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Quantum-field-theory approach to the Heisenberg Hamiltonian, modified spin-wave theory,
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This paper proposes a quantum-field-theory approach to treat the anisotropic Heisenberg Hamiltoni-
an, and gives a general temperature-dependent modified spin-wave theory. For a square-lattice antifer-
romagnet, the numerical calculations give several results in agreement with experiments or the Monte
Carlo results, and several predictions which need future verification.

I. INTRODUCTION

There has been a lot of interest in two-dimensional
spin- —, magnetic systems since the discovery of high-T,
superconductivity. ' The ground-state staggered mag-
netization per spin, m*= —,

' —b„ in the spin-1/2 square
lattice of a Heisenberg antiferromagnet has been calculat-
ed in linear spin-wave (LSW) theory (5=0.197), in per-
turbation theory (b.=0.187), in exact diagonalization on
a small finite-size lattice (6=0.257), ' in a Monte Carlo
simulation on a small finite-size lattice (b, =0.20), ' and in
the equation-of-motion method ( b, =0. 14)." Experimen-
tal measurements have been made in K2MnF4 and
Rb2MnF4 ( 6 =0. 17+0.03 ), ' and in K2MnF4 and
K2NiF4 ( b, =0.20+0.03 ).' House thinks that LSW
theory is valid only in the limit of large S, and therefore
LSW theory overestimates the spin reduction in this un-
favorable (S =

—,') case. Anderson also thinks that LSW
theory is not a good approximation for the case of 5 =

—,
'

because it takes 1/S =2 as a small expansion parameter.
Recently, many papers concerned only with the ground
state of the Heisenberg antiferromagnet have ap-
peared. The temperature-dependent properties have
not yet had the attention they deserve. Some modified
spin-wave theories, such as the Dyson-Maleev transfor-
mation and the Wigner-Jordan transformation for spin
operators, have been proposed. We will propose a
modified spin-wave theory with temperature-dependent
spin-wave spectrum and magnetization for anisotropic
ferromagnets and antiferromagnets, and apply our theory
to the square-lattice antiferromagnet.

In Sec. II and the Appendix, we show that the Abriko-
sov pseudofermion method can be extended to the

Heisenberg Hamiltonian with spin —,, and quantum field

theory can be used very conveniently to treat the aniso-
tropic Heisenberg Hamiltonian with spin —,. In Sec. III,
we derive the anisotropic and temperature-dependent
spin-wave spectrum for the Heisenberg ferromagnet. In
Sec. IV, we derive the anisotropic and temperature-
dependent spin-wave spectrum and staggered magnetiza-
tion for the antiferromagnet. In Sec. V are the numerical
calculations for the two-dimensional (2D) square-lattice
Heisenberg antiferromagnet and some discussion.

II. PSEUDOFERMION METHOD
FOR THE ANISOTROPIC HEISENBERG HAMII. TONIAN

KITH SPIN —'

The Heisenberg Hamiltonian is

a= —2 y [J,S~S,'+ J„S~S,+J,SyS&],

where S,. is the spin operator with spin —, on site i and
J~~O. We consider only the nearest-neighbor interaction.
To treat the Kondo s-d Hamiltonian, Abrikosov intro-
duced the pseudofermion representation for the local spin
operator' ' S; as follows:

S;= QS„.a;, a;,
SS

where a;~ and a;,. are the so-called pseudofermion opera-
tors obeying the usual fermion anticommutation rules,
S=o./2, o. is the Pauli matrix, s and s' are the z com-
po t o,.', and s = —

—,', —,'. We will show that one can
also very conveniently use the pseudofermion representa-
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tion to treat the Heisenberg Hamiltonian with spin —,.
Using Eq. (2), Eq. (1) can be rewritten as

H = —2 g I J,S' Spp+J„S" Spp +J S~
Shp ]

i & jaa'pp'

Xa;a; apa.p. (3)

The eigenstates of 8'; =g, a,,a;, are n &,
=

I n, tn, & &

110&, 100&, and 111&, in which only two eigen-
states, 101 & and 110&, correspond to correct magnitudes
of the spin at site i. These are called true states. The oth-
er two states do not correspond to correct magnitudes of
the spin at site i and are called spurious states.
The eigenstates of n;6=+'a;ta; +pa pa p are ln &, .
= ln;tn;g & 1nj tnj &

&. There are altogether 16 states, where
only four eigenstates, 101 &101 & 110&110&, 101 &110&, and
110&101&, correspond to true states, and the other 12
eigenstates do not correspond to correct magnitudes of
spins at sites i or j, and are thus called spurious states.
If we consider the 16 eigenstates in statistical average,
i.e., the total state average, then we are able to use the
standard diagram method of quantum statistical theory
to treat the Heisenberg Hamiltonian, Eq. (3). For exam-
ple, we consider the pseudofermion Green's function.
The definition of the Green's function is

