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Finite-temperature phase diagram of the t-J model: Renormalization-group theory
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The finite-temperature phase diagram of the t-J model of electronic conduction is caiculated in d di-

mensions, using the Migdal-Kadanoff renormalization-group procedure. No finite-temperature phase
transition in d =1 and a finite-temperature first-order boundary ending at a critical point in d =2 are
found. In d =3, a remarkably complex multicritical phase diagram is found, with a new phase, between
hole dopings of 0.3 and 0.4 and temperatures 1/J below 0.4, in which the hopping strength t renormal-
izes to infinity under rescaling. Our results are confirmed by comparison of calculated electron densities,
kinetic energies, and nearest-neighbor density-density and spin-spin correlation functions with exact
finite-cluster results.

The metal-insulator transition, ' metallic magnetism,
heavy-fermion behavior, ' and high-T, superconductivi-
ty are all finite-temperature effects that result from the
strong correlation of electrons in narrow energy bands.
It is therefore of significant interest to study finite-
temperature phenomena in strongly correlated electronic
systems. Accordingly, we have performed the finite-
temperature statistical mechanics of the t-J model of elec-
tronic conduction in d dimensions, obtaining the phase
diagrams, electron densities, kinetic energies, and
nearest-neighbor correlation functions, using the
Migdal-Kadanoff renormalization-group procedure. No
finite-temperature phase transition in d =1 and a finite-
temperature critical point terminating a first-order
boundary in d =2 are found. In d =3, a remarkably
complex multicritical phase diagram, with a new phase
and multiple reentrances at different temperature scales,
is found. Electron densities, kinetic energies, and
nearest-neighbor density-density and spin-spin correla-
tion functions calculated by renormalization-group
theory are supported by finite-cluster results.

Our renormalization-group calculation automatically
yields the global finite-temperature phase diagram and
statistical mechanics of a generalized t-J model, defined,
on a lattice with one spherically symmetric orbital at
each site i, by the following Hamiltonian:

P&=P —t g (c; c—+c c; )

(ij ), 0-

The projection operator P = ii, (1 n; t n;
&

)—projects out
all states with any doubly occupied site. The traditional
t JHami-ltonian is a special case of Eq. (1), obtained for
V/J=0. 25. The Hamiltonian of Eq. (1) describes the
hopping of electrons (first term), which interact through
both a nearest-neighbor antiferromagnetic coupling (forJ)0) and a nearest-neighbor Coulomb interaction ( V
term). On bipartite lattices (i.e., lattices that can be
separated into two sublattices such that any two nearest-
neighbors are on different sublattices), the sign of t in the
partition function can be reversed by a simple redefinition
of the phase of the Wannier states on one sublattice.
Thus, with no loss of generality, we restrict to t )0.

While zero-temperature properties of the t-J model
have been studied by mean-field theory, ' small-cluster
calculations, and Bethe ansatz, the finite-temperature
behavior of the model is largely unexplored, especially in
d =3 where we now obtain a rich structure. The
position-space renormalization-group method is well suit-
ed for the latter task. Our approach starts with an ap-
proximate decimation in d = 1, which is then developed
onto higher dimensions by the Migdal-Kadanoff pro-
cedure. Determination of the global connectivity of the
Rows also determines the global phase diagram, a cross
section of which applies to the traditional t-J model.
Summation along entire renormalization-group trajec-
tories yields the finite-temperature free energy, electron
density, kinetic energy, and nearest-neighbor correlation
functions.

In d = 1, the Hamiltonian can be rewritten as

—J g S;.S +V g n, n +pgn, P, . —P&=g [
—P&(i,i + 1)j .

where c; and c, are the creation and annihilation opera-
tors for an electron in the Wannier state at i with z com-
ponent of spin o.= J, or 1, n, =c, c, and S, are electron
density and spin operators at site i, and n;=n;&+n;~.

