renormalized d level position.

Having calculated the renormalized band structure, we
proceed to calculate the f fion inter-action. Due to the

isotropy of our band structure, we have from Eq. (2.4)
that the angular dependence of the f fi-on interaction is
unchanged for all the bands structures considered, how-
ever, the radial dependence is different. To study this
efFect, we considered a f system with jf=5/2,
Vf =0.1414 eV, Uf =3 eV, and ef =1.0 eV below the
conduction Fermi surface. In Fig. 3 we show the f fion-
interaction range function calculated using different band
structures: (I) the range function EPU (solid curve) was
calculated using a band structure that takes into account
the hybridization and correlations between the d elec-
trons (slave-boson band structure) (2) the range function
EP (dashed curve) was obtained using a band structure
that treats the hybridization but neglects the correlations
between the d electrons, and (3) the range function Efo
(dotted curve) was calculated using a band structure that
neglects both the hybridization and the correlations be-
tween the d electrons. The arrows in Fig. 3 indicate the
nearest-neighbor distances for a fcc lattice. It is evident
from these results that a large hybridization of the d elec-
trons has a significant effect in the f fion inte-raction
E . Our calculations show a trend of Eland EP to
oscillate more rapidly than Eo with distance but with a
smaller amplitude as we increase the d hybridization
strength. The difference between E&U and Ez shows
that the renormalizations in the conduction-band struc-
ture due to d electron correlations have a significant
effect on the f fion interacti-on.

1.0 V. CQNCLUDING REMARKS

0.5

0.0

We have presented a two-step method for calculating
the f-f ion interaction in systems where a d-electron
species also hybridizes with the same Fermi sea. The

2.0

1.5 0.6

1.0
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0.0
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1.5
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0.0
2.0 4.0 6.0

~ (eV)
8.0 10.0 -0.6

0.0 0.5 1.0
r a

1.5 2.0

FICx. 2. The projected conduction electron DOS per site
(dashed curve) and the projected d-electron DOS per site (solid
curve) as a function of the energy (absolute energy scale). The
arrow indicates the position of the corresponding chemical po-
tential. Cases (a), (b), and (c) correspond to cases (a), (b), and (c)
in Fig. 1.

FICx. 3. The range function (intersite coupling strength) as a
function of the ratio of the distance between two f sites to the
unit-cell fcc lattice constant, a. Here Ev U (solid curve), E&
(dashed curve), and Eo (dotted curve) were calculated with band
structures (c), (b), and (a) of Fig. 1, respectively. The arrows in-
dicate the nearest-neighbor distances for a fcc lattice.
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method first diagonalizes the terms in the Hamiltonian
involving the conduction and the d electrons to obtain a
renormalized f-electron Anderson lattice Hamiltonian.
This step is a many-body generalization of the "down-
folding" treatment used in muon-tin orbital theory ' to
obtain an effective f-electron Anderson Hamiltonian.
The second step calculates the renormalized f-f ion in-
teraction by the established procedure ' of a SWT
and perturbation theory. It is found that by modifying
the conduction-electron spectral function through hy-
bridization, the d electrons modify the f-f ion interac-
tions and that correlations between the d electrons play a
significant role in determining this effect.

While we believe that we have captured essential
features of the effect of the d hybridization in the f fion-
interaction, to better represent the behavior of real sys-
tems of interest (such as the examples discussed in the In-
troduction) some further aspects of the physics are espe-
cially deserving of priority attention. Judging from our
work in the one-species case, ' ' introducing "real"
electronic (band) structure information will probably
significantly modify the anisotropy of the f fion inter-ac-
tion. Also it is desirable to treat realistic crystallographic
structures, or at least key features of such structures such
as the layer aspect of the CuO-type superconductors. At
a more complicated level, effects of Coulomb exchange,
as well as hybridization, should be included in the model
Hamiltonian as has been done in Ref. 6 for a single hybri-
dizing species. For orbitally driven magnetism and asso-
ciated effects, in the single hybridizing species situation
we have found ' ' ' ' that while hybridization dom-
inates for uranium systems, the orbital effects of Coulomb
exchange dominate the behavior for the light rare
earths. '

The present theory provides the framework of a
methodology for treating the changes in f-electron
species magnetic ordering in physical situations such
as the motivating examples of PrBa2Cu30~ and (R or
U) Mn2X2 discussed in the Introduction. For
the magnetism/superconductivity competition in
PrBa2Cu307 this method is an essential ingredient in the
development of a theory aimed to understand how and
why magnetic ordering is destroyed in the Pr system as Y
is substituted for Pr (i.e., decreasing the strength of the
overall Pr f-electron hybridization with the
oxygen p electrons compared to the overall strength of
the Cu d-electron hybridization with the oxygen p elec-
trons). Thus the present theory is directed toward under-
standing how superconductivity "kills" magnetism in
Pr Y, „Ba2Cu3Q7 as x decreases rather than vice versa
as recently treated by Gao and Zhang. Besides provid-
ing an understanding of the phenomenology of interest in
itself, the full unraveling of this mechanism will provide
valuable insight as to the nature of the coupling driving
the superconductivity.