G(,i)
= —( T, [a; t(r)a~t I &

= —(7 Ie~ a.te att I &

6 =6(;J) . (8)

That the spurious states do not contribute to the aver-
age is similar to Abrikosov s idea that the infinite-energy
limit of the pseudofermion can freeze out the spurious
states. ' Equation (8) is a very useful formula which tells
us that, to calculate the Green's function corresponding
to the true state average, one can directly calculate the
Green's function corresponding to the total state average.
For the latter, one can use the standard quantum-field-
theory method including the Wick theorem.

III. TEMPERATURE-DEPENDENT SPIN-WAVE
SPECTRUM OF THE ANISOTROPIC

HEISENBERG FERROMAGNET

First let us calculate the spin-wave spectrum of the
Heisenberg ferromagnet with spin —,

' (J )0) by using Eq.
(8). To obtain the spin-wave spectrum, we should treat
the following spin-Aip Green's function

G(i,j;r)= —( T,(S,.+(r)S (0)) &, (9)

where the subscript (N) means the total states of the lat-
tice and ln &, z )v is the state of X sites. We should
freeze out the spurious states from the thermal statistical
average, and thus obtain the true Green's function 6 cor-
responding to the true state average. We show in the Ap-
pendix that

(4) where

where the subscripts (ij ) and (X) mean the total state
average on the lattice, T is the imaginary-time-ordering
operator,

S+( )
—e Hat e HHa e

H— —
lf i$

S (0)=a &aj.t,
(10)

( &

Tr(p. . )

Trp

e
—H/T

(5) ik' (R,. —R. )G(ij;~)=—ge ' ' G(k', r),
k'

(12)

Tr( . )=
1''''' XI(N)1, 2, . . . , N

where N is the number of local spins. Substituting Eqs.
(9)—(11) into Eq. (12) and making the Fourier transforma-
tion for a; &

and so on gives

G(k, ~)= y (~„(a k+k t(~)ak „(~)ak+k &(0)ak t(0)) &

1

2 4

=—g Gk k (k, r)= —g T pe
1 1 "

Gk k (k, co„)=Tpe " G(k, co„), (13)

where co„=2n~T and n are positive and negative integers. To write the expression of the Feynman diagrams, we
should do the Fourier transformation for the Hamiltonian given in Eq. (3):

k~ —k~+k4t k2t k~ —k3+k~j k2l k3t k~t k3t k44

J +J
k2 —k3+k~t k2L k3L k4t k2 —k3+k~j k2t k3t k~),

=XI„+Hgg . (14)
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Now our task is to find the Green's function under the
two-body interaction given by Eq. (14) by using the ordi-
nary quantum field theory including the linked-cluster
theorem, i.e., Wick's theorem. In the random-phase ap-
proximation (RPA), G(k, co„) can be expressed as in Fig.
1,

J„+Jy
Jii(k) (15)

where the summation is over the nearest-neighbor sites of
the original site. The reason that the dot in Fig. 1 is
—Jl(k) is as follows. The sign of the diagram with two
bubbles is (

—1)(—1)2, where the first —1 comes from
first-order perturbation of Htt in Eq. (14), the second
—1 comes from one fermion bubble, and 2 comes from
two possibilities of connection of the two bubbles in using
H

& &. The pseudofermion Green's function g &( ~) in Fig. 1

can be expressed as in Fig. 2. We define

FIG. 2. Feynman diagram representation for the pseudofer-
mion Green's function g~(k, co„). The fine line is the free pseu-
dofermion Green's function got(k, co„). The small circle is
—J,(0) [see Eq. (19)]. The thick-line circle is the average value

of the z component of the local spin at site i in the Ising model,
& S; &z [see Eqs. (16) and (21)].

& S & I =
& —,

'
( a;tta, t

—
a;tea, 1 ) &

(16)

1
g t(k, co„)=

iso„.—J,(0)& S &I

Substituting Eqs. (20) and (18) into Eq. (16) gives

~z(0)(~i )I/2TJg(0)(~t )I /2

&S,'&, =—'
2 Jz( )(~i ~I/ T z( )(~i )z/

(20)

(21)

1
gut(k, ro„.) =

l CO~~
(17) At T =0 K~

& S,'&, =-' . (22)

where co„.=(2 'n+1)m. T. Substituting Eqs. (16) and (17)
into Fig. 2 gives Using Eqs. (18) and (20)—(22), the bubble consisting of

two pseudofermion Green s functions in Fig. 1, g2& &, is
1

gt(k, co„.)=
i ru„.+J,(0)& S,' & I

(18) 2&S,'&,

iso„—2J, (0)& S &I
(23)

J,(0)=J, +1 .
a.

