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Quantum dynamical effects of zero-point spin fluctuations (SF) are shown to give rise to the strong
spin anharmonicity effects neglected in the conventional SF theory of weak itinerant-electron magne-
tism, which is based on the weak SF coupling constraint. A theory of weak itinerant magnets is present-
ed generalizing the quantum Ginzburg-Landau (GL) approach to account for large zero-point SF and
spin anharmonicity effects in a wide temperature range both below and far above the Curie temperature.
The theory is based on a variational procedure for the free energy treated as a functional of the magnet-
ic susceptibilities which are defined self-consistently via the free energy. The magnetic equation of state
and magnetovolume effect are analyzed in terms of thermal and zero-point SF. The theory presents the
microscopic grounds for the phenomenological GL approach where the zero-point SF effects are incor-
porated in the model parameters and establishes a new link between the SF theory and the first-

principles band-structure calculations.

I. INTRODUCTION

Presently, the spin-fluctuation (SF) theory of itinerant-
electron magnetism successfully accounts for a large
variety of thermal and kinetic properties of weakly fer-
romagnetic metals and is believed to be well established
on the microscopic basis.! Initially introduced in terms of
the fluctuating classical field variables? it was then related
to the overdamped paramagnons within the Hubbard
model® and Fermi-liquid concept* and incorporated
quantum dynamical effects. Later the SF theory was
equivalently reformulated in terms of the quantum
Ginzburg-Landau (GL) approach directly focusing on the
fluctuations of the magnetic order parameters and ac-
counting for the SF dynamics as well.> The parameters of
the GL model were treated on the phenomenological
footing, which yields a good quantitative description of a
series of weak itinerant magnets"> and were also related
to the first-principles band-structure calculations within,
e.g., the fixed-spin-moment approach.®~%

However, up to now the approximations of the SF
theory within both the microscopic and phenomenologi-
cal GL approaches remain unclear. It should be em-
phasized that the conventional SF theory accounts only
for thermally excited fluctuations which are assumed to
be weakly coupled and described within the Gaussian or
random-phase approximations. The quantum effects of
zero-point SF were taken out of consideration, which is
the crucial point of the SF theory. It has become com-
monplace to say that they give rise to the temperature-
independent effects which may be included in the
effective model parameters, e.g., in the exchange interac-
tion constant.!”> However, that is not the case. Recent
neutron-scattering experiments in weak itinerant-electron
magnets’ ! gave the direct evidence for the large zero-
point SF amplitudes which essentially depend on temper-
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ature. As was pointed out by Takahashi'? the
temperature-dependent zero-point SF amplitudes may
influence thermal properties of itinerant magnets. To ac-
count for this effect he assumed that the total SF ampli-
tude including thermal and zero-point contributions is
conserved. As we show below this constraint is not born
out of thermodynamics for weak itinerant magnets and
has a limited range of applicability related to the magnets
with nearly localized atomic moments.

In this paper we present a different approach to ana-
lyze the zero-point SF effects in weak itinerant magnets
based on a self-consistent thermodynamical treatment.
Recently we have estimated the zero-point SF effects in
some weak itinerant magnets!> and shown them to give
rise to the strong spin anharmonicity which cannot be
treated within the conventional SF theory based on the
weak-coupling constraint. To work out thermodynamics
beyond the weak-coupling approximation instead of
starting with the description of the Fermi quasiparticle
states basing on the many-electron Hamiltonian or
Fermi-liquid concept,'* we use an equivalent but much
more transparent quantum GL approach concentrating
directly on the collective SF variables. We treat the free
energy as a nonlinear functional of the magnetic suscepti-
bilities and define it via the variational procedure. This
yields a set of nonlinear differential equations which are
solved in a relatively wide temperature range to obtain
the magnetic equation of state and magnetovolume effect
for strongly anharmonic itinerant magnets with account
of the zero-point SF effects.