Because of the noncommutativity of quantum operators,
it is impossible to carry out exactly the decimation, even
in one dimension. We therefore use an approximation,
previously used' ' "on quantum spin systems:
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Tr,ddexp [
—/3&] =Tr,zdexp g [

—P&(i, i + 1)] .=Tr dd Q exp I
—P&(2i, 2i + 1)—/3&(2i + 1,2i +2)]

= Q exp[ —P'&'(2i, 2i+2)] =exp . g [ /3—'&'(2i, 2i+2)] .=exp[ —P'&'],

where the primes refer to the renormalized system, all
summations and products are over all integer values of i,
and Tr,dd indicates a trace over the degrees of freedom at
all odd-numbered sites. The approximation of Eq. (3)
consists in ignoring, in two formally opposite directions
(therefore, hopefully, with some mutual compensation),
the noncommutations of operators beyond two consecu-
tive segments of the unrenormalized system. Quantum
effects are thus taken into account, at each rescaling,
within clusters formed by two consecutive segments.
This procedure becomes exact in the high-temperature
limit /3 —+0 (since the commutators are proportional to
/3 ) and is thought to shed light on the finite-temperature
behavior, as has been validated in quantum spin sys-
tems' '" and a very ample contingent of classical systems
using similarly uncontrolled, but successful, local approx-
imations in position-space renormalization group. '

Our Migdal-Kadanoff renormalization-group pro-
cedure for higher dimensions is composed of a "bond-
moving" step, which has the effect of leaving, on linear
segments, interactions strengthened by a factor of f ~ 1,
followed by a decimation (here as described above), fol-
lowed by a strengthening of the interactions by a factor
of f 'b '~ 1. The length rescaling factor is b =2.
These choices of interaction strengthening factors
guarantee that every interaction term that is omitted is
accounted by interaction strengthening. This is necessary
for the required eigenvalue k =b" of the
renormalization-group transformation linearized at any
fixed point. The corresponding left eigenvector is com-
posed of the densities at the fixed point, which in turn
determine all densities in the entire thermodynamic
space. While all previous Migdal-Kadanoff' '
renormalization-group studies have used the extremes of
f = 1 or b" ', we note here that any choice in the range
1 &f & b ' is equally plausible. The calculated critical
exponents, phase diagram topologies, and thermodynam-
ic densities are not affected by the choice of f, whereas
the interaction strengths at the phase boundaries are in-
versely proportional to f. In this study, the value of f is
fixed so that the correct critical temperature of the Ising
model is obtained, which dictates f = 1.4024 in d =2 and

f =1.2279 in d =3.
The renormalization-group transformation maps an in-

itial system onto one with identical structure, thinned out
degrees of freedom, and "renormalized" values' of the
interaction constants appearing in the Hamiltonian of
Eq. (1). The latter values are determined by "recursion
relations" based on the implementation of Eq. (3). These
recursion relations are obtained here, after some compli-
cated algebra, in closed form. The bond-moved interac-
tion strengths are

t=ft, J=fJ, V=fV, p=fp .

l

Letting

u =exp( —J/8+ V/2+p, /4d),

x =exp(3J/8+ V/2+pl4d), u =exp(p/4d),

f ( 3 ) =—( 2 /3/2t + A )sinh+2t + 3
+cosh+2t + A

and

y, = 1+2u f (p/4d),

y2=(1/2)x u +uf (
—p/4d)

+(3/2)uu f (
—J /8+ V/2+P/4d),

y3=(4/3)u +(2/3)ux +uf(J/8 —V/2 —P/4d), (6)

y4=1+(3/2)u u +(1/2)xu f (3J/8+ V/2+p/4d),

y5=2u x+xf ( —3J/8 —V/2 —p/4d),

the renormalized interaction constants are

t'= f 'b '(1/2)»(y, ly, ),
J'=f 'b 'In(y3/y3),

V'=f 'b" '[ln(y, y3/y2y4)+(1/4)»(y5/y3)],
p'= f 'bd '[p, +2d In(y~y4/y, )],
G'=f 'b" '[bfG+ln(y, )],
where G is the additive constant per bond in the Hamil-
tonian. It incorporates the free-energy contributions
from the smaller length scales that have been eliminated
under rescaling. Note that the subspaces t =0, J =0, and
t =J= V=0 are each closed under the renormalization-
group transformation, as expected by the fact that miss-
ing more complicated couplings should not be generated
by rescaling. Closed-form recursion relations are neces-
sary to calculate electron densities, kinetic energies, and
nearest-neighbor correlation functions.