(19) Substituting Eq. (23) into Fig. 1 and considering Eq. (13)
gives

Similarly, G(k, co„)=

G(k, co+iO+) =

2&S,'&,

i co„—2& S & I [J,(0)—J~~ (k) ]

2& S,.'&,

co+iO+ —2&S &I[J,(0)—J~~(k)]

(24)

(2&)

From Eq. (25), we have the spin-wave spectrum e(k):

e(k) 2 S [J (0) Jii(k) (26)

IV. THE ANISOTROPIC HEISENBERG
ANTIFERROMAGNET

FIG. 1. Feynman diagram representation in the RPA for
G(k, co„). The thick line is a pseudofermion Green s function
g~(~&(k, co„), and is determined by Fig. 2. The dot is —J~~(k)
[see Eq. (15)].

Now let us derive the spin-wave spectrum for the
Heisenberg antiferromagnet (J (0) with spin —,'. For
simplicity, we consider only a simple lattice. We denote
the up spins as the A sublattice and the down spins as the
8 sublattice. In the case of two sublattices, the Hamil-
tonian in Eq. (14) becomes
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J,
k~k3k4R, .~

—R .~

,-a
Ak~ —k3+k~t Ak~t Ak~ —k3+k4l Ak2l. Bk3( Bk~t Bk3l Bk4l

J +J
4

k2k3k4R, .~
—R .~

=H„+Hgg .

i (k3 —k4). (R,.~
—R .~ )

Ak~ —k3+k~t Ak2 l Bk3 l Bk~( Ak2 —k3+k~l Ak 2t Bk3 t Bk~l

k'
(28)

X & T~[a A —k+k, t (~)~Ak, l(r)

a Ak +k4 l+Ak4 t ] )

To find the spectrum, we introduce the following spin-Aip
Green's functions,

G(iA,j A; r)= —(T,[S,A(r)S A(0)])

GAA(k, co„) and GAB(k, co„) are shown in Figs. 3 and 4.
The dot in Figs. 3 and 4 is —J~~~(k)/2 because there is

only one possibility to connect the two bubbles. We ob-
tain Fig. 5 from Figs. 3 and 4. The bubbles consisting of
two pseudofermion Green's functions in Fig. 5, g2&z &&

and g2~~&&, can be calculated as we did for gz&& in Eq.
(23),

(32)

=T ge " GAA(k, co„), (29)

(iA, j&;r)= —( T [S+(r)s (0)] )

(30)

l,J,(0)~(S,.'„),/4T —
I J, (O) ~(S,.

' ), /4T

~
J (0)~(S,.'& )I/4T —

~ J, (O) ~(S,& )I/4T
(34)

GAB(k, r) = T g e " GAB(k, co„) . (31) Substituting Eqs. (32)—(34) into Fig. 5 and noting that
( S;B )I ( S;A )I (0 gives

2(s,'„),[~~„—J, (0)(s,'„),]
[iso„+(S,'A )IQJ, (0) —J~~(k) ] Iico„—(S A )~QJ, (0) —J~~(k) ]

(35)

From the expression of GAA(k, co+i0+), we know the
spin-wave spectrum is

Considering Fqs. (34), (36), (15), and (19), we know the
spin-wave spectrum at T =0 K is

X 1 — —gcosk a,
(1

Z 8
I

1/2
J„+J

2J,

(k)=(S „)V [J,(0)]'—[J~~(k)]'

= (s,'„),4[&, /

(36)

X 1 — —icos(k a )
1

z a.

1/2J +J
2J,

(37)

where a,. is a vector connecting any local spin with any of
its z nearest neighbors. Equation (37) with

Q
FIG. 3. Feynman diagram of 6» (k, co„). The dot is

FIG. 4. Feynman diagram of Ggg(k, co„).
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J,=(J +J )/2 is the same as given by LSW theory. In
LSW theory, there is doubt as to the validity of Eq. (37)
because 1/S=2 is not a small parameter. In our pseu-
dofermion method, Eq. (37) comes from the RPA, T=0
K, and anisotropy, and does not use the condition of
S =

—,'. The staggered magnetization for a simple lattice
can be calculated as follows. We know

So

(5 ~ ) =
—,'+G(iA, iA' —0+)

2 N
+ Q T +e " G~~(k, ni„) .

n

Si A Si A
=

2 Si a (38) Substituting Eq. (35) into Eq. (39) gives

&S,', )=——&S,', ),—y . coth
e(k )

k

1
1 — —gcosk a,

Z

J —J
2J,

1/2

V. NUMERICAL CALCULATIONS
FOR THE SQUARE-LATTICE

HEISENBERG ANTIFERROMAGNET

The quantum antiferromagnetic Heisenberg model on
a square lattice has aroused much interest recently due to
its connection to high-T, superconductivity, but many
important issues remain unresolved. Based on the gen-
eral formulas given in Sec. IV, this section makes some
numerical calculations.