Her we would like to emphasize the difference between
the quantum dynamical effects of the zero-point SF dis-
cussed below and the static electron correlation effects in
narrow band systems (see, e.g., the review!® and refer-
ences therein) though the same term ‘“‘quantum fluctua-
tions” is sometimes used to describe both of them. The
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former effects arise due to the time correlations of collec-
tive dynamical variables!® related to overdamped SF,
paramagnons, and as we show below may essentially con-
tribute to the thermal properties of itinerant magnets.
The latter effects result from the static spatial correla-
tions of individual electron variables'® and are almost
temperature independent, which can be incorporated into
the effective parameters of a Fermi liquid®*'*!> or of the
adopted here GL model.’

II. SPIN ANHARMONICITY IN THE
QUANTUM GINZBURG-LANDAU APPROACH

Focusing on the effects of collective spin excitations we
begin with the conventional GL effective Hamiltonian for
an isotropic weak itinerant ferromagnet (cf. Ref. 16):

ﬁeﬁ:%ZXg‘(k)lM(kHz
k

1
+ 1‘7/0 >
k,+k,+k;+k, =0

X[M(k;)-M(ky)], (D)

where M(k)=M3$, ,+m(k) is the magnetic order param-
eter, M is the magnetization density, m(k) accounts for
SF. Here y, and y,(k) are the mode-coupling constant
and the static inhomogeneous susceptibility in the ab-
sence of coupling. Below we assume that they incorpo-
rate static electron correlation effects and may be inferred
from the band-structure calculations.”® To complete our
description of the dynamical SF effects we use the time-

dependent GL equations!”!?
1 oM(k) __ bAs o
I'k) ot SM(—k) ’

with the relaxation rate I'(k) dominated by the Landau
damping of SF.!"*~% Equations (1) and (2) fully determine
the quantum GL model for itinerant-electron magnets
(cf. Ref. 5). The Hamiltonian (1) accounts only for the
lowest order mode-mode interactions and neglects the
time and spatial dispersions of the coupling con-
stant.>!®17  These approximations hold for weak
itinerant magnets close to a ferromagnetic instability
where the magnetic order parameter is relatively small
providing expansions in powers of M(k), and long-
wavelength low-frequency SF are known to play a
predominant role.! >

In the thermodynamical treatment of the conventional
SF theory the effects of the SF coupling are described in
the lowest order approximation in the SF amplitudes, ac-
tually in the Gaussian or random-phase approximations
using the Peierls-Bogolyubov inequality for the free ener-
gy’

F<F(Hy)+(Hgs—H,) . 3)

Here F(A o) is the free energy calculated with the nonin-
teracting SF Hamiltonian
1 Yo
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where x;,=2x,(0), x,(k) are the transverse (v=t) and lon-
gitudinal (v=1) inhomogeneous magnetic susceptibilities
found either from the thermodynamical relations®*> or
from the minimization procedure,>® and ( ---) indi-
cates the statistical average related to H,. The approxi-
mation of the conventional SF treatment! ~® is to drop
the SF coupling term (H.;—H,) in Eq. (3) while
describing thermal properties of itinerant magnets. As
we have pointed out recently'? this approach is valid only
in the weak-coupling limit when the spin anharmonicity
parameter

3(dm?2)

5
A(M?) ©

g,=2vo 3 Rex,(0,k)dm%i(w, k)~
o,k

is small. The parameter (5) also describes the dynamical
anharmonic effects!® defined by the nonlinear equations
of motion (2). Here

5m3=2k5m3(w,k)=(8m3)T+(8m3>zp 6

are the averaged amplitudes of SF including the thermal
(dmi);=4#3 N, Imy (w,k) (7)
w,k
and zero-point
(8m2),, =243 Imy (o,k) 8)
o,k

contributions, m f,(a),k) is the spectral density of SF,
N, =[expl#iw/kyT)—1]7},

=y (4o
&%—gfo 21
and
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X, (o,k)=x, (k) lI‘(k) X, tck Tk 9)