ACKNOWLEDGMENTS

This research was supported at West Virginia by U.S.
DOE Grant No. DE-FGO5-89ER45386. We thank Dr.
Q. G. Sheng and one of us (B.R.C.) thanks Dr. G. J. Hu
for valuable discussions.

APPENDIX: CALCULATION OF THE TWO ION
INTERACTIONS FOR A LATTICE WITH MANY
WEAKLY HYBRIDIZING LOCALIZED SPECIES

In this appendix we show how to construct an effective
Hamiltonian to study magnetic order in a lattice that
contains several species of partially delocalized electrons
which weakly hybridize with the conduction bands. The
system is described by an Anderson lattice Hamiltonian,
Eq. (2.1), which for our purposes here we can divide as

H =Ho+H',

where

(Ala)

HO g ekn kna kna + g eaIiam i am
iam

+ X a iam iam iam iam''
iamm'
mmmm'

is the bare Hamiltonian and the hybridization term

H'= g (Vk„e ' ck„ I; +c.c. )
( )

—ik R,.

V &z iam

(Ajb)

(Alc)

H=e He (A2)

where the generator S satisfies S = —S and obeys the
equation

[S,HO ]= H'— (A3)

chosen so as to eliminate the perturbation H' to linear or-
der in H. Expanding the transformed Hamiltonian H as
a power series in H' and using Eq. (A3), we easily get

H=HO+H',

where

(A4a)

and

H'=K~+H3+H4+ (A4b)

H = ,'[SH'], —

H, =
—,'[S, [S,H']],

H4 =
—,
' [S,[S,[S,H'] ]] .

(A4c)

(A4d)

(A4e)

An explicit expression for the generator S can be ob-
tained by noting that its equation of motion in the in-
teraction representation is

dS
[St Ho]= —.„Hdt iA iA

(A5)

iHpt/A —iHpt/fl
where Ot(t) =e ' Oe ' for any operator 0 and
we used Eq. (A3). Integrating this equation, we get

is taken as a perturbation. Here the single-particle ener-
gies are taken with respect to the chemical potential of
the interacting system.

The first step in the derivation consists in performing a
canonical transformation defined by '
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S=S,(t =0)= —f dt'H, '(t')e", (A6)

S—s s (A7a)

where

where @=0+ is an integrating factor. By explicit evalua-
tion of this equation, we get

niam etiam Iiam ~m
N (5 )='

iam m 1 —n 5 =0iam m

and the primed summation indicates we should sum only
over sets 5 that satisfy 6. + - +5 +,+6,+Ja
+6 . =p, 0(p ~2j . From their definition, it is evi-

Ja
dent that the projection operators A; p(m) satisfy

1
P =2Ja

s=
V'N, i, a, m, k p=o

~~(a)
—ik Ria

"kme

E 6' pU k iam (A7b)

p =2J

A, (m) l ),= l );.
p=0

(A9)

where the superindex k =(k, n, o ) specifies the state of a
conduction electron, and L; p =l; A; p(m). Here
A; p(m) is a projection operator which projects all
configurations at site R; that have p electrons in states
with m'Wm, while the state m can be either occupied or
unoccupied and is given by

A, ( m)=g'N, (5, ) N, +,(5 +, )

XN; i(5,). . . N; J (5 1 ), (A8)

where 5 can take values of zero or one,

A; (m)=(1 —n; .)B,. (m, m')

+n; .B;,(m, m'), (A10)

where B; „(m,m')=0 for p (0 or p )2j . The projec-
tion operator B; (m, m') projects all configurations in
site R; that have p electrons in states different from
m, m'. The states m, m' can be occupied or unoccupied.
In terms of these operators, we have

The properties of the operators I.; are very impor-
tant in this calculation. To study them it turns out to be
convenient to define another projection operator
B; (m, m') by

and

[L; p, L;. ] =5;;.5 5p p (5 A; (m)+(1 —5 ~ )l; l, [B, (m, m') —B; ~(m, m')]),

L, ~,L, =l., l, 5 [5 A; (.m)+(1 5)—B p(mm')]

(A 1 1)

(A12)

[L, , L, , ] =5. ..5,(1 —5,)l, l, .[B; (m, m')5
~

—B;,(m, m')5pp+~] . (A13)