First we calculate the temperature dependence of the
staggered magnetization to find the Neel temperature.
Assume J„=J=J,=J(0. Substituting Eqs. (36) and
(34) into Eq. (40) and performing numerical integration,
we obtain the curve of the staggered magnetization
(S,'„) versus temperature T/I JI, which is shown in Fig.
6. From the numerical calculation, we obtain the stag-
gered magnetization at T=O K as 0.3017. The corre-
sponding Monte Carlo value is 0.30.' The antiferromag-
netic transition temperature, i.e., the Neel temperature
T&, can be determined by (S„)=0 from Fig. 6, and it
is T&=0.323 JI. The experimental value of JI is 0.1

eV. ' So our theoretical value is T& =374 K. The experi-
mental value for La2Cu04 is T&=326 K.'

The coefficient of the spin-wave spectrum in Eg. (36) is
(S „)I4IJI. The temperature dependence of (S,'„)I is
shown in Fig. 6 as well. The coefFicients at T =0 K and
T =0.5

I JI are 2I JI and 0, respectively. However, the cor-
responding coefficients in Ref. 8 are 1.479IJ and 1.46I JI,

respectively. In Ref. 8, even if T =4.0IJI, the coefficient
is sti11 not equal to zero. The discrepancy between Ref. 8
and our theory on the coefFicient awaits further experi-
mental discrimination. At this time, we would like to say
that the conclusion of Ref. 8 is not physically reasonable.
For example, IJI =0.1 eV for high-T, superconductors,
and thus T=4IJI =4600 K ))T~. As we know, there
should be no spin wave and long-range order when
T ) T+s

The anisotropy has an important eff'ect on the stag-
gered magnetization. Assuming I(J„+J )/(2J, )I =0.99
and T =0 K, we obtain (S ~ ) =0.34 for a square lattice
from Eq. (40). Thus the anisotropy might be the origin of
the dispersion of the experimental data in Refs. 12 and
13.

Note that the equation-of-motion method is difFerent
from our Eq. (40). In the former, the (S „)Iin our Eq.
(40) is substituted by (S„), and thus (S„)=0.36 at
T =0 K, which is difFerent from the experimental
data. ' ' The most serious defect of the equation-of-
motion method is that it contradicts charge neutrality, '

but our quantum-field-theory approach can solve the
problem without contradicting charge neutrality. '

0.4

0.0 0.1 0.2 0.3 0.4 0.5

FKJ. 5. Feynman diagram of Gzz(k, co„) in the RPA.

FICx. 6. Line 1 is the curve of the staggered magnetization
(S;„)vs T/I JI, and line 2 is the curve of the coefficient (S;z )z
in Eq. (36)» T/I JI.
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There is a major difFerence between our Eqs. (26) and
(36) and Ref. 20. For the Ising model (J„=J =0, J,AO),
there is no spin wave in our theory, but there is a spin
wave in the case of the 20 Ising model in Ref. 20.

APPENDIX

To use Larsen's method' to freeze out the spurious
states, we rewrite Eq. (3) as

H= —2g' "[J,S S +J S SJ'+J~S,~SJ~]—2 g [J,SJ'Si„+J SJ"S(„+J~SJ~S~)„]a(,a„.
j( & 1)ss'

=H' " 2—Q [J,S)'S;„+J S,"S)„+JySJ~S~„,. ](2 „(2„
j( & 1)ss'

(A 1)

where the superscript (N —1) means that there is no site 1 in the summation over i and j. Only the site 1 is shown by
the pseudofermion representation in Eq. (Al), so the spurious states are only contained at site 1. Froin the definition,
we have the following equation:

&D &(N-1)1= Tr' ' (PD)
TI (N —1)1

Tr) "(pD) Tr(N —1)1(pD) Tri "p
Tr(N —1) Tr(N —1)( D ) T (N —1)1I1 P 11

(D &(N 1) Tr (PD) 1 P(N —1)1

(N —1)( D) T (N —1)1
r1

(A2)

where the superscript (N —1)1 means the true state average on the lattice as well as (N), the single subscript 1 means
the total state on site 1, and the superscript (N —1) the true states on N —1 sites. From the definition, we have