Our renormalization-group calculation indicates that
no finite-temperature phase transition occurs in d = 1 and
that a finite-temperature first-order boundary' terminat-
ing at a critical point ' occurs in d =2, as shown in Fig.
1.

Before proceeding to d =3, we note that in the past
new global phase diagrams obtained by approximate
renormalization-group calculations have been given
credence by the correct rendition of the special cases of
the system solved. ' In the present case, Eq. (1) reduces
to the quantum Heisenberg magnet for p~ ~, to the Is-
ing magnet in a field for t =J =0, and to the vectorial-
ized Blume-Emery-Griffiths (BEG) model in its quan-
turn version for t =0. Indeed, in the d =1,2 Heisenberg
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FIG. 1. (a) Typical cross section of the calculated global
finite-temperature phase diagram of the two-dimensional t-J
model, with t/J =0.2 and V/J =0.25. Dense disordered (D)
and dilute disordered (d) phases are separated by a first-order
phase boundary terminating at a critical point (C). (b) Calculat-
ed critical temperatures 1/J, as a function of relative hopping
strength t/J, in two dimensions. It is thus seen that finite-
temperature phase separation occurs only for low values of t/J.

subspaces of the model, our calculation yields no finite-
temperature phase transition. In the d =3 Heisenberg
subspace, it yields low-temperature antiferromagnetically
(for J)0) or ferromagnetically (J & 0) ordered phases,
each separated by a second-order transition from the
high-temperature disordered phase. The antiferromag-
netic transition temperature is calculated here to be 1.22
times the ferromagnetic transition temperature, to be
compared with the value of 1.14 for this ratio from series
expansion. ' All of the latter behavior, as well as the
behavior of the Ising model with field and the multicriti-
cal global phase diagram of the quantum BEG model
support the validity of the global calculation.

Returning to the generalized t Jmodel of Eq. (1), a-
novel and intricate global phase diagram is obtained in
d =3. This is conveyed in Figs. 2 and 3. To explain it,
we start with t =0 [Figs. 2(a) —(c)], where the model
reduces to the quantum vectorialized BEG model. In
this subspace, constant V/J phase diagram cross sections
in the variables of 1/J (proportional to temperature) and
ILI/J (proportional to dimensionless chemical potential)
exhibit antiferrornagnetic (a), dense disordered (D), and
dilute disordered ( d ) phases separated by first- and
second-order phase boundary lines. These lines are punc-
tuated by critical points (C) and critical end-points (E)
for V/J )0.25 [e.g. , Fig. 2(a)], tricritical points (T) for

V/J &0.25 [e.g. , Fig. 2(c)], and a special multicritical
point (M) for V/J =0.25 [Fig. 2(b)]. The latter point is a
quantum analog for the classical three-state Potts point. '

With the further refinement of renormalization-group
theory by the inclusion of effective vacancies' to
represent, in the renormalized systems, the short-range
disorder of the finer length scales, this multicritical point
M could be replaced by a structure including a tricritical
point, a triple point, and a critical point, with a range of
occurrence' about V/J =0.25.

The new phase-diagram phenomena appear for t%0, as
might be expected, since the model becomes a true
conduction —coupled order-parameter model. The critical
temperature of the antiferromagnetic transition of the
filled system is 43%%uo lower than the series expansion
value. The antiferromagnetic phase of the filled system
is unstable to a small amount of doping by holes (by
about 5% in Fig. 3). One novel aspect is the appearance,
close to the phase separation boundary [dashed curves in
Figs. 2(d) and 3], of a new phase (which we shall call "r"),
seen, for example, in Figs. 2(d) and 3 for t/J =2.25 and
V/J=0. 25, which applies to the traditional t Jmodel. -

This phase, to our knowledge never seen before in finite-
temperature phase transition theories, is the only volume
of the extended phase diagram in which, after multiple
rescalings, the hopping strength t does not renormalize to
zero. In fact, all the interaction constants (t, J, V,p) re-
normalize to infinite strengths, while their ratios eventu-
ally remain constant at J/t =2, V/t =3/2, p/t = —6,
and t~(x), a typical behavior for the renormalization-
group sink' of a low-temperature phase. A distinctive
feature is that at this sink, which as usual epitomizes the
entire thermodynamic phase that it attracts, the electron
density ( n, ), obtained as usual from the left eigenvector
with eigenvalue b of the recursion matrix, has the non-
unit, nonzero value of (n; )'=2/3. This feature makes
strong-coupling conduction possible by having the system
nonfull and nonempty of electrons, and has also not been
seen previously, to our knowledge.