We now proceed to construct an effective Hamiltoni-
an which acts on a reduced Hilbert space starting from
H Our reduc. ed Hilbert space or model space (MS) con-
sists of all states of the form

where (N, ~4b ) =5, b. For our degenerate open shell-
model space with unperturbed energy Eo, the effective
Hamiltonian can be written as a sum of closed diagrams
(diagrams which operate within the model space) as

(A14)

where
~
G ) denotes the conduction-electron ground state,

and
~

l" );= l; I; P' ),. is a state of ion a consist-
1 n

ing of n valence electrons in orbital l and core ground
state ~P' );. lf the dimensionality of the model space is d,
there are d well defined eigenstates of the full Hamiltoni-
an, which have their major part within the model space.
Their projections into the model space or model func-
tions correspond to the eigenvectors of the effective Ham-
iltonian, and their eigenvalues are the exact energies of
the corresponding true states.

To construct the effective Hamiltonian, we first define
a projection operator P which projects onto the model
space by

H ~=P Ho+H +H H + ' ' P
0 0

=P Eo+H2+H2 H2+H4+ ' P
EO —HO

(A16)

H =H" +H +H2 2 2 2 (A17a)

where in the last line we used Eq. (A4) and the fact that
H3 has no closed diagrams to expand the Hamiltonian to
fourth order in the hybridization.

Next, we proceed to evaluate the diagrams implicit in
Eq. (A16). We start by explicitly calculating H2 from Eq.
(A4c). We get

Ic» ~MS
~e)(ei (A 1 sa) where

and a projection operator Q which projects into the
remaining space or orthogonal space by

1 1 1H2"= g V, V2 —+
2 s ]2 ~1 ~2

c„c„[L,,L2 ],
=1—P, (A15b) (A17b)
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H2=—

(A17c)

Hll 1

2X, (q

V) V2
ck ck IL„L~]+c.c. . (A17d)

2

1 1 1g ViVz
b

+
b 5kk L2L, ,

2N» 2 4e, b@2

where n k
——nF ( ek ) evaluated at T=0 K. Clearly, for

electrons located at different sites this term corresponds
to a magnetic interaction mediated by the interchange of
a particle-hole excitation of the conduction electrons. It
represents a generalization of the Coqblin-Schrieffer in-
teraction.

A similar calculation for H„gives

Here, be, =ok —e, e =e +p U
a1P1 a1

= VI
' exp( —ik.R; ), L, =L, „, etc. For this

1 1

derivation we expressed the hybridization term H, in Eq.
(A 1c), as

H„=— 1
2X4N, )p&

3,4

Vi V2 V3V4

&an
1 a1

H=h+h (A18)
1 1

Ae, A@2

1 1

where h =Q, V, ck L, /QN, . The term H2" contains the

exchange interaction between the conduction and local-
ized ions. The terms in H2 involving operators acting on
different sites represent a hopping or banding Hamiltoni-
an between the localized electrons, and the terms involv-
ing operators acting on the same site induce a renormal-
ization of the crystal-field energy levels. Finally the term
H2' creates or destroys two localized electrons at the
same site.

For our purposes of calculating a magnetic Hamiltoni-
an, only certain terms of H,z must be kept. These terms
which we denote by H have the form of Eq. (2.2a). It is
evident from Eqs. (A16) and (A17) that

k1 k2 k3 k4 R 1,R4 R2, R3

X(1—6~ ~ )PL4L3L2L, P . (A21)

i'a'm'p' iampP i'a'm' iam ~p n

X[5~ „~5„
+&„,. (1—&z,z, , ) ] . (A22)

Here R I =R, , etc. To derive this expression, we used
1 1

the identity

H =H„+H +H (A19a)

where

PH ex H exp
E —H0 0

0 0

(A19b)

(A19c)

1H„= 2g V(Vq V3V4 +
41', )2 Ae, A@2

3,4

(1 nk )nk—
x5 5k1, k4 k2, k3

1 1

XP iL3,L4] IL i,Lq]P, (A20)

and H4 stands for all contributions to H coming from
PH4P.

By explicit calculation, we get

The term H„because of its origin in the virtual hopping
of localized electrons corresponds to the kinetic superex-
change described by Anderson. '

Finally, we consider the contributions of H4 to the
magnetic Hamiltonian. A direct evaluation of H4 is not
practical since it contains many terms. Thus we exploit
the fact that we only need the closed diagrams of H4. We
get

H~ =-,'P(ls [s' I:
s', hl]]

—[s, [s, [s,h ]]]+c.c. )P . (A23)

To obtain this result we used the fact that the closed dia-
grams have no conduction electrons free lines and that al-
though the term P( —[s, [s, [s,h ]]]+c.c. )P does con-
tribute to H,~, it does not contribute to H4 because of
Eq. (A13). After doing some algebra, we get

MH4 =
z g V, Vz V3V~ 5k k 6k k [(3', 24+31), 34+g, z3+gz 34)(1 nk )P[L„—L2 ] [L3,L4]P
s 1,2

3, 4

(3q) q 3+3') 24+g) 3 4+F2 3 4)PL )L2 IL3~Lq]P] ~ (A24)

where n; k =(be, bE bek) . The term H4 represents a direct magnetic interaction, i.e., a magnetic interaction that
arises directly from the application of the canonical transformation to the Anderson Hamiltonian.