(N —1)( D )—
N & n

I {1& 00
1 pD IOO &1+1& 1 1

I pD I
» &, +, & lolpD I

lo &,

We define

(N —1) —H /T

+)&ollpD Iol &)] ln &2 (A3)

Because there is no site 1 in D' "and p' ",we know
from the definitions of ( & and Tr that

(A4)

Considering'

(A5)
(D(N —1) &(N

—1) (D(N —1) &(N
—I)

1

T (N —1)(N —1) ~ ~ (N —1) (N —1)11 4T1 P

(A 10)

(A 1 1)

g S„a„a„IOO &, = g S„.a „a„ I
11 &, =0,

ss $$

Eq. (A3) can be rewritten as

Ti(N —1)( D) 1Tr(N —1)( (N —1)D(N —1))

The second factor in Eq. (A2) can be rewritten as

(N —1)1( D)
(N —1)( D)

1 (D(N —1) &(N —1)
1=1———

(D &(N —1)Tr(N —1) /Tr(N —1) (N —1)

(A6)

(A7)

(AS)

Equation (A9) can be rewritten as

gr(N —1)

(D &(N
—1)l (D &(N

—1)

Tr' p
2 T (N —1) (N —1)—(D(N "&'N " P (A12)

Tr(N)

(D &'( " means that the average is taken on the total
state at site 1 and on the true states at all other sites. Let
us continue the transformation to obtain (D &(N)

( = (D &, 2 N) on the right side of Eq. (A12). From
the same method as Eq. (A2), we obtain

(N —1) D) T (N —I —2)

(D &(N
—1)—(D &(N —1 —2)

(N —1 —2)( D) T (N —1)r12 P r1 P
(A13)

Substituting Eq. (AS) into Eq. (A2) gives

T (N —1)

(D &(N —1)1 (D &(N
—1)

T (N —1)1

1 ~ ~1 r1 p/D(N —1) &(N —1)T (N —1) (N —1)

2 Tr(N —1)1

Note that the 1 and 2 represent site 1 and site 2, respec-
tively. Considering

)(pD)

Tr(N —1)( D)+2 Tr(N —1 —2)( (N —2)D(N —2)) (A14)
(A9)

and Eq. (20), Eq. (19) an be rewritten as
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Tr(N —1 —2)

(D )(N) (D )(N 1 2) 1 2 P
Tr(N)

(N —1 —2) (N —2)
(D(N —2) )(N —1 —2)

1 Tr(N)
(D(N —1) )(N —1)2 Tr(N —I) (N —1) (A 15)

We continue the transformations until (D ), 2 N appears on the right side of Eq. (A15). Finally, we obtain

(D)' '=
(N) [(D)) 2 NTr, 2 Np

—(D' ')) 2 N, 2Tr, 2 N, p'

(D(N —1) )(N —1)2 Tr(N —1) (N —1)] (A16)

From the basic definitions, Tri 2 Np in Eq. (A16) can
be rewritten as

4
Tr, p=Tr(N)p+2 P Tr(N —1 —2 —i) (N i)-

i=1

I

then

(D(N —i) g(N —1 —2 —. . —i)
~1,2, . . . , i —1

=[1—(N —i)a](D )12 (A20)

(A17)

where the factor 2 in Eq. (A17) comes from the fact that
there are two spurious states at site i. For large systems,
the averages on both the N local spin system and (N —1)
local spin system should be equal. Considering Eq.
(A17), the consistent solution of Eq. (A6) is

(D )(N) (D(N —1) )(N —1)

(D(N —i) g(N —1 —2 —~ —i)
~1,2, . . . , i —1

Substituting Eqs. (A17), (A19), and (A20) into Eq. (A16)
gives

( 1 —Na }= 1+ [2 TrIN
Tr p

[N —(N —1)]+P

+(N 1)2T (N —1) (N —1)]

(A21)

=&D&, , (A 1 8) Because

which means that the averages on both the true states
and the total states are the same, i.e., the averages on
spurious states do not contribute to the statistical aver-
ages. Because Eq. (A18) is very important, let us prove it
in detail. If we assume that

N —1 —2 —- ~ —(N —1)l fN —(N —1)lr1,2, . . . , N —2 PTr p

+ +(N —1)2Tr'N-"p'"-" & 0, (A22)

(D)' '=(1—Na)(D )) 2 (A19)
we obtain a =0. From Eqs. (A18) and (4), we know that
the true Green's function G is equal to G(, .).
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