are the inverse dynamical susceptibilities following from
the equations of motion (2). Here we assume the static
susceptibilities x,(k)=(x, '+ck?)~! and relaxation rate
I'(k)=Tk to have the conventional form! > provided the
frequency w =w, and wave vector kK =k, are in the
paramagnon region. Here the constants ¢ and I" describe
the spatial dispersion and relaxation rate, w, ~kvy and k,
are the cutoff frequency and wave vector defined by the
Stoner continuum boundary and Fermi momentum, re-
spectively, and vy is the Fermi velocity. The form (9) for
the dynamical susceptibility is supported by the inelastic
neutron-scattering experiments in weak itinerant mag-
nets!® and was shown to hold over the whole Brillouin
zone for a wide frequency range 0 <w <7.9-kg T, /# (Ref.
10) where T, is the Curie temperature.

Not far from the Curie temperature, when the inverse
magnetic susceptibilities are small enough,

Xl <<ck?, (10)

one may expand thermal SF amplitudes (7) in powers of
—1
Xt



12 412
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(dm?2)p=0m%}— (ex,) V24 -+ . (11)
Here k4 is the characteristic wave vector of thermal SF
given by kr=k_ in the classical high-temperature limit,
T>>T,, and k;=(T/T,,)k, in the low-temperature
quantum regime T <<T,,, where kzT, ~#lck?} is the
maximum energy of SF, and

kg Tk
dmp=——— (12)
T 272
is the squared amplitude of thermal SF at y, '=0 (see,

e.g., Ref. 5). With Eq. (11) one easily estimates the
thermal contribution

~vV'16T./|T —T.,|

to the anharmonicity parameter (5), where'®17
2
1 k
TG = 2 5 3 (13)
327 | ACEy

is the Ginzburg parameter expressed in terms of the
specific-heat jump at T,, AC=a’/2y T, and the magnet-
ic correlation length £,=V ¢ /a, where a=3(x " ')/31InT.
Here xy ! and y are the coefficients in the Landau free en-
ergy (see Sec. III). The constraint of weak coupling of
thermal SF thus lead to the well-known Ginzburg-
Levanyuk criterion

T—T.
T

c

>>714 (14)

previously obtained for itinerant magnets by other
means.>* The violation of this inequality leads to the
breakdown of the SF theory in the critical region due to
the crucial increase of the effects of thermal SF anhar-
monicity (cf. Ref. 17).

Similarly expanding the squared zero-point SF ampli-
tudes (8), provided

Xoi <<ckl, (15)
we have
(Smf,)zp=6m3—go(yo)(v)“'+ e, (16)
where
4
dm2= " T In(1+£2)+ fIn(1+f72)] (17)
T

is the squared amplitude of zero-point SF with y, '=0,
f =vF/Fckc2, and

_ r\7/okc2

?’08"’%2
8o~ ~

ck?

1

f

defines the zero-point SF contribution to the anharmoni-
city parameter (5). The constraint of weak coupling im-
poses a rather strong restriction on the anharmonicity of
zero-point SF,

ftan™! (18)

43¢

gO <<l y (19)
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which together with the Ginzburg-Levanyuk criterion
(14) limits the validity of the conventional SF theory.

It should be mentioned that in the weak spin anhar-
monicity limit (19) the temperature dependence of the
zero-point SF amplitudes (16) arising from the variation
of x, is negligibly small. Thus we may conclude that the
conventional SF theory! ~> neglecting the variation of the
zero-point SF amplitudes is well established in the limit
of weak spin anharmonicity.

However, according to our recent estimates!® (see
Table I) based on the neutron-scattering experiments the
spin anharmonicity parameter (18) in weak itinerant mag-
nets is not small and the conventional SF approach' >
based on the constraint of the weak coupling is not appli-
cable for them.

III. FREE ENERGY AND MAGNETIC
EQUATION OF STATE

To describe the large spin anharmonicity effects due to
zero-point SF one has to work out thermodynamics of
itinerant magnets beyond the weak-coupling approxima-
tion taking into account the effects of the variation of the
zero-point SF amplitudes. This may be done within the
standard perturbation theory (see, e.g., Refs. 17 and 20
basing either on the GL or many-electron Hamiltonians.
Here we would like to mention a recent work of Steiner,
Albers, and Sham?! who took into account the effects of
zero-point SF within the local-spin-density calculation of
the band structure of transition metals up to the second
order in SF amplitudes. However, in systems with strong
spin anharmonicity, and we believe weak itinerant mag-
nets fall into this category, it is hardly possible to use a
finite-order perturbation theory.