At this point, we can sum the different contributions to H namely Eqs. (A20), (A21), and (A24) and simplify them
by using Eqs. (Al 1) and (A22). Then by collecting all terms involving two ions, we can write the interaction between
ions located at R,. and R ., as
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h(R;, R. )= —g E, , (R; —R) )I,t, I; It, , l.
I

ml, m
l

I
m2, m2

where the range function E is given by

(A258)

F. . . (R)=-
m lm l, m 2, m2

I I

+2 no™l k'n'o'm
l

n o m2 knom2
s kno.

k'n'o'

(A25b)

F (ek, Ek. )=
1 —nk

k' 6k ~k ~an a

k'1 —n ~

E'k 6k' ~k' ~an a

k ~an —1a
&a' n,a'

k' 6a'n a'

~k a'

&a' n, —1a'

(e«e~ „ i)(Ek 6~„)(ek E~„) (6~ „e~„ i)(Ek E~ „)(ek 6~ „)
1 1 1

a a a'

1 1 1 +
a' a' a

a'

k' ~an a

(A25c)

It is evident that this expression is symmetric in k and k and by using Eq. (2.2) it is clear that the calculated two ion in-
teraction is Hermitian. In the case where the two ions of interest belong to the same species, the above formula reduces
to

1 2

(ek —e~„)(ek e«) —U~a a &k &an a &an a

+(1 nk )(1——nk )
1 2 +

(ek —e „,)(ek —e „,) U

2+nk(1 —nk ) +
Ua(~k ~«)(~k ~an —i)

k ~an —1a

a

&an —1a

~k'
a

'2

2
+nk (1 nk) — +

Ua(~k' ~an )(~k ~an —1) k' 6k 6k' ~an a k ~an —1a

(A26)

This result was first obtained by Wills and Cooper for a single-electron configuration except for a minor error, , i.e.,
the authors identified F (e, e') with the function F (e, e'), defined by Eq. (2.8) of Ref. 5, while the correct result is
given by F (e, e')=F (e,e')+F„(c',6) Physically, th. e term e „=e +n U represents the energy needed to add one

a

more electron to an il ) configuration. Similarly the term e „,=E +(n —1)U represents the energy dift'erence
a

between the ~1 ) configuration and the configuration obtained by removing an electron from the above.
In practice, for multielectronic configurations the model space defined by Eq. (A14) contains too many states and one

further projects this Hamiltonian into the preferred ionic multiplet ~I,J,M). Projecting into these orthonormal
states, we get that the interaction between ions in their preferred multiplet is

h(R;, R )= —g E, , (R; —R )L', Li, (A27a)
Ml, Ml

M2, M2

where LM.M =
iI,J,M' ),. (I,J,M i; is a basis operator, and the range function is given by

I
m l, ml

I
m 2, m2

X (I,J,Mi il, , I, il,J,Mi ) (I, ,J,Mq il, , lj ~ ~I, ,J, ,Mq ) . (A27b)
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We note that for a single species ~l ) configuration,
we usually have e „&0 and e „&&0. From these inc-

a tX

qualities and Eq. (A26), it is evident that the coefficients
multiplying (1 nk—)(1 nk —

) (particle-particle contribu-
tion) and nknk (hole-hole contribution) are both positive
definite, i.e., they represent an antiferromagnetic contri-
bution to the two ion interaction at short ranges. A simi-
lar analysis shows that the coe%cients multiplying
n k ( 1 —nk. ) and the term obtained by replacing k ~k ' are
both negative definite, i.e., they represent ferromagnetic
contributions to the two ion interaction at short ranges.
Furthermore, we note that only the term involving
1/(ek —ek. ) is singular. Specializing to a very narrow
parabolic conduction band, this singularity gives the usu-

al 2k+R characteristic oscillation that follows from

(1 —n„)n„9~ n,g e ' ' = y(2k~R) (A28)

where y(x)=[x cos(x) —sin(x)]/x and n, is the number
of conduction electrons per site. The other terms are not
singular and oscillate with other wavelengths, and decay
1/R faster with distance. Thus, even though the singular
term contribution dominates at short and large interpar-
ticle separations (with the exception of a magnetic insula-
tor), the diff'erent contributions dephase with distance,
and all contributions are significant at intermediate inter-
particle separations.
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