Another feature is the appearance of several islands of
the antiferromagnetic phase, as seen in Figs. 2(d) and 3.
The islands are bounded by first- and second-order phase
transitions adorned by the various special points already
mentioned above. Thus, a multiply reentrant phase dia-
gram topology obtains. The antiferromagnetic phase also
occurs as a narrow sliver, within the disordered phase
reaching zero temperature between the antiferromagnetic
and ~ phases. The appearance of the antiferromagnetic
islands at dopings in the neighborhood of the ~ phase (see
Fig. 3) indicates that, when the hopping strength t in-
creases under rescaling, antiferromagnetically long-range
correlated states acquire substantial off-diagonal ele-
ments, which lowers the free energy of the antiferromag-
netic phase.

The transition between the new ~ and disordered
phases is second-order, controlled by a redundant triplet
structure of fixed points at (t*,J*,V*,p*) =(0.84, 1.22,—2.23, 12.91), (0.69, 1.38, —1.03, 4.15), (0.74, 3.42,—2.08, 1.52) with the respective relevant eigenvalue ex-
ponents y =1.001, 0.993, 1.009, corresponding to the
critical exponents v=0. 999 and a= —0.997. Although
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FIG. 4. Electron densities, kinetic energies, and nearest-
neighbor density-density and spin-spin correlation functions at
constant temperature 1/J =0.61 as a function of chemical po-
tential, across the phase diagram of Fig. 2(d) which has
t/J =2.25 and V/J =0.25. The vertical lines in this figure in-
dicate the location of the phase transitions. The phases are la-
beled in the first panel. Quantitative trends in the calculated
renormalization-group (full curves) and finite-cluster (dotted
curves) show agreement. Part of the bipartite finite cluster of
four sites with periodic boundary conditions is shown in the last
panel. The ferromagnetic nearest-neighbor correlation,
S; Sj & 0, in the disordered phase is even more apparent in Fig.
7.

are expected to be of comparable value to the in6nite-
system quantities. Thus, to gauge the accuracy of our ap-
proximation, trends in the renormalization-group results
for the electron densities, kinetic energies, and nearest-
neighbor correlation functions are compared to the
Gnite-cluster results in Figs. 4, 5, and 6. Good agreement
is seen for these quantitative trends, even at low tempera-
tures. The kinetic energies and nearest-neighbor correla-
tion functions are given as functions of densities in Figs. 6
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FIG. 6. Kinetic energies and nearest-neighbor density-
density and spin-spin correlation functions at constant tempera-
tures 1/J =0.61 and 0.23 as a function of electron density, cor-
responding to Figs. 4 and 5. The kinetic energy, proportional to
conductivity [Eq. (9)], as expected goes to zero in the dilute and
dense limits. Arrows indicate the (small) range of forbidden
densities due to the discontinuity at the first-order transition
from the dilute disordered phase.

tr J dti/ Re[tr„„(tv)]=— ( T,, ),2%a

where o „„(u/) is the frequency-dependent conductivity, e
is the electronic charge, and a is the lattice spacing.
Thus, the conductivity, as expected, goes to zero in the

and 7. The kinetic energies reAect the conductivity of the
system as seen from the sum rule
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FIG. 5. Same as Fig. 4, but with the lower temperature
1/J=0. 23. In this figure, when it is realized that the finite-
cluster and renorrnalization-group curves are shifted, good
agreement is seen in the trends, even at the low temperature of
this figure.
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FIG. 7. Nearest-neighbor spin-spin correlations per nearest-

neighbor electrons. The upper and lower curves, respectively,
correspond to 1/J=0. 61 and 0.23. Note the ferromagnetic
correlations at low pair densities.
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dilute and dense limits. Figure 7 exhibits nearest-
neighbor ferromagnetic correlations in the low pair-
density regime. Similar short-range ferromagnetic corre-
lations have been obtained previously in exact finite-
cluster diagonalizations.
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