In this paper we present a different approach based on
a self-consistent variational procedure to calculate the
free energy of a strongly anharmonic itinerant magnet.
Below we use the following constraints. First, we de-
scribe the finite temperature properties of a magnet
within the GL model at a fixed magnetization M, volume
V, and SF spectrum defined by dynamical susceptibilities
X (@,k). Second, instead of a direct calculation of
X.{w,k) from the nonlinear time-dependent GL equations
(2) we assume for them the conventional form (9) with ¢
and I' independent on M, V, and T. Third, we neglect the
effects of coupling of SF to the displacive fluctuations of
the crystal lattice though this may be important for
structurally unstable magnets.??> Thus, we treat the free-
energy density

TABLE 1. Zero-point SF effects in weak itinerant magnets
MnSi, Ni;Al, and ZrZn,. Magnetic moments M, and (M} ),y
for T =0 are given in up per magnetic atom. The values for g,
v, My, and (M ), are taken from Ref. 13.

Y Yo
g g0 & (G™H (G™? My, (Mp)
MnSi 0.18 54 0.1 0.15 4.9%X107° 04 0.85
Ni;Al 0.15 1.1 0.25 0.53 7.0X10°% 0.075 0.46
ZrZn, 0.10 0.32 0.5 2.0 0.63 0.157 0.72
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F=F(M,V,T,x;:,X1) (20)

as a functional of M, V, T, and static homogeneous sus-
ceptibilities defined by the thermodynamic relations

M _|3M
X:= B » X1 3B y . (21)
Finally, we use the equations of state
ax, M
oM = ERS M |y
p—— o(FV)
aV MV,x,
oF A,
— (23)
V=2t,l a(X;l) MYV dln¥V My

following from the conventional minimization of the
thermodynamic potential (F +P —MB)V, where B and P
are the magnetic field and pressure, respectively. Equa-
tions (20)-(23) form a set of differential equations
defining the finite-temperature free energy of a dynamical
magnetic system.

To solve Egs. (20)-(23) one has to know the form of
the functional (20) which may be rather complicated, par-
ticularly, at low temperatures. However, the problem
may be treated easily not far from the Curie temperature
by expanding the free energy in powers of the inverse sus-
ceptibilities similar to (11) and (16), provided X,,_ﬂ are
small enough and satisfy inequalities (10) and (15). Below
we assume (15) to hold for weak itinerant magnets down
to the zero temperature, which allow us to consider their
ground-state properties.

With the equality

OF _ 1
AxgH 2

M+ 3 5m3] (24)

v=t,l

following from the Hamiltonian (1) the expansion may be
written in the form

1 Yo
F=Fy+—M*+—M*
7 2y, 4
kgT
+2 2 l[8m3+8m%]xv”‘—633/zxv‘3/2
v=t1lov
8o —2
———x, 2 t. (25)

270 ]

Here F, denotes the contribution independent on the
magnetization, the terms with M 2 and M* are related to
the Hartree-Fock approximation of the Stoner model, the
last term in the right-hand side of Eq. (25) describes the
SF contribution, and

a(xv )
xo )

According to (16) the contribution containing gox, > ac-

&= (26)
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counts for the variation of the zero-point SF amplitudes,
and the terms with Y, 3/2 define the conventional GL
fluctuation free energy giving rise to the divergent second
thermodynamical derivatives near 7,. Below we neglect
the effects of the latter, which are small aside the critical
region when the Ginzburg-Levanyuk criterion (14) is
satisfied.

The coefficients £, in (25) are affected by spin anhar-
monicity and in the Gaussian or random-phase approxi-
mations of the SF theory' ™3 are equal to 1. The same
constraint, {,=1, was used in Ref. 13 to discuss the
effects of the variation of the zero-point SF amplitudes
due to spin anharmonicity. Here we account for the
anharmonic effects beyond these approximations assum-
ing that §, are the functions of the spin anharmonicity
parameter g, only and are independent on the suscepti-
bilities. Below we will verify this assumption and find
(26) via the variational procedure.

Using the functional (25) we may write the solution of
the differential equations (20)—(23) in the form of the
Landau free energy

3 2 2 g
= + - s
F=F, 26x(T) dmi+bdmz 27x(T)
1
— M2+ J’—M4 27
2x(T) @D
where the coefficients Y ~(7) and y are given by
¥ UTD)=¢xg ' +5y(6m2+6m2) , (28)
1—5g
= . 29
YTV v eg @9

Here g is the renormalized spin anharmonicity parameter
defined by

—g it /e (30)

8o 1 —5g
We also obtain the constants

&i=6=1-5=¢, (31)

which are independent on the magnetic susceptibilities,
verifying the approximation we used above.

We emphasize that the free energy (27) is valid in a
wide temperature range ( see Sec. V) and holds also in the
low-temperature limit when the effects of thermal SF are
negligible and the inverse susceptibilities (15) are small
enough to allow the expansion (25).

In the limit 6m2,g,=0 when the zero-point SF effects
are neglected Egs. (27)-(31) yield the Landau free energy
corresponding to the conventional SF theory.!” 6 Zero-
point SF essentially affect the ground state of an 1t1nerant

magnet and renormalize the GL coefficients x; ' and y,.
The Stoner criterion
Exo 1+ 5y8m2<0 (32)

is also modified regarding the Hartree-Fock criterion,
Xo !<1. The zero-point effects tend to suppress a fer-
romagnetic instability by adding a contribution ~&m?
and reducing the negative term ~yg '. According to (1)
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the contribution to (32) containing 8m?2 comes from the
coupling of zero-point SF to the order parameter and is
positive, provided y¢>0. The factor {<1 in the term
with xo ! accounts for the effects of spin anharmonicity
beyond the weak-coupling approximation of the existing
theory.!™® It is worth noting that, similarly to the
dynamical effects of zero-point SF discussed here, a ten-
dency to ferromagnetism may be also suppressed by the
static electron correlations. !

The effects of spin anharmonicity due to zero-point SF
also reduce the SF coupling constant ¥ which according
to Eqgs. (29) and (30) is approximately given by

{7’0(1_1180), 8o <<1;
/}/:

Y0/580, 8o0>>1 (33)

and vanishes in the limit of strongly anharmonic mag-
nets. Similarly, from Egs. (30) and (31) it follows approx-
imately

’80(1_1180), g0 <<1;
g:

1—5g0, go<<1;
5= N1/25g5, go>>1. (35)

According to Eq. (35) in the strong spin anharmonicity
limit g4 >>1 the coefficient { vanishes resulting in the in-
crease of the SF contribution to the free energy (25) with
respect to the weakly-coupling, Gaussian or random-
phase approximations.

Substituting the free energy (27) into the magnetic

equation of state (22) we obtain it in the following explicit
form:
XBJ-= “HO)+y(M2+58m2) , (36)
which accounts for both thermal and zero-point SF
effects. We emphasize that it has essentially the same
form as that arising in the conventional SF theory with
zero-point SF neglected.*” %2223 The effects of the latter
are incorporated in the renormalized GL -coefficients
¥~ 10) and y which essentially differ from the initial
ones, ¥, ! and y, Assuming that the latter are known
from band-structure calculations”® we point out that for-
mulas (28)-(31) present the microscopic grounds for the
quantum GL approach for itinerant magnetism relating it
to the first-principles band theory. Taking into account
that the calculated coefficients Y~ '(0) and y in the free
energy (27) and in the magnetic equation of state (36) are
reduced due to the zero-point SF effects, compared to the
unrenormalized values, y, ' and y, we may also con-
clude that the conventional SF theory! > overestimates
SF effects.

IV. MAGNETOVOLUME EFFECT

Now we discuss the magnetovolume effect where zero-
point SF manifest themselves most directly. The well-
known result for the magnetic contribution to the volume
strain of the phenomenological Moriya-Usami theory
based on the GL approach reads as®*
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Co
mm=—E(M,Z)T, 37

where Cy=(1/2)V?d(x,V)"'/3V is the magnetoelastic
coupling constant defined by the initial GL parameter Y,
K is the bulk modulus, and

(M2)r=M>3(6m2)p~M>*+38m? (38)

is the averaged squared local magnetic moment incor-
porating the effects of thermal SF. Later (37) was
justified by the microscopic treatment?>2® accounting for
the effects of charge-density fluctuations, long-range
Coulomb interactions and magnetodeformational cou-
pling, and was generalized to apply for the fixed-spin-
moment band-structure calculations.®

One would expect that zero-point SF give an additional
temperature dependence of the magnetovolume effect
compared to (37). To account for the influence of zero-
point SF we use the free energy given by Eqgs. (25) and
(27) to calculate the equation of state (23) in the following
explicit form:

P=Py(V,T)+Co(M}),, , 39)

where P,= —09(F,V)/dV is the nonmagnetic contribu-
tion and

(MIZ, )tot:(Mlz, )T+2(8mz)zp

is the total squared local magnetic moment which incorp-
orates effects of both thermal and zero-point SF. Here
we assumed that weak itinerant magnets are sufficiently
close to a magnetic instability, and the volume depen-
dence of their free energy comes mainly from y,=x( V),
provided

a lnXO
dlnV

This allows us to neglect in the equation of state (39) a
term related to the specific heat?® and small contributions
resulting from the relatively weak volume dependencies
of the parameters c, I', v, k., and vy. We mention that
formula (39) can be also obtained straightforwardly from
the Hamiltonian (1) by averaging the derivative
—a(ﬁeﬁV) /dV, and has a wider range of validity than
the present derivation based on the expansion of the free
energy (25) would suggest.

Using the magnetic equation of state (36) and the ex-
pansion (16) for the zero-point SF amplitudes we can
present the total squared magnetic moment in the form

d1Iny(0)
dlnV

>>1 .

>

sm2——=L (40)

(M?)i=6(ME)7+3 7077

Equations (39) and (40) yield the following explicit ex-
pression for the magnetovolume effect:
Co

_ C
"=k I3

K

Co
K

- g
@ (Ml%)tot_ (Mz)T+3 5 CZ“X(O)'}/ 4

(41)
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accounting for both thermal and zero-point SF. Here
C=—(1/2)V%(xV)"'/3V is the renormalized magne-
toelastic coupling constant which may be related to C,
C=§C,.

It follows from (41) that the magnetovolume effect in
weak itinerant magnets is proportional to the total
squared local magnetic moment (M7 ), incorporating
thermal and zero-point SF effects. According to Eq. (25)
in the Hartree-Fock approximation when SF effects are
neglected, formulas (40) and (41) reduce to (M} ),y =M}
end to the familiar expression for the magnetovolume
effect in the Stoner model, w,, ~M? (see Ref. 1). Equa-
tions (40) and (41) generalize the results (37) and (38) of
the conventional SF theory with account of zero-point SF
effects. According to Egs. (40) and (41) zero-point SF
may affect the temperature dependencies of (M?),,, and
w,, reducing it by a factor £ '=(1—5g)" !> 1—apart
from the temperature-independent contributions contain-
ing 8m2 and xy !(0). This reduction of the magnetovo-
lume effect by zero-point SF may be incorporated into the
renormalized magnetoelastic coupling constant C.

In the weak spin anharmonicity limit when g, <<1,
formulas (40) and (41) reduce to Egs. (37) and (38) of the
Moriya-Usami theory?* after neglecting temperature in-
dependent contributions. In the strong-coupling limit
when g,>>1 and, according to (35), {<<1, it follows
from (40) that the variation of the zero-point SF ampli-
tude compensates the thermal SF contribution (M} ) to
the total squared moment which becomes temperature in-
dependent,

(M} )0y =const. 42)

This limit is related to magnets with localized atomic
spins fixed by the Hund’s rule (see, e.g., Refs. 1, 12, and
15).

Recently the constraint (42) was used by Takahashi!?
to describe thermal properties of itinerant magnets with
account of the zero-point SF effects. The magnetic equa-
tion of state in his microscopic model results without a
thermodynamical description from combining Egs. (16)
and (42) and may be written in the form (36) with the
coefficient y =v,/5g, which follows from our formula
(33) for gy >>1. We may conclude that the description of
the zero-point SF effects within the model of Ref. 12 is
supported by our thermodynamical treatment only in the
limit of strong spin anharmonicity and is related to the
magnets with nearly localized atomic moments. It
should be also mentioned that the description of the mag-
netovolume effect in this approach'? requires the account
of the spatial dispersion of the magnetoelastic coupling
constant.?$ Otherwise, according to (41) w,, turns out to
be independent on temperature.

V. DISCUSSIONS AND CONCLUSIONS

In this work we analyzed the zero-point SF effects in
anharmonic weak itinerant magnets basing on the expan-
sion of the free energy in terms of the inverse magnetic
susceptibilities, which is a central point of our theory.
This allowed us to present the results in a simple form of
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the Landau theory of phase transitions. On the other
hand, this imposes certain restrictions which we discuss
below.

Above we have already commented that our approach
is valid for weak itinerant magnets at low temperatures
provided the inequality (15) holds down to T'=0. At
finite temperatures besides the Ginzburg-Levanyuk cri-
terion (14) our approach is limited by the condition (10)
allowing the expansion of the thermal SF contribution to
the free energy (25). First we discuss the limit of low-T,
itinerant magnets,

T,<<T, , (43)

which is realized in the conventional weak ferromagnets
MnSi, Ni;Al, and ZrZn, (see Refs. 5 and 13). With ac-
count of Egs. (12) and (36) and the estimate mZ2~#T'k}
following from Eq. (17), one finds that condition (43) is
satisfied for these systems if the spontaneous magnetiza-
tion My=M (T =0) is less than the zero-point SF ampli-
tude,

M3} <<ém? . (44)

Using Eq. (18) we may express inequalities (10) and (15)
in the following explicit form:

4/3 4/3

TTm 2/3

(45)

For the low-T, magnets this condition is satisfied not
only near T, when |T —T,| << T, but also in a wide tem-

perature range far above T, provided
T <<(5g)73*T,, . (46)

Similarly we obtain that for high-T. itinerant magnets,
when

T,>T,, , 47)

the spontaneous magnetization must exceed the zero-
point SF amplitude,

M2E>>8m? . (48)

One may expect that in this high-temperature classical
limit the zero-point SF effects are negligibly small. How-
ever, in the vicinity of T, the cancellation of the terms
with o 'M? and 8m#y, ' makes the zero-point SF con-
tribution —gy,? to the free energy (25) important.
Analogous to the condition (45) we rewrite the inequali-
ties (10) and (15) for high-T, magnets in the form

«<1. (49)

From the relations (47) and (49) it follows that for high-
T, magnets with strong spin anharmonicity effects
(5g =~1) our approach is valid only in the vicinity of T,
contrary to the case of low T, magnets.

It is possible to make quantitative estimates of the
effects of zero-point SF and spin anharmonicity for weak
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itinerant-electron magnets, using the recent neutron-
scattering investigations.>!%1° According to Eq. (18) one
would expect strong spin anharmonicity effects caused by
zero-point SF in magnets with weak spatial dispersion of
the magnetic susceptibilities when the constant ¢ in (9) is
small.

Our estimates for weak itinerant magnets MnSi, Ni;Al,
and ZrZn, support this suggestion. In Table I we present
the spin anharmonicity parameters!® g =(y /y,)g, and
£=1—>5g calculated from Eq. (18) with the parameters c,
I', k., and y inferred from the neutron-scattering and
magnetic data.>!®!® The Fermi velocity defining the
cutoff frequency w,. =kvy was estimated from the relation
sz(#/Z)Fx;l, exact for a parabolic energy band,
where ¥, is the Pauli susceptibility taken from the band-
structure calculations (see Ref. 13). From Egs. (29) and
(30) we estimate the unrenormalized quantities g, and ¥,
which are also presented in Table I. We may conclude
that spin anharmonicity effects caused by zero-point SF
play an important role in all these materials which is
reflected in the large anharmonicity parameters g,, vary-
ing from 0.32 for ZrZn, to 5.4 for MnSi, and in the
strong renormalization of the coupling constant y related
to yo. The parameter { essentially deviates from the value
£=1 corresponding to the weak-coupling limit of the
conventional SF theory. We mention that the anharmon-
ic effects are most pronounced in MnSi where the spatial
dispersion described by the coefficient ¢ is the weakest
among these materials.> 11

In Table I we also present the zero-temperature values
for the local magnetic moment'® (M, )., =V (M} ), cal-
culated similarly to g from Egs. (17) and (40), which
should be compared with the spontaneous magnetization
M,. We conclude that zero-point SF give a significant
contribution to (M ),,, which turns out to be 2 to 6 times
larger than the spontaneous magnetization. Our estimate
(M, );;=0.85up (where pup is the Bohr magneton) for
MnSi may be compared with the polarized neutron-
scattering data of Ziebeck et al.° They measured the
inelastic-scattering cross section integrated over the in-
strument resolution —10 meV defining the energy cutoff.
After integrating this over the inverse atomic volume
they estimated the amplitude of SF in MnSi at 11 K,
0.84u 5, which yields the total local magnetic moment
0.93up. Assuming that thermal SF effects at this temper-
ature are small'® we see that the approach presented here
gives a reasonable description of zero-point SF effects in
weak itinerant magnets.

To conclude, the analysis presented above suggests the
importance of the zero-point SF effects in itinerant mag-
nets with strong spin anharmonicity. The role of zero-
point SF is manyfold. First, they directly affect the zero-
temperature properties of metals resulting, e.g., in the
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shift of the Stoner criterion. Second, due to their large
amplitude zero-point SF lead to the strong spin anhar-
monicity which in turn gives rise to the essential temper-
ature dependence of their amplitude caused by the cou-
pling to thermal SF. Finally, effects of zero-point SF
anharmonicity strongly influence the coupling of thermal
SF and result in the breakdown of the conventional SF
theory based on a constraint that the renormalization of
this coupling is negligibly small. None of these aspects
have received a satisfactory treatment.

In this paper we presented the description of the zero-
point SF effects in strongly anharmonic itinerant mag-
nets. Our approach based on a variational procedure for
the free energy generalizes the conventional SF theory to
account for anharmonic effects caused by zero-point SF.
We show that both aspects of spin anharmonicity, i.e.,
the variation of the zero-point SF amplitudes and anhar-
monic effects beyond the weak-coupling approximation
are equally important and give rise to the renormaliza-
tion of the GL parameters defining the ground state and
thermal properties.

We emphasize that the thermal properties of itinerant
magnets can be interpreted solely in terms of thermally
excited SF within, e.g., the quantum GL approach to the
SF theory of itinerant magnetism® provided the quantum
zero-point SF effects are incorporated into the phenome-
nological GL parameters. This means that the zero-point
SF effects may be averaged out basing on the different
time scale of the low-frequency thermal and high-
frequency zero-point SF. Our work gives the microscop-
ic basis for the phenomenological GL approach, relating
the phenomenological parameters to the first-principles
band-structure calculations based on the fixed-spin-
moment concept.”®

Finally, the above-mentioned general results concern-
ing zero-point fluctuations in ferromagnets may be direct-
ly applied to itinerant antiferromagnets, high-T, super-
conductors in particular, where SF essentially contribute
to neutron scattering.?’” They may also be applied to oth-
er fluctuating systems described by the quantum GL
model